跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/28 13:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳奕玄
研究生(外文):CHEN, YI-HSUAN
論文名稱:二氧化矽氣凝膠在聚胺酯發泡體之 阻燃協同效應
論文名稱(外文):Synergistic Flame Retardant Effect of Silica Aerogel on Polyurethane Foams
指導教授:王賢達王賢達引用關係
指導教授(外文):WANG, HSIN-TA
口試委員:謝炳榮李宜桓
口試委員(外文):XIE,BING-RONGLI,YI-HUAN
口試日期:2019-06-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:101
中文關鍵詞:硬質聚胺酯發泡材二氧化矽氣凝膠阻燃劑聚磷酸銨
外文關鍵詞:rigid polyurethane foamsilica aerogelammonium polyphosphateflame retardant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:365
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究以疏水性二氧化矽氣凝膠(HBA)及親水性二氧化矽氣凝膠(HCA)結合聚磷酸銨(APP)作為硬質聚胺酯(PU)之無鹵素阻燃劑,藉由高轉速分散氣凝膠於製備PU單體中,並進行發泡反應製備出HBA或HCA/APP之阻燃PU發泡材。燃燒試驗以限氧指數(LOI)、垂直燃燒試驗(UL-94 V)及圓錐量熱儀(Cone Calorimeter)做評估,比較添加不同表面性質之二氧化矽氣凝膠於PU發泡材之燃燒特性及表面性質的影響,並針對二氧化矽氣凝膠與APP之間協同效應進行探討。
結果顯示添加HCA與APP協同效果較好,添加HCA至4wt%時,就能達到V-0級(無垂滴現象),LOI值提升44%。添加HBA之PU發泡材雖然LOI有提升,但只能達到V-1等級。由圓錐量熱儀實驗發現添加HCA之PU發泡材能有效降低了最大熱釋放率(pk-HRR)至321 kw/m2(APP/PU發泡材為404 kw/m2)。由熱重量分析(TGA)顯示,添加二氧化矽氣凝膠對於PU發泡材的熱安定性,並隨著氣凝膠含量增加而有所提升。由各項實驗數據顯示,添加二氧化矽氣凝膠對於阻燃性能有所提升,原因是氣凝膠擁有良好的阻熱性質,在燃燒過程會與APP反應形成碳矽焦炭層,阻絕氧氣及熱量傳遞,達到最佳的防火協同效應。經掃描式電子顯微鏡(SEM)表面觀測材料型態後發現,LOI燃燒試驗後之聚合物表面確實擁有多孔炭層的存在。再經SEM能量分散譜(EDS)分析後證實二氧化矽氣凝膠均勻分散在高分子中,且由測量接觸角發現HBA會使聚合物表面傾向疏水性;添加HCA會使材料表面變為較親水性,因此添加氣凝膠不只改變材料的阻燃性質,也改變材料表面的性質。
The hydrophobic silica aerogel(HBA)or the hydrophilic silica aerogel(HCA), ammonium polyphosphate(APP) were incorporated into polyurethane (PU) foams. Both(HBA/APP/PU and HCB/APP/PU)foams showed good burning characteristics comparing to that of APP/PU foams in flame retardant tests (UL-94 V). This indicated that silica aerogels (either HBA or HCA) created synergistic effect with APP in flame retardancy of PU foams. The better rating in UL-94 V for HCA/APP/PU foam were found relative to that of HBA/APP/PU with the same silica aerogel loading. The V-0 grade in UL-94V test was obtained for HCA/APP/PU foam containing 2wt% of HCA and 16wt% of APP. 
The thermogravimetric analysis (TGA) results showed that HCA/APP (or HBA/APP) increased the first stage degradation rate of PU foam, which produced the retardant Si-C barrier, and decreased the second stage degradation rate of PU foam, which charred all the organic materials. The residual mass data from TGA for HBA/APP/PU and HCA/APP/PU foams proved above assumptions. In addition, the scanning electron microscope (SEM) images identified the existence of the porous Si-C barriers.
摘要 i
ABSRACT iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1研究背景 1
1.2研究動機與目的 3
第二章 基礎理論及文獻回顧 4
2.1高分子燃燒機制 4
2.2高分子阻燃機制 5
2.3焦炭率與阻燃性關係 6
2.4阻燃劑分類及機制 7
2.5硬質聚胺酯發泡材簡介 13
2.6硬質聚胺酯發泡材原料體系 14
2.7二氧化矽氣凝膠簡介 15
2.8文獻回顧 16
第三章 實驗部份 24
3.1 實驗藥品 24
3.2 實驗儀器 29
3.3 測試方法 32
3.4 實驗流程圖 42
3.5 樣品製備方法 43
第四章 結果與討論 46
4.1 阻燃PU發泡材之耐燃性質分析 46
4.2 阻燃PU發泡材之熱性質分析 53
4.3 阻燃PU發泡材表面性質分析 65
第五章 結論 71
參考資料 72
附錄A 阻燃PU發泡材SEM圖 77
附錄B 阻燃PU發泡材EDS元素分析圖 82
附錄C 阻燃PU發泡材孔徑分佈圖 89
附錄D 阻燃PU發泡材接觸角分析 95

1.中華民國內政部消防署全球資訊網, 106 年全國火災統計分析.
2.McKenna, S.T., Hull, T.R., ''The fire toxicity of polyurethane foams.'' Fire Science Reviews, vol. 5, no.1, 2016, pp. 3.
3.Mitchener, G., '' Impact of Grenfell Tower fire disaster on polyisocyanurate industry. '' Polimery, vol. 63, no. 10, 2018, pp. 716-722.
4.Malucelli, G., Carosio, F., Alongi, J., Fina, A., Frache, A., Camino, G., '' Materials engineering for surface-confined flame retardancy. '' Materials Science and Engineering: R: Reports, vol. 84, 2014, pp. 1-20.
5.Chattopadhyay, D.K., Webster, D.C., '' Thermal stability and flame retardancy of polyurethanes. '' Progress in Polymer Science, vol. 34, no. 10, 2009, pp. 1068-1133.
6.Lyon, R.E., '' Pyrolysis kinetics of char forming polymers.'' Polymer Degradation and Stability, vol. 61, no. 2, 1998, pp. 201-210.
7.歐育湘,2002,實用阻燃技術. 2002,北京: 化學工業出版社,第88-90頁。
8.Barikani, M., Askari, F., Barmar, M., '' A comparison of the effect of different flame retardants on the compressive strength and fire behaviour of rigid polyurethane foams. '' Cellular Polymers, vol. 29, no. 6, 2010, pp. 343-358.
9.Weil, E.D., Levchik, S.V., ''Commercial Flame Retardancy of Polyurethanes.'' Journal of Fire Sciences, vol. 22, no. 3, 2016, pp. 183-210.
10.Lu, S. Y., Hamerton, I., ''Recent developments in the chemistry of halogen-free flame retardant polymers.'' Progress in Polymer Science, vol. 27, 2002, pp. 1661–1712.
11.Troitzsch, J.H., ''Overview of flame retardants,'' Chemistry Today, vol. 16, 1998.
12.Pettigrew, A., Halogenated flame retardants. in Kirk-Othmer Encyclopedia of Chemical Technology, New York : John Wiley and Sons, 1993, pp. 954-976.
13.Van der Veen, I., De Boer, J., ''Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis,'' Chemosphere, vol. 88, no. 10, 2012, pp. 1119-53.
14.Lorenzetti, A., Modesti, M., Besco, S., Hrelja, D., Donadi, S., ''Influence of phosphorus valency on thermal behaviour of flame retarded polyurethane foams,'' Polymer Degradation and Stability, vol. 96, no. 8, 2011, pp. 1455-1461.
15.Liang, S., Neisius, M., Mispreuve, H., Naescher, R., Gaan, S., ''Flame retardancy and thermal decomposition of flexible polyurethane foams: Structural influence of organophosphorus compounds,'' Polymer Degradation and Stability, vol. 97, no. 11, 2012, pp. 2428-2440.
16.Yang, H., Song, L., Hu, Y., Yuen, R. K., ''Diphase flame-retardant effect of ammonium polyphosphate and dimethyl methyl phosphonate on polyisocyanurate polyurethane foam,'' Polymers for Advanced Technologies, vol. 29, no. 12, 2018, pp. 2917-2925.
17.Lin, Y., Jiang, S., Gui, Z., Li, G., Shi, X., Chen, G., ''Synthesis of a novel highly effective flame retardant containing multivalent phosphorus and its application in unsaturated polyester resins,'' RSC Advances, vol. 6, no. 89, 2016, pp. 86632-86639.
18.Balaram, P., Sirohi, S., Singh, D., '' Studies on the effects of various flame retardants on polypropylene, '' American Journal of Polymer Science, vol. 3, 2013, pp. 63-69.
19.Li, B., Xu, M., ''Effect of a novel charring–foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene,'' Polymer Degradation and Stability, vol. 91, no. 6, 2006, pp. 1380-1386.
20.Kashiwagi, T., Shields, J. R., Harris Jr, R. H., Davis, R. D., ''Flame‐retardant mechanism of silica: Effects of resin molecular weight,'' Journal of Applied Polymer Science, vol. 87, no. 9, 2003, pp. 1541-1553.
21.Meng, X. Y., Ye, L., Zhang, X. G., Tang, P. M., Tang, J. H., Ji, X., ''Effects of expandable graphite and ammonium polyphosphate on the flame-retardant and mechanical properties of rigid polyurethane foams,'' Journal of Applied Polymer Science, vol. 114, no. 2, 2009, pp. 853-863.
22.Kiliaris, P., Papaspyrides. C.D., ''Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy,'' Progress in Polymer Science, vol. 35, no. 7, 2010, pp. 902-958.
23.Lee, S., Min Kim, H., Seong, D. G., Lee, D., ''Synergistic improvement of flame retardant properties of expandable graphite and multi-walled carbon nanotube reinforced intumescent polyketone nanocomposites, '' Carbon, vol. 143, 2019, pp. 650-659.
24.Bayer,O., ''The di-isocyanate polyaddition process (polyurethanes), '' Angewandte Chemie, vol. 59, no. 9, 1947, pp. 257-272.
25.Thirumal, M., Khastgir, D., Singha, N. K., Manjunath, B. S., Naik, Y. P., ''Effect of foam density on the properties of water blown rigid polyurethane foam, '' Journal of Applied Polymer Science, vol. 108, no. 3, 2008, pp. 1810-1817.
26.Font, R., Fullana, A., Caballero, J. A., Candela, J., Garcıa, A., ''Pyrolysis study of polyurethane, '' Journal of Analytical and Applied Pyrolysis, vol.58, 2001, pp. 63-77.
27.Kistler, S.S., ''Coherent Expanded Aerogels and Jellies, '' Nature, vol. 127, no. 3211, 1931, pp. 741-741.
28.Gayathri, R., Vasanthakumari, R., Padmanabhan, C., ''Sound absorption, thermal and mechanical behavior of polyurethane foam modified with nano silica, nano clay and crumb rubber fillers, '' International Journal of Scientific and Engineering Research, vol. 4, no. 5, 2013, pp. 301-308.
29.Stepanian, C.J., G.L. Gould, and R. Begag, ''Aerogel composite with fibrous batting, '' 2006, U.S. Patent No. 7,078,359.
30.Rao, V., Kalesh, R., ''Comparative studies of the physical and hydrophobic properties of TEOS based silica aerogels using different co-precursors, '' Science and Technology of Advanced Materials, vol. 4, no. 6, 2004, pp. 509-515.
31.曾若綺,2016,添加孔隙材料對酚醛發泡板材耐燃特性的影響,碩士論文,成功大學機械工程學系,台南。
32.Yu, Z. L., Yang, N., Apostolopoulou‐Kalkavoura, V., Qin, B., Ma, Z. Y., Xing, W. Y., Yu, S. H., ''Fire-retardant and thermally insulating phenolic-silica aerogels. '' Angewandte Chemie, vol. 57, no. 17, 2018, pp. 4538-4542.
33.Maleki, H., Durães, L., Portugal, A., '' An overview on silica aerogels synthesis and different mechanical reinforcing strategies, '' Journal of Non-Crystalline Solids, vol. 385, 2014, pp. 55-74.
34.Chen, Y., Li, L., Xu, L., Qian, L., ''Phosphorus-containing silica gel-coated ammonium polyphosphate: Preparation, characterization, and its effect on the flame retardancy of rigid polyurethane foam, ''Journal of Applied Polymer Science, vol. 135, no. 22, 2018, pp. 46334.
35.Chen, Y., Li, L., Qian, L., ''The pyrolysis behaviors of phosphorus-containing organosilicon compound modified ammonium polyphosphate with different phosphorus-containing groups, and their different flame-retardant mechanisms in polyurethane foam, ''RSC Advances, vol. 8, no. 48, 2018, pp. 27470-27480.
36.Chen, Y., Li, L., Wang, W., Qian, L., ''Preparation and characterization of surface-modified ammonium polyphosphate and its effect on the flame retardancy of rigid polyurethane foam. '' Journal of Applied Polymer Science, vol. 134, no. 40, 2017, pp. 45369.
37.Ni, J., Tai, Q., Lu, H., Hu, Y., Song, L., ''Microencapsulated ammonium polyphosphate with polyurethane shell: preparation, characterization, and its flame retardance in polyurethane. '' Polymers for Advanced Technologies, vol. 21, no. 6, 2010, pp. 392-400.
38.Zheng, Z., Yan, J., Sun, H., Cheng, Z., Li, W., Wang, H., Cui, X., ''Preparation and characterization of microencapsulated ammonium polyphosphate and its synergistic flame‐retarded polyurethane rigid foams with expandable graphite, '' Polymer International, vol. 63, no. 1, 2014, pp. 84-92.
39.Zhang, M., Zhang, J., Chen, S., Zhou, Y., ''Synthesis and fire properties of rigid polyurethane foams made from a polyol derived from melamine and cardanol, '' Polymer Degradation and Stability, vol. 110, 2014, pp. 27-34.
40.Williams, M. K., Smith, T. M., Roberson, L. B., Yang, F., Nelson, G. L., ''Flame retardant effect of aerogel and nanosilica on engineered polymers, '' 2010.
41.Chen, Y., Zhan, J., Zhang, P., Nie, S., Lu, H., Song, L., Hu, Y., ''Preparation of intumescent flame retardant poly (butylene succinate) using fumed silica as synergistic agent, '' Industrial & Engineering Chemistry Research, vol. 49, no. 17, 2010, pp. 8200-8208.
42.Li, J., Wei, P., Li, L., Qian, Y., Wang, C., Huang, N. H., ''Synergistic effect of mesoporous silica SBA-15 on intumescent flame-retardant polypropylene. '' Fire and Materials, vol. 35, no. 2, 2011, pp. 83-91.
43.Bourbigot, S., Le Bras, M., Delobel, R., Bréant, P., & Trémillon, J. M., ''Carbonization mechanisms resulting from intumescence-part II. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system, '' Carbon, vol. 33, no. 3, 1995, pp. 283-294.
44.Camino, G., Costa, L., Trossarelli, L., Costanzi, F., Pagliari, A., ''Study of the mechanism of intumescence in fire retardant polymers: Part VI—Mechanism of ester formation in ammonium polyphosphate-pentaerythritol mixtures, '' Polymer Degradation and Stability, vol. 12, no. 3, 1985, pp. 213-228.
45.Wagh, P.B., Ingale, S.V., ''Comparison of some physico-chemical properties of hydrophilic and hydrophobic silica aerogels, '' Ceramics International, vol. 28, no. 1, 2002, pp. 43-50.
46.ASTM, D2863-13., ''Standard test method for measuring the minimum oxygen concentration to support candle‐like combustion of plastics (oxygen index), '' American Society for Testing Materials, 2013.
47.Shrivastava, A., Plastic properties and testing in introduction to plastics engineering, New York.:William Andrew Publishing, 2018, pp. 49-110.
48.ASTM, D3801-10, ''Standard test method for measuring the comparative burning characteristics of solid plastics in a vertical position, '' American Society for Testing Materials, 2010.
49.CNS14705-1,建築材料燃燒熱釋放率試驗法-第1部:圓錐量熱儀法,2010,經濟部標準局。
50.Kashiwagi, T., Morgan, A. B., Antonucci, J. M., VanLandingham, M. R., Harris Jr, R. H., Awad, W. H., & Shields, J. R., ''Thermal and flammability properties of a silica–poly (methylmethacrylate) nanocomposite, '' Journal of Applied Polymer Science, vol. 89, no. 8, 2003, pp. 2072-2078.
51.ASTM, D7989-10, ''Standard test method for measurement of thermal effusivity of fabrics using a modified transient plane source (MTPS) instrument, '' American Society for Testing Materials, 2010.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊