跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 00:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭俐吟
研究生(外文):GUO,LI-YIN
論文名稱:用於形狀記憶聚碳酸酯系熱塑性聚氨酯之性質研究
論文名稱(外文):Study of Carbonate-based Thermoplastic Polyurethane in Shape Memory Property
指導教授:芮祥鵬芮祥鵬引用關係
指導教授(外文):RWEI, SYANG-PENG
口試委員:莊富盛魏騰芳陳秀慧芮祥鵬
口試委員(外文):CHUANG, FU-SHENGWAY, TUN-FUNCHEN, HSIU-HUIRWEI, SYANG-PENG
口試日期:2019-07-13
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:分子科學與工程系有機高分子碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:61
中文關鍵詞:熱塑性聚氨酯碳酸酯系形狀記憶
外文關鍵詞:Thermoplastic polyurethaneCarbonate-basedShape memory
相關次數:
  • 被引用被引用:1
  • 點閱點閱:268
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以含有碳酸酯官能基的多元醇(聚碳酸酯醚型(PCE-based)及聚碳酸酯型(PCDL)) 與4,4-二異氰酸二苯甲烷(MDI)及1,4-丁二醇透過一步法合成熱塑性聚氨酯(TPU)。
以DSC測試熱塑性聚氨酯的玻璃轉移點(Tg),發現聚碳酸酯醚基的(Tg),會因PCE多元醇中CO2含量越高其Tg也隨之提升,當多元醇中CO2含量為30%其Tg為47.8℃,而CO2含量為40%其Tg為55.0℃,而PCDL的Tg則為12.4℃。PCE的5%裂解點為216.1℃,相較PCDL的裂解點為302℃,可知PCE的熱塑性聚氨酯熱穩定性較差。
將熱塑性聚氨酯以溶劑成膜後,進行80℃退火(Annealing)不同時間,可發現PCE隨著退火時間的增加,Tg會由14.6℃上升至59.6℃,這是因PCE的多元醇含有侧支甲基,由於自由體積旋轉障礙大導致Tg提升。另一原因為重複單元中含有碳酸酯基中的三個氧原子帶著六對孤電子對,孤電子對會相互排斥導致構型會受影響。從PCDL中也可發現,因結構中有三個氧原子導致Tg由-3.6℃上升至5.5℃。
將溶劑成膜後的TPU薄膜測試其形狀記憶性質,發現其固定性皆能達97%以上,且回復性皆在第3輪能達到91%以上,因此PCE的薄膜可應用於高溫(50-60℃)微形狀記憶膜材,而PCDL可應用於低溫(20℃)微形狀記憶膜材中,期許在未來能與織物結合成為新的複材。

This work is use poly carbonate-ether based polyol (PCE-based) and poly carbonate-based polyol(PCDL) with 4,4-Methylene diphenyl diisocyanate (MDI) and 1,4-Butane diol to synthesis thermoplastic polyurethane (TPU) by one-step method.
Use DSC to test thermoplastic polyurethane's glass transition temperature (Tg), and
We Observe when CO2 ratio increase in the poly carbonate-ether based polyol and Tg will increase too, when CO2 ratio is 30 % , Tg is 47.8 ℃ and CO2 ratio is 40 %, Tg is 55.0 ℃ and PCDL's Tg is 12.4 ℃
Td,5% of PCE-based TPU is 216.1 ℃, compare with Td,5% PCDL-TPU is 302 ℃. It is known that the thermoplastic polyurethane of PCE has poor thermal stability.
After the thermoplastic polyurethane to from film by solvent casting and annealing the film at 80 ℃ with different time, it's observe that PCE that the Tg of PCE increased from 14.6 °C to 59.6 °C with increasing annealing time. because the PCE-Polyol has side methyl group,result in free volume rotation obstacle is high, so the Tg will increase. Another factor is the PCE-polyol include three oxygen atoms that bring six long pairs, and the lone pairs will mutually repel each other and the configuration will be affected. It can be observe from PCDL that bring three oxygen atoms in the structure which will result in Tg increased from -3.6 °C to 5.5 °C.
After the thermoplastic polyurethane to from film by solvent casting,and tset shape memory property.It’s fixing ratio is over 97 %,at third round the recovery ratio will over 91 %. Therefore, the film of PCE can be applied to high temperature (50-60 °C) shape memory film, and PCDL can be applied to low temperature (20 °C) shape memory film, and hope to utilized in fabric to form a new composite in the future.

摘要 i
Abstract iii
致謝 v
目錄 viii
表目錄 xi
圖目錄 xii
第一章 緒論 1
1.1前言 1
1.2研究動機 2
第二章 文獻回顧 3
2.1 聚氨酯 3
2.1.1 聚氨酯歷史 3
2.2 多元醇 (Polyol) 4
2.3 異氰酸酯 (Isocyanate) 6
2.4 擴鏈劑 (Chain extender) 7
2.5 聚氨酯化學反應 8
2.5.1 一步法聚合 8
2.5.2 二步法聚合 (預聚法) 8
2.5.3 異氰酸酯基團的基礎反應 9
2.5.4 異氰酸酯親核性加成反應 9
2.5.5 OH基與異氰酸酯反應 9
2.6 以二氧化碳開環的多元醇其反應活性 10
2.7 CO2-based水性聚氨酯有抗水解及抗氧化性質 12
2.8 溫感型形狀記憶聚氨酯 15
第三章 實驗 16
3.1實驗材料 16
3.2實驗設備 19
3.2.1 真空烘箱 19
3.2.2 熱風烘箱 19
3.2.3 熱壓機 20
3.3 測試與分析儀器 21
3.3.1 傅立葉轉換紅外線光譜儀(FT-IR) 21
3.3.2 凝膠滲透分析儀(GPC) 21
3.3.3 動態熱機械分析儀(DMA) 22
3.3.4 示差掃描熱分析儀(DSC) 23
3.3.5 熱重量分析儀(TGA) 23
3.3.6 Shore-D硬度計 24
3.3.7 萬能拉伸試驗機 24
3.4 實驗流程 25
3.4.1 形狀記憶熱塑性聚氨酯合成 25
3.4.2 形狀記憶熱塑性聚氨酯檢測項目 26
3.5 實驗方法 27
3.5.1 形狀記憶熱塑性聚氨酯合成配比 27
3.5.2 形狀記憶熱塑性聚氨酯合成 27
3.5.3熱塑性聚氨酯薄膜製備 28
3.6 測試方法 29
3.6.1 傅立葉轉換紅外線光譜分析 29
3.6.2 凝膠透層析分析 29
3.6.3 動態熱機械分析 29
3.6.4 差示掃描熱量分析 29
3.6.5 熱重量分析 29
3.6.6 形狀記憶效果測試 30
3.6.7 硬度測試 31
3.6.8 拉伸測試 31
第四章 結果與討論 32
4.1 傅立葉轉換紅外線光譜分析 32
4.2 凝膠滲透層析分析 35
4.3 差示掃描熱量分析 38
4.4 熱重量分析 40
4.5 硬度測試 43
4.6 拉伸測試 44
4.7 動態熱機械分析 47
4.8 形狀記憶效果測試 53
第五章 結論 58
參考文獻 60


1.Xie, F. et al. Degradation and stabilization of polyurethane elastomers. Prog. Polym. Sci. 90, 211–268 (2019).
2.Fu, S., Qin, Y., Qiao, L., Wang, X. & Wang, F. Propylene oxide end-capping route to primary hydroxyl group dominated CO2-polyol. Polymer 153, 167–172 (2018).
3.Wang, J. et al. Waterborne polyurethanes from CO 2 based polyols with comprehensive hydrolysis/oxidation resistance. Green Chem. 18, 524–530 (2016).
4.Senich, G. A. & MacKnight, W. J. Fourier Transform Infrared Thermal Analysis of a Segmented Polyurethane. Macromolecules 13, 106–110 (1980).
5.Wang, J. et al. UV-curable waterborne polyurethane from CO 2 -polyol with high hydrolysis resistance. Polymer 100, 219–226 (2016).
6.Lee, S. H., Cyriac, A., Jeon, J. Y. & Lee, B. Y. Preparation of thermoplastic polyurethanes using in situ generated poly(propylene carbonate)-diols. Polym. Chem. 3, 1215 (2012).
7.Herrera, M., Matuschek, G. & Kettrup, A. Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polym. Degrad. Stab. 78, 323–331 (2002).
8.Cipriani, E., Zanetti, M., Brunella, V., Costa, L. & Bracco, P. Thermoplastic polyurethanes with polycarbonate soft phase: Effect of thermal treatment on phase morphology. Polym. Degrad. Stab. 97, 1794–1800 (2012).
9.Bajsic, E. G. I. & Rek, V. Thermal stability of polyurethane elastomers before and after UV irradiation. 10
10.Phillips, O., Schwartz, J. M. & Kohl, P. A. Thermal decomposition of poly(propylene carbonate): End-capping, additives, and solvent effects. Polym. Degrad. Stab. 125, 129–139 (2016).
11.Lu, X. L., Zhu, Q. & Meng, Y. Z. Kinetic analysis of thermal decomposition of poly(propylene carbonate). Polym. Degrad. Stab. 89, 282–288 (2005).
12.Inoue, S., Koinuma, H. & Tsuruta, T. Copolymerization of Carbon Dioxide and Epoxide with Organometallic Compounds. Makromol. Chem. 130, 210–220 (1969).
13.Zhang, L. et al. Bio-based shape memory polyurethanes (Bio-SMPUs) with short side chains in the soft segment. J. Mater. Chem. A 2, 11490 (2014).
14.Zhang, L. et al. Highly recoverable rosin-based shape memory polyurethanes. J. Mater. Chem. A 1, 3263 (2013).
15.Wang, F., Chen, S., Wu, Q., Zhang, R. & Sun, P. Strain-induced structural and dynamic changes in segmented polyurethane elastomers. Polymer 163, 154–161 (2019).
16. The Nature and Properties of Engineering Materials,3rd ed .,John Wiley and Sons, 1987.

電子全文 電子全文(網際網路公開日期:20240820)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top