(3.227.235.183) 您好!臺灣時間:2021/04/17 11:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔣育均
研究生(外文):CHIANG, YU-CHUN
論文名稱:電動自駕車結構安全設計分析
論文名稱(外文):Crashworthiness of an Autonomous Electric Vehicle
指導教授:黃秀英黃秀英引用關係
指導教授(外文):HWANG, HSIU-YING
口試委員:簡孟樹藍天雄陳嘉勳黃秀英
口試委員(外文):CHIEN,MENG-SHULAN,TIEN-HSIUNGCHEN,CHIA-HSUNHWANG, HSIU-YING
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:車輛工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:100
中文關鍵詞:電動自駕車碰撞耐撞性能量吸收
外文關鍵詞:Autonomous Electric VehicleCrashCrashworthinessEnergy absorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:695
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
電動自駕車為未來車輛研究主流之一,惟國內對於電動自駕車之結構安全尚未有完整的規範定義;而車輛防護結構強度之好壞將影響傷害事故嚴重性,不可輕視,故本研究針對創新設計開發之電動自駕車車體結構進行碰撞模擬分析。
本論文應用顯式動力學分析,比較不同截面形狀與吸能設計對於耐撞性的影響,以擬靜態試驗法驗證吸能設計的模擬及實驗結果,並將吸能設計應用於車輛底盤設計中,模擬車輛在碰撞測試下撞擊過程的狀態及變形情形,量測乘員之HIC值,進而探討車體之耐撞性與安全防護能力,並運用最佳化設計分析對無法滿足法規標準之碰撞分析模型進行改善。
研究中電動自駕車分別以正面全寬、正面偏置、側面、後方及座椅系統碰撞試驗進行模擬,探討在撞擊狀態下,對結構強度及人體的影響。結果顯示,正面全寬撞擊結果所得之HIC值高於法規規範,故進一步對保險桿結構進行最佳化設計分析,執行厚度最佳化後保險桿與前樑厚度分別由5mm減少至1.35mm和1mm,質量減少了38.69%,且經改善後三個假人的頭部合成最大加速度峰值平均降幅為37.14%,HIC值皆能符合法規之規範,有效提升對人體的安全防護能力,降低撞擊事故之致命性。
Autonomous electric vehicles will be one of the mainstream researches of future vehicles. However, structure safety for autonomous electric vehicle is not completely nor well defined yet in Taiwan. The design of the vehicle structure can affect the severity of injury on passengers. This study aims at the crashworthiness study and development of an innovative autonomous electric vehicle.
This paper applied explicit nonlinear analysis for various structure cross-section designs and compared their energy absorption, deformation and general crashworthiness behaviors. The simulation and experimental results were compared based on Quasi-static test condition. The preferable designs were then applied to the vehicle chassis frames and were evaluated for crashworthiness. Optimization was also used to improve the performance.
The vehicle was simulated under full frontal, 40% frontal, side, rear and seat impact scenarios. The results showed that the number of Head-Injury-Criterion (HIC) from the full frontal impact was higher than the regulatory specifications. Optimization of the bumper structure was further carried out. The thicknesses of the bumper box and beam were both reduced from 5 mm to 1.35 mm and 1 mm, respectively. The mass of bumper was reduced by 38.69%; the synthesis maximum acceleration peak values at dummy head were decreased by 37.14%, and their HIC numbers met the regulations requirements.
目錄
摘要 i
ABSTRACT ii
誌 謝 iii
目錄 iiv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.4 研究方法與範疇 6
1.5 論文架構 7
第二章 理論與法規概述 9
2.1 動力學分析理論基礎 9
2.1.1 基本理論 9
2.1.2 動力學運動方程 10
2.1.3 質量守恆方程 11
2.1.4 動量守恆方程 11
2.1.5 能量守恆方程 11
2.2 Hamilton原理 11
2.3 時間積分法 12
2.4 時間步長控制 14
2.5 碰撞法規概述 15
2.5.1 正面全寬碰撞試驗 17
2.5.2 正面偏置40%碰撞試驗 17
2.5.3 側面碰撞試驗 18
2.5.4 後方碰撞試驗 19
2.5.5 座椅系統試驗 20
2.5.6 人體傷害指標 21
第三章 輔助吸能設計分析與實驗 23
3.1分析軟體 23
3.1.1 電腦輔助工程分析軟體介紹 24
3.2 分析流程 24
3.3 模型結構與參數設定 27
3.4 車前樑設計與分析 29
3.4.1 厚度對碰撞特性影響分析 29
3.4.2 截面型式對碰撞特性影響分析 31
3.4.3 吸能設計對碰撞特性影響分析 35
3.4.4 改變吸能設計數量對碰撞特性影響分析 40
3.4.5 改變吸能設計間距對碰撞特性影響分析 43
3.4.6 收斂性分析 46
3.5 分析結果與討論 49
3.6 擬靜態試驗 51
3.6.1 實驗模型建立 51
3.6.2 實驗設備 52
3.6.3 實驗架設與方法 53
3.7 擬靜態模擬分析 54
3.7.1 有限元素模型建立 54
3.7.2 擬靜態壓縮分析 55
3.8 實驗與分析結果討論 58
第四章 整車碰撞模擬分析 62
4.1 車體結構設計 62
4.2 分析模型建立 64
4.3 碰撞試驗模擬分析 67
4.3.1 正面全寬碰撞分析 67
4.3.2 正面偏置40%碰撞分析 70
4.3.3 側面碰撞分析 73
4.3.4 後方碰撞分析 80
4.3.5 座椅系統強度分析 83
4.4 整車分析結果與討論 85
第五章 最佳化設計與分析 87
5.1 目標問題定義 87
5.2 設計變數 89
5.3 最佳化分析 90
5.4 最佳化分析結果與討論 90
第六章 結論與未來展望 93
6.1 結論 93
6.2 未來展望 93
參考文獻 95
符號彙編 98
參考文獻
[1]李博聞,「有限元分析方法在汽車碰撞研究中的應用」,天津汽車期刊,第三期,2008,第40-42頁。
[2]江志勇,基於轎車薄壁構件碰撞的變形與吸能特性的仿真與分析,碩士論文,武漢理工大學,武漢,2009。
[3]U.S. Department of Transportation, “Traffic Safety Facts 2005”, 2005.
[4]Qing-fen Li, Yan-jie Liu, Hai-dou Wang and Sheng-yuan Yan, “Finite Element Analysis and Shape Optimization of Automotive Crash-box Subjected to Low Velocity Impact,” 2009 International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, 2009, vol. 2, pp. 791-794.
[5]A.G. Hanssen, Y. Girardc, L. Olovssond, T. Berstadb and M. Langseth, “A numerical model for bird strike of aluminium foam-based sandwich panels,” International Journal of Impact Engineering, 2006, vol. 32, pp. 1127-1144.
[6]M. Styles, P. Compston and S. Kalyanasundaram, “Finite element modelling of core thickness effects in aluminium foam/composite sandwich structures under flexural loading,” Composite Structure, 2008, vol. 86, pp. 227-232.
[7]M. Asadi, I. Bruce and H. Shirvani, “An Investigation to Compare the Application of Shell and Solid Element Honeycomb Model in ODB,” 7th European LS-DYNA Conference, Salzburg, 2009.
[8]T. Jost, T. Heubrandtner, C. Ruff and B. Fellner, “A New Method to Model Aluminium Honeycomb Based Crash Barriers in Lateral and Frontal Crash Load Cases,” Conference Proceedings 7th LS-DYNA Anwender forum, Bamberg, 2008, vol. B-III, pp. 13-24.
[9]G. Koop and E. Beeh, “New Multi-Material-Design-Concepts-And High Integration Light Metal Applications For Lightweight Body Structure,” Materials Science Forum, Bamberg, 2010, vol. 638-642, pp. 437-442.
[10]N. Abedrabbo, R. Mayer, A. Thompson, C. Salisbury, M. Worswick and I. V. Riemsdijk, “Crash response of advanced high-strength steel tubes: Experiment and model,” International Journal of Impact Engineering, Bamberg, 2009, vol. 36, pp. 1044-1057.
[11]W. Altenhof, A. M. Harte and R. Turchi, “Experimental and Numerical Compressive Testing of Aluminum Foam Filled Mild Steel Tubular Hat Sections,” 7th International LS-DYNA Users Conference Simulation Technology(3), Detroit, 2002, vol. 13, pp. 19-28.
[12]M. E. Cerit, M. A. Guler, B. Bayram and U. Yolum, “Improvement of the Energy Absorption Capacity of an Intercity Coach for Frontal Crash Accidents,” 11th International LS-DYNA Users Conference Crash Safty, Dearborn, 2010, vol. 13, pp. 15-24.
[13]V. Kotak, “Design Improvement Driven by CAE for SUV Structural Crashworthiness in Offset Frontal Crash as per ECE R 94,” SAE World Congress & Exibition, Detroit, 2008, SAE Technical Paper Series, 2008-01-0505.
[14]W. Qi, X. L. Jin and X. Y. Zhang, “Improvement of energy-absorbing structures of a commercial vehicle for crashworthiness using finite element method,” The International Journal of Advanced Manufacturing Technology, 2006, vol. 30, pp. 1001-1009.
[15]L. Lanzi, C. Bisagni and S. Ricci, “Crashworthiness optimization of helicopter subfloor based on decomposition and global approximation,” Structural and Multidiscplinary Optimization, 2004, vol. 27, pp. 401-410.
[16]S. Barbat, X. Li and P. Prasad, “Vehicle to Vehicle Front to Side Crash Analysis Using a CAE Based Methodology,” 20th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Lyon, 2007, 07-0347.
[17]F. Duddeck, “Multidisciplinary optimization of car bodies,” Structural and Multidisciplinary Optimization, 2008, vol. 35, pp. 375-389.
[18]S. Khanna, “Improving Vehicle Performance in Offset Deformable Barrier Crash as per ECE R94 via Computer Aided Engineering,” SAE World Congress & Exhibition, Detroit, 2009, SAE Technical Paper Series, 2008-01-0351.
[19]R. J. Yang, Y. Fu and G. Li, “Application of Tailor Rolled Blank in Vehicle Front End for Frontal Impact,” SAE World Congress & Exhibition, Detroit, 2007, SAE Technical Paper Series, 2007-01-0675.
[20]T. Weirzbicki and W. Abramowicz, “Development and Implementation of Special Elements for Crash Analysis,” Journal of Passenger Cars, 1988, vol. 97, pp. 918-924.
[21]K. J. Bathe, Finite Element Procedures in Engineering Analysis, Pretice-Hall, 2014, pp. 769-770.
[22]牛庠均,現代變分原理,北京:北京大學出版社,1992,第33-37頁。
[23]Altair , “RADIOSS THEORY MANUAL Version 2017- Large Displacement Finite Element Analysis Chapter 4”, 2017.
[24]ARTC , “Automotive Research & Testing News”, 2010.
[25]ARTC , “Automotive Research & Testing News”, 2009.
[26] United Nations, “Uniform Provisions Concerning the Approval of Vehicles with Regard to the Protection of the Occupants in the Event of A Frontal Collision,” Regulation No.94.
[27] United Nations, “Uniform Provisions Concerning the Approval of Vehicles with Regard to the Protection of the Occupants in the Event of A Lateral Collision,” Regulation No.95.
[28] United Nations, “Uniform provisions concerning the approval of vehicles with regard to the prevention of fire risks,” Regulation No.34.
[29] ANEC , “Testing of Rear Seat Strength in Cars”, 2003.
[30]United Nations, “Uniform provisions concerning the approval of vehicles with regard to the seats, their anchorages and any head restraints,” Regulation No.17.
[31]LEXUS OF WICHITA, https://www.lexusofwichita.com/, 2019.
[32] D. P. Wood and C. K. Simms, “ Car Size and Injury Risk: A Model for Injury Risk In Frontal Collisions,” Accident Analysis and Prevention, 2002, vol. 34, pp. 93-99.
[33]趙學平,基於轎車縱樑的碰撞模擬及吸能特性的研究,碩士論文,南京理工大學,南京,2004。
[34]王良杰,陳浩,強旭華,陳海寧,「誘導槽對薄壁樑碰撞性能影響的仿真研究」,機械科學與學術,第33卷,第12期,2014,第1827-1829頁。
[35]劉中華,李雪松,曲天雷,「汽車吸能誘導槽結構多目標優化設計」,重慶理工大學學報(自然科學),第31卷,第10期,2017,第39-42頁。
[36] D. L. Logan, A First Course In The Finite Element Method, India: Cengage Learning, 2012, pp. 10.
[37] D. S. Manjunath, “Frontal Crash Analysis of a Conformable CNG tank using Finite Element Analysis,” Master Thesis, Mechanical Engineering, Michigan Technology University, Houghton, MI, 2017.
[38]江昱蔚,車前潰縮結構之碰撞分析與最佳化,碩士論文,國立臺北科技大學,臺北,2010。
[39]H. M. Peng, P. Hu and G. Z. Shen, “Crashworthiness Simulation and Parameter Effects Analysis of Thin-walled Column ,” Automotive Engineering, 2011, vol. 22, pp. 782-786.
[40]Z. H. Liu, X. S. Cheng and H. Q. Yang, “Deformation and Energy-Absorption Charateristics of Thin-Wall Straight Beam Under Central Collision,” Journal of Jilin University, 2006, vol. 36, pp. 25-30.
[41] W. Gao and Q. B. Li, “Simulation Study on Crashworthiness of Car’s Front Rail Based on LS-DYNA,” Journal of Hubei Automotive Industries Institute, 2010, vol. 24, pp. 21-26.
[42] W. Abromowicz and N. Jones, “Dynamic progressive buckling of circular and square tubes,” International Journal of Impact Engineering, 1986, vol. 4, pp. 243-270.
[43]Crash Analysis with RADIOSS-A Study Guide, U.S.A., Altair, 2015.
[44] D. Tyrell, K.Severson and B. Marquis, “Analysis of occupant protection strategies in train collisions,” Transportation Research Records, 1995, vol. 1489, pp. 50-58.
電子全文 電子全文(網際網路公開日期:20240829)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔