跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/25 03:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝耀葳
研究生(外文):HSIEH, YAO-WEI
論文名稱:自我修復型聚氨酯之研究
論文名稱(外文):The Study of Self-healing Polyurethane
指導教授:芮祥鵬芮祥鵬引用關係
指導教授(外文):RWEI, SYANG-PENG
口試委員:魏騰芳陳秀慧芮祥鵬
口試委員(外文):WEI, TENG-FANGCHEN, HSIU-HUIRWEI, SYANG-PENG
口試日期:2019-07-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:72
中文關鍵詞:聚氨酯自我修復Diels–Alder反應
外文關鍵詞:PolyurethaneSelf-healingDiels–Alder Reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:508
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本研究將二苯基甲烷二異氰酸酯(MDI)、聚碳酸酯二元醇(PCDL)、甘油(glycerol)反應得聚氨酯前預聚物,再以糠胺(FA)反應得末端基含有呋喃單體的預聚物(PU-furan),最後與雙馬來酰亞胺(BMI)透過Diels-Alder反應得到自我修復型聚氨酯(PU-DA),透過添加不同比例交聯劑(glycerol)對於自我修復型聚氨酯(PU-DA)的影響。透過傅立葉轉換紅外線光譜儀(FT-IR)、核磁共振氫譜儀(1H-NMR)進行結構分析。利用熱差示掃描分析儀(DSC)、熱重分析儀(TGA)進行熱分析。透過光學顯微鏡(OM)、拉伸測試(tensile test)觀察自我修復(self-healing)特性。新型自我修復型聚氨酯具有良好熱穩定及機械性質,其熱裂解點約在250℃,斷裂應力可達46.3 MPa,斷裂延伸率可達526.1%。此外,在130℃持續30分鐘可將材料傷口癒合,其修復效率約70%。在應用方面,新型自我修復型聚氨酯之塗料可將民生衣物透過環套的方式,使織物具有耐洗、耐搓揉特性。可延伸應用於汽車產業塗料、電子產品塗料……等中。
In this study, the diphenylmethane diisocyanate was reacted with polycarbonate diol, glycerol to form a polyurethane prepolymer, and then reacted with furfurylamine (FA) to form a furan-terminal group prepolymer (PU-furan). Finally, the Diels-Alder reaction was performed with bismaleimide (BMI) to obtain a targeted self-healing polyurethane (PU-DA). The self-healing polyurethane was affected by a verity of different proportion of glycerol as a cross-linking agent. The chemical structure was identified by FT-IR and 1H NMR. Thermal analysis was measured via DSC and TGA. The self-healing characteristics were observed through an optical microscope and tensile test. The new self-healing polyurethane has excellent thermal stability and mechanical properties, indicating the degradation temperature, stress and elongation at break could be observed around 250 ℃, 46.3 MPa, and 526.1%, respectively. Furthermore, the self-healing property could be driven at 130℃for 30 minutes with an effective recovery rate of 70%. This the newly synthesized self-healing polyurethane could be applied in a fabric of washing and smashing resistance property via the loop reaction, which could be extended to utilize in the automotive industry, electronic product, coating applications.
摘要 i
ABSTRACT ii
誌謝 iv
目錄 vii
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1前言 1
1.2研究動機 2
第二章 文獻回顧 3
2.1聚氨酯 3
2.1.1聚氨酯發展史 3
2.1.2聚氨酯合成機制 5
2.2自我修復材料 10
2.2.1簡介 10
2.2.2自我修復材料分類 10
2.2.3自我修復型聚氨酯 12
第三章 實驗 13
3.1 實驗藥品與器材 13
3.1.1 合成實驗原料 13
3.2 實驗儀器 16
3.2.1 傅立葉紅外線光譜儀 17
3.2.2 核磁共振光譜儀 18
3.2.3 膠體滲透層析儀 19
3.2.4 熱示差掃描分析儀 20
3.2.5 熱重分析儀 21
3.2.6 拉伸試驗機 22
3.2.7 光學顯微鏡 23
3.2.8 動態機械分析儀 24
3.3實驗方法 25
3.3.1實驗流程圖 25
3.3.2自我修復型聚氨酯合成 26
3.4測試方法 28
3.4.1傅立葉紅外線光譜分析 28
3.4.2核磁共振光譜分析 28
3.4.3膠體滲透分析 28
3.4.4熱示差掃描熱分析 29
3.4.5熱重分析 29
3.4.6拉伸試驗 29
3.4.7光學顯微鏡 29
3.4.8動態機械分析 30
3.5 自我修復測定 31
3.5.1 拉伸測試 31
3.5.2光學顯微鏡 31
第四章 結果與討論 32
4.1 基本性質分析 32
4.1.1 FT–IR結構分析(PU-furan) 32
4.1.2 FT–IR結構分析(PU-DA) 34
4.1.3 NMR結構分析(PU-furan) 36
4.1.4 NMR結構分析(PU-DA) 38
4.1.5 GPC分子量測定(PU-furan) 40
4.1.6 GPC分子量測定(PU-DA) 43
4.2熱分析 46
4.2.1 DSC(PU-furan) 46
4.2.2 DSC(PU-DA) 47
4.2.3 TGA(PU-furan) 49
4.2.4 TGA(PU-DA) 50
4.3 機械性質 53
4.3.1 DMA 53
4.3.2 拉伸測試 56
4.4 自我修復測試 58
4.4.1 拉伸測試 58
4.4.2 光學顯微鏡 62
第五章 結論 68
參考文獻 70


1.羅濟威,自修復材料及其發展概況,2016,取至「Research Portal科技政策觀點」:https://portal.stpi.narl.org.tw/index/article/10274.
2.C. Vilela, J. D. Armando, S. A. Gandini, Thermoreversible nonlinear diels‐alder polymerization of furan/plant oil monomers, Polymer Chemistry, 2013.
3.B. Gotsmann, U. Duerig, J. Frommer, C. J. Hawker, Exploiting Chemical Switching in a Diels–Alder Polymer for Nanoscale Probe Lithography and Data Storage, ADVANCED FUNCTIONAL MATERIALS, 2006, 16, 11, pp.1499-1505.
4.Y. L. Liu, T. W. Chuoa, Self-healing polymers based on thermally reversible Diels–Alder chemistry, Polymer Chemistry, 2013, 7.
5.J.L. Wietor, R. P. Sijbesma, A Self‐Healing Elastomer, Angewandte Chemie, 2008, 47, 43, pp. 8161-8163.
6.S.Burattini, B. W. Greenland, D. Chappell, H. M. Colquhoun, W. Hayes, Healable polymeric materials: a tutorial review, Chem Soc Rev, 2010, 6.
7.J.Canadell, H. Fischer, G. D. With, Rolf A. T. M. van Benthem, Stereoisomeric effects in thermo‐remendable polymer networks based on Diels–Alder crosslink reactions, journal of polymer science polymer chemistry, 2010.
8.A. A. Kavitha, N. K. Singha, A tailor‐made polymethacrylate bearing a reactive diene in reversible diels–alder reaction, journal of polymer science polymer chemistry, 2007.
9.X. Jian, Y. Hu, W. Zhou, L. Xiao, Self‐healing polyurethane based on disulfide bond and hydrogen bond, POLYMERS ADVANCED TECHNOLOGIES, 2018, 29, 1, pp.463-469
10.Y. Xu, D. Chen, A Novel Self‐Healing Polyurethane Based on Disulfide Bonds, Macromolecular Chemistry and Physics, 2016, 217, 10, pp.1191-1196.
11.劉益軍,聚氨酯樹脂及其應用,北京:化學工業出版社,2012,第1-5頁。
12.山西省化工研究所,聚氨酯弹性体手册,北京:化學工業出版社,2001,第一章。
13.P. Du, M. Wu, X. Liu, Z. Zheng, X. Wang, Diels–Alder‐based crosslinked self‐healing polyurethane/urea from polymeric methylene diphenyl diisocyanate, journal of applied polymer, 2014, 131, 9, pp. 40234.
14.X. Liu, P. Du, L. Liu, Z. Zheng, X. Wang, Kinetic study of Diels–Alder reaction involving in maleimide–furan compounds and linear polyurethane, Springer Polymer Bulletin, 2013, 70, 8, pp.2319–2335.
15.K. Adachi,A. K. Achimuthu, Y. Chujo, Synthesis of Organic−Inorganic Polymer Hybrids Controlled by Diels−Alder Reaction, ACS Publications Macromolecules, 2004.
16.L. Fenga, Z. Yua, Y. Biana, J.Lua, X. Shia, C.Chaib, Self-healing behavior of polyurethanes based on dual actions of thermo-reversible Diels-Alder reaction and thermal movement of molecular chains, Science Direct polymer, 2017, 124, pp.48-59.
17.B. Willocq, F. Khelifa, J. Brancart, G. V. Assche, Ph. Duboisac, J. M. Raquez, One-component Diels–Alder based polyurethanes: a unique way to self-heal, RSC Advances, 2017, 76.
18.J. Aizpuruaa, L. Martinb, E. Formosocd, A. Gonzáleza, L. Irusta, One pot stimuli-responsive linear waterborne polyurethanes via Diels-Alder reaction, Science Direct Progress in Organic Coatings, 2019, 130, pp.31-43.
19.S. Maganaabc, A. Zerroukhiac, C. Jegatabc, N. Mignard, Thermally reversible crosslinked polyethylene using Diels–Alder reaction in molten state, Science Direct Reactive and Functional Polymers, 2010, 70, 7, pp.442-448.
20.S. Junga, J, Tian, L. Sung, H. Honga, D. Arunbabua,S. Man, N. Jung, K.Oh, A new reactive polymethacrylate bearing pendant furfuryl groups: Synthesis, thermoreversible reactions, and self-healing, Science Direct polymer, 2017, 109, pp.58-65.
21.J. Adzima, H. Aguirre, J. Kloxin, F. Scott, N. Bowman, Rheological and Chemical Analysis of Reverse Gelation in a Covalently Cross-Linked Diels−Alder Polymer Network, ACS Publications Macromolecules, 2008.
22.P. F. Du, M. Y. Wu, X. X. Liu, Z. Zheng, X. L. Wang, P. Y. Sun, T. Joncherary, Y. F. Zhang, New J. Chem, DOI:10.1039/C3NJ01245J.
23.P. Du, X. Liu, Z. Zheng, X. Wang, T. Joncheray, Y. Zhang, Synthesis and characterization of linear self-healing polyurethane based on thermally reversible Diels–Alder reaction, RSC Advances, 2013, 35.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top