跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/23 12:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Shunmuga Thain Balamurugan Thangaraj
研究生(外文):Shunmuga Thain Balamurugan Thangaraj
論文名稱:基於活性的生物標誌物分析的自我犧牲級聯設計電化學分子開關的探索
論文名稱(外文):Exploration of Self-Immolative Cascade Devised Electrochemical Molecular Switches for Activity-Based Biomarker Profiling
指導教授:黃聲東
指導教授(外文):HUANG, SHENG-TUNG
口試委員:林俊茂吳瑞裕汪昆立維拉潘
口試委員(外文):LIN, CHUN-MAOWU, JUI-YUWANG, KUN-LIVeerappan Mani
口試日期:2019-06-20
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:能源與光電材料專班(EOMP)
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:86
中文關鍵詞:電化學探針生物硫醇非氧化還原活性生物標記物活性酶測定實時分析
外文關鍵詞:Electrochemical probesbiothiolsnon-redox active biomarkersactive enzyme assayreal-time profiling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
Design and development of biosensors to assay critical biomarkers with high sensitivity and selectivity at low cost has become essential in clinical diagnosis. Despite the requirements, developing a distinctively selective, high sensitive detection platform to quantify the trace level biomarkers in a complex biological system remains to be a mammoth task to attain over decades. On this ground, a set of prodrug inspired self-immolative latent electrochemical molecular switches are designed and developed for rapid real-time active profiling of specific biomarkers in physiological samples with no/minimum sampling. A series of four electrochemical probes FCPA, NAS-FC, Leu-FC, and INA-FC were designed to specifically target and quantify three essential biomarkers cysteine (Cys), aminoacylase-1 (ACY-1), leucine aminopeptidase (LAP), and influenza neuraminidase (INA), respectively. The proposed self-immolative electrochemical probe platform involves three key steps starting from 1. Design and synthesis of the electrochemical molecular probes, 2. Proof-of-concept and determine the analytical parameters under lab samples, 3. Examine the real-world utility of the developed assay platforms such, real-time active profiling of specific biomarkers from live cells and complex physiological samples such as whole blood. The functional principle of all three probes was identical and clocked based on a predefined trigger-target specific chemical or biochemical reaction to induce a self-immolative chemical transformation of the linker to eliminate unmasked electrochemical reporter. The probe ferrocene carbamate phenyl acrylate (FCPA) was developed to selectively assay Cys over other biothiols such as homocysteine(Hcy), and glutathione (GSH). As discriminative detection of the three biothiols is necessary to understand the interconnections between the three and their role in various physiological and pathological functions. ACY-1 is a common mammalian enzyme hydrolyze N-acetyl amino acids and have been identified as a potential serum biomarker for liver cirrhosis, liver cancer, small-cell lung cancer, colon cancer, and delayed graft function (DGF) following renal transplantation. The probe FCPA was capable of assay ACY-1 activity employing NAC as transducing substrate. The molecular switch FCPA delivered outstanding analytical performance towards Cys, and ACY-1 detection. The probe was further employed in real time active profiling of cellular Cys production in Escherichia coli W3110 alongside quantification of blood Cys, and ACY-1 spiked in whole blood samples with admirable accuracy and reliability. The probe NAS-FC is designed to be specific for ACY-1 without any transducing substrate. The probe has been synthesized and characterized successfully; however, the electrochemical analysis of the probe with ACY-1 was not successful; as incubation of the probe with ACY-1 does not release the signaling species. The NAS-FC probe was redesigned to rectify the flaws of our previous design. The electrochemical substrate LeuFC has been designed for the activity profiling of LAP. The substrate has delivered outstanding analytical performance for the first-of-its-kind. Further, the real world utility of LeuFC probe has been demonstrated in real-time profiling of cellular LAP activity from liver cancer cells (HepG2 cells). The INA-FC probe was designed for rapid selective quantification of INA, there are three synthetic routes were tried to attain the designed probe for INA detection however, all the proposed synthetic routes are led down in selective installation of two methyl groups to the neuraminic acid core and we are not able to attain the destination compound (INA-FC) in expected duration
1 Introduction 1
1.1 Biomarkers & Biosensors 1
1.1.1 Clinical significance of biomarkers. 1
1.1.2 Biosensors. 1
1.2 Activity based biosensing. 2
1.3 Objective. 6
1.4 Design and working principle. 7
1.4.1 Working principle of FCPA empowered Cysteine sensor. 7
1.4.2 Working principle of FCPA and NAC based aminoacylase sensing platform. 7
1.4.3 Working principle of NAS-FC based aminoacylase detection. 8
1.4.4 Working principle of Leu-FC based leucine aminopeptidase detection. 8
1.4.5 Working principle of INA-FC based influenza neuraminidase (INA) detection. 8
2 Literature review 9
2.1 Self-immolative molecular probes. 9
2.2 Electroanalytical chemistry 9
2.3 Catalytic electrochemical biosensors 10
2.4 Self-immolative latent electrochemical molecular switches. 11
2.5 Physiological significance of target biomarkers. 12
2.5.1 Physiological significance of cysteine and biothiols. 12
2.5.2 Physiological prominence of aminoacylase. 13
2.5.3 Clinical prominence of leucine aminopeptidase. 14
2.5.4 Clinical significance of influenza neuraminidase. 16
3 Materials and methods. 19
3.1 Materials. 19
3.2 Instrumentations 20
3.3 Methods 20
3.3.1 Synthesis of electrochemical molecular switch FCPA for activity based selective detection of Cys and ACY-1. 20
3.3.2 Synthesis of electrochemical substrate NAS-FC for ACY-1 sensor. 21
3.3.3 Synthesis of Leu-FC probe to assay LAP activity. 22
3.3.4 Synthesis of INA-FC probe for influenza neuraminidase sensor. 23
3.4 Experimental procedure for FCPA based cysteine sensor. 28
3.4.1 Preparation of Stock solutions. 28
3.4.2 Fabrication of RGO/GCE working electrode. 28
3.4.3 Procedure of electrochemical experiments for FCPA based Cys Sensor 29
3.4.4 Procedure for E. coli W3110 cell culture and cell count: 29
3.4.5 Assay procedure for Cys detection. 30
3.4.6 Assay procedure for real-time tracking & quantification of cellular Cys production. 30
3.4.7 Assay procedure for whole blood detection of Cys. 30
3.5 Experimental procedure for ACY-1 sensor. 30
3.5.1 Electrochemical procedure for FCPA based ACY-1 Sensor. 30
3.5.2 Experimental procedure for NAS-FC based ACY-1 assay. 31
3.6 Experimental procedure for Leu-FC based LAP sensor. 31
3.6.1 Procedure of electrochemical experiments for LeuFC based LAP Sensor 31
3.6.2 Assay procedure for LAP detection. 32
3.6.3 Assay procedure for LAP inhibition studies. 32
3.6.4 Assay procedure to measure cellular LAP activity using LeuFC. 32
3.6.5 Assay procedure to measure inhibition of cellular LAP activity via LeuFC 32
4 Results and discussions 33
4.1 Self-immolative latent electrochemical molecular probe FCPA devised discriminative detection of Cys. 33
4.1.1 Optimizing the assay parameters for FCBA based electrochemical detection Cys: …33
4.1.2 Electrochemical molecular switch FCPA based sensing platform for selective high sensitive quantitative detection of Cys in real-time. 37
4.2 Activity based electrochemical molecular probe platform for electrochemical quantification of ACY-1. 48
4.2.1 Electrochemical activity profiling of ACY-1 via FCPA molecular switch. 48
4.2.2 Electrochemical activity profiling of ACY-1 using NAS-FC probe. 54
4.3 Self immolative electrochemical substrate LeuFC clocked activity profiling of leucine aminopeptidase. 57
4.3.1 Optimizing the assay parameters for LeuFC based electrochemical sensing of LAP activity……………………………………………………………………………………………57
4.3.2 Electrochemical substrate LeuFC clocked sensing platform for real-time activity profiling of leucine aminopeptidase. 58
4.4 Electrochemical molecular probe INA-FC for activity based selective detection of influenza neuraminidases. 65
4.4.1 Synthesis of INA-AN -Epoxide pathway 1: 65
4.4.2 Synthesis of INA-AN -Epoxide pathway 2: 66
4.4.3 Synthesis of INA-AN -Acetal pathway: 68
5 Conclusions 70
Reference 72
Appendix 78

[1] V.O. Puntmann, Postgraduate Medical Journal, 85 (2009) 538.
[2] M.S. Pepe, R. Etzioni, Z. Feng, J.D. Potter, M.L. Thompson, M. Thornquist, M. Winget, Y. Yasui, JNCI: Journal of the National Cancer Institute, 93 (2001) 1054-1061.
[3] C.L. Sawyers, Nature, 452 (2008) 548.
[4] S.A. Belinsky, K.J. Nikula, W.A. Palmisano, R. Michels, G. Saccomanno, E. Gabrielson, S.B. Baylin, J.G. Herman, Proceedings of the National Academy of Sciences, 95 (1998) 11891-11896.
[5] C. Bernal, F. Aguayo, C. Villarroel, M. Vargas, I. Díaz, F.J. Ossandon, E. Santibáñez, M. Palma, E. Aravena, C. Barrientos, Clinical Cancer Research, 14 (2008) 6264-6269.
[6] G.-K. Wang, J.-Q. Zhu, J.-T. Zhang, Q. Li, Y. Li, J. He, Y.-W. Qin, Q. Jing, European heart journal, 31 (2010) 659-666.
[7] L. Wang, R. Ma, L. Jiang, L. Jia, W. Jia, H. Wang, Biosensors and Bioelectronics, 92 (2017) 390-395.
[8] S.M. Borisov, O.S. Wolfbeis, Chemical Reviews, 108 (2008) 423-461.
[9] C.R. Taitt, G.P. Anderson, F.S. Ligler, Biosensors and Bioelectronics, 20 (2005) 2470-2487.
[10] H. Nakamura, I. Karube, Analytical and Bioanalytical Chemistry, 377 (2003) 446-468.
[11] D. Leech, Chemical Society Reviews, 23 (1994) 205-213.
[12] N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Chemical Society Reviews, 39 (2010) 1747-1763.
[13] J. Wu, Z. Fu, F. Yan, H. Ju, TrAC Trends in Analytical Chemistry, 26 (2007) 679-688.
[14] M.S. Baker, S.T. Phillips, Journal of the American Chemical Society, 133 (2011) 5170-5173.
[15] X. Cai, S. Weng, R. Guo, L. Lin, W. Chen, Z. Zheng, Z. Huang, X. Lin, Biosensors and Bioelectronics, 81 (2016) 173-180.
[16] B. Wang, C. Yu, Angewandte Chemie International Edition, 49 (2010) 1485-1488.
[17] D. Hanson, T. Menard, S. McHardy, A. Fleischman, W. Gorski, Analytical chemistry, 89 (2017) 7781-7787.
[18] K. Manibalan, V. Mani, P.-C. Chang, C.-H. Huang, S.-T. Huang, K. Marchlewicz, S. Neethirajan, Biosensors and Bioelectronics, 96 (2017) 233-238.
[19] A.Z. Mubarok, V. Mani, C.-H. Huang, P.-C. Chang, S.-T. Huang, Sensors and Actuators B: Chemical, 252 (2017) 641-648.
[20] R.J. Amir, N. Pessah, M. Shamis, D. Shabat, Angewandte Chemie International Edition, 42 (2003) 4494-4499.
[21] D. Shabat, Journal of Polymer Science Part A: Polymer Chemistry, 44 (2006) 1569-1578.
[22] A. Żądło-Dobrowolska, M. Szczygieł, D. Koszelewski, D. Paprocki, R. Ostaszewski, Organic & Biomolecular Chemistry, 14 (2016) 9146-9150.
[23] S. Gnaim, D. Shabat, Accounts of Chemical Research, 47 (2014) 2970-2984.
[24] T.S.T. Balamurugan, C.-H. Huang, P.-C. Chang, S.-T. Huang, Analytical Chemistry, 90 (2018) 12631-12638.
[25] S. Zhang, C.-N. Ong, H.-M. Shen, Cancer Letters, 208 (2004) 143-153.
[26] C.E. Paulsen, K.S. Carroll, Chemical Reviews, 113 (2013) 4633-4679.
[27] J. Liu, Y.-Q. Sun, Y. Huo, H. Zhang, L. Wang, P. Zhang, D. Song, Y. Shi, W. Guo, Journal of the American Chemical Society, 136 (2014) 574-577.
[28] G. Hignett, S. Threlfell, A.J. Wain, N.S. Lawrence, S.J. Wilkins, J. Davis, R.G. Compton, M.F. Cardosi, Analyst, 126 (2001) 353-357.
[29] X. He, Y. Hong, X. Wang, X. Zhang, J. Long, H. Li, B. Zhang, S. Chen, Q. Liu, H. Li, Molecular medicine reports, 14 (2016) 4255-4262.
[30] M.P.W. Smith, A. Zougman, D.A. Cairns, M. Wilson, T. Wind, S.L. Wood, D. Thompson, M.P. Messenger, A. Mooney, P.J. Selby, Kidney international, 84 (2013) 1214-1225.
[31] K. Shibata, H. Kajiyama, Y. Mizokami, K. Ino, S. Nomura, S. Mizutani, M. Terauchi, F. Kikkawa, Gynecologic oncology, 98 (2005) 11-18.
[32] S. Mizutani, K. Shibata, F. Kikkawa, A. Hattori, M. Tsujimoto, M. Ishii, H. Kobayashi, Expert opinion on therapeutic targets, 11 (2007) 453-461.
[33] W. Zhang, F. Liu, C. Zhang, J.-G. Luo, J. Luo, W. Yu, L. Kong, Analytical Chemistry, 89 (2017) 12319-12326.
[34] S. Huang, Y. Wu, F. Zeng, J. Chen, S. Wu, Analytica chimica acta, 1031 (2018) 169-177.
[35] Q. Gong, W. Shi, L. Li, H. Ma, Chemical science, 7 (2016) 788-792.
[36] J.J. Skehel, D.C. Wiley, Annual review of biochemistry, 69 (2000) 531-569.
[37] M. Von Itzstein, Nature reviews Drug discovery, 6 (2007) 967.
[38] X. Yang, Y. Guo, R.M. Strongin, Angewandte Chemie International Edition, 50 (2011) 10690-10693.
[39] F. Ali, S. Kushwaha, N. Taye, S. Chattopadhyay, A. Das, Analytical chemistry, 88 (2016) 12161-12168.
[40] J. Yan, S. Lee, A. Zhang, J. Yoon, Chemical Society Reviews, 47 (2018) 6900-6916.
[41] A. Alouane, R. Labruere, T. Le Saux, F. Schmidt, L. Jullien, Angewandte Chemie International Edition, 54 (2015) 7492-7509.
[42] P.L. Carl, P.K. Chakravarty, J.A. Katzenellenbogen, Journal of Medicinal Chemistry, 24 (1981) 479-480.
[43] P.M. Monk, Fundamentals of electroanalytical chemistry, John Wiley & Sons, 2008.
[44] E. Bakker, M. Telting-Diaz, Analytical chemistry, 74 (2002) 2781-2800.
[45] J. Wang, Analytical chemistry, 71 (1999) 328-332.
[46] I. Palchetti, M. Mascini, Analytical and bioanalytical chemistry, 391 (2008) 455-471.
[47] Y. Zhang, Q. Wei, Journal of Electroanalytical Chemistry, 781 (2016) 401-409.
[48] J. Wang, Chemical reviews, 108 (2008) 814-825.
[49] A. Wei, X.W. Sun, J. Wang, Y. Lei, X. Cai, C.M. Li, Z. Dong, W. Huang, Applied Physics Letters, 89 (2006) 123902.
[50] P. Balasubramanian, M. Annalakshmi, S.-M. Chen, T. Sathesh, T.-K. Peng, T.S.T. Balamurugan, ACS Applied Materials & Interfaces, 10 (2018) 43543-43551.
[51] P. Balasubramanian, T.S.T. Balamurugan, S.-M. Chen, T.-W. Chen, T. Sathesh, ACS Sustainable Chemistry & Engineering, 7 (2019) 5669-5680.
[52] Y. Xin, X. Fu-bing, L. Hong-wei, W. Feng, C. Di-zhao, W. Zhao-yang, Electrochimica Acta, 109 (2013) 750-755.
[53] C. Mata-Pérez, S.H. Spoel, Plant Science, 279 (2019) 27-33.
[54] M. Imber, A.J. Pietrzyk-Brzezinska, H. Antelmann, Redox Biology, 20 (2019) 130-145.
[55] H.Y. Shiu, H.C. Chong, Y.C. Leung, M.K. Wong, C.M. Che, Chemistry–A European Journal, 16 (2010) 3308-3313.
[56] P. Kubalczyk, E. Bald, P. Furmaniak, R. Głowacki, Analytical Methods, 6 (2014) 4138-4143.
[57] Z.A. Wood, E. Schröder, J.R. Harris, L.B. Poole, Trends in biochemical sciences, 28 (2003) 32-40.
[58] W. Zhang, P. Li, Q. Geng, Y. Duan, M. Guo, Y. Cao, Journal of agricultural and food chemistry, 62 (2014) 5845-5852.
[59] J.M. Llovet, J. Zucman-Rossi, E. Pikarsky, B. Sangro, M. Schwartz, M. Sherman, G. Gores, Nature Reviews Disease Primers, 2 (2016) 16018.
[60] S. Jain, L. Kamimoto, A.M. Bramley, A.M. Schmitz, S.R. Benoit, J. Louie, D.E. Sugerman, J.K. Druckenmiller, K.A. Ritger, R. Chugh, New England journal of medicine, 361 (2009) 1935-1944.
[61] R.J. Russell, L.F. Haire, D.J. Stevens, P.J. Collins, Y.P. Lin, G.M. Blackburn, A.J. Hay, S.J. Gamblin, J.J. Skehel, Nature, 443 (2006) 45.
[62] S. Wasilewski, L.J. Calder, T. Grant, P.B. Rosenthal, Vaccine, 30 (2012) 7368-7373.
[63] M. Duman, P. Gençpinar, Ö.A. Özbek, D. Özdemir, A.A. Sayiner, Pediatric emergency care, 29 (2013) 612-616.
[64] J.B. Mahony, A. Petrich, M. Smieja, Critical reviews in clinical laboratory sciences, 48 (2011) 217-249.
[65] S. Velumani, Q. Du, B.J. Fenner, M. Prabakaran, L.C. Wee, L.Y. Nuo, J. Kwang, Journal of virological methods, 147 (2008) 219-225.
[66] S. Novak-Weekley, E. Marlowe, M. Poulter, D. Dwyer, D. Speers, W. Rawlinson, C. Baleriola, C. Robinson, Journal of clinical microbiology, 50 (2012) 1704-1710.
[67] D.P. Nayak, U. Reichl, Journal of virological methods, 122 (2004) 9-15.
[68] W.J. Rodriguez, R.H. Schwartz, M.M. Thorne, The Pediatric infectious disease journal, 21 (2002) 193-196.
[69] T.L. Williams, J.L. Pirkle, J.R. Barr, Vaccine, 30 (2012) 2475-2482.
[70] X. Zhang, A.N. Dhawane, J. Sweeney, Y. He, M. Vasireddi, S.S. Iyer, Angewandte Chemie International Edition, 54 (2015) 5929-5932.
[71] X. Cui, A. Das, A.N. Dhawane, J. Sweeney, X. Zhang, V. Chivukula, S.S. Iyer, Chemical science, 8 (2017) 3628-3634.
[72] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Advanced materials, 22 (2010) 3906-3924.
[73] Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 22 (2010) 1027-1036.
[74] X. Yang, Y. Guo, R.M. Strongin, Organic & biomolecular chemistry, 10 (2012) 2739-2741.
[75] X. Zhang, Y. Hang, W. Qu, Y. Yan, P. Zhao, J. Hua, RSC Advances, 6 (2016) 20014-20020.
[76] J. Guo, S. Yang, C. Guo, Q. Zeng, Z. Qing, Z. Cao, J. Li, R. Yang, Analytical chemistry, 90 (2017) 881-887.
[77] H. Kimura, Molecules, 19 (2014) 16146-16157.
[78] W. Chen, E.W. Rosser, T. Matsunaga, A. Pacheco, T. Akaike, M. Xian, Angewandte Chemie International Edition, 54 (2015) 13961-13965.
[79] V. Uttamsingh, D. Keller, M. Anders, Chemical research in toxicology, 11 (1998) 800-809.
[80] K.-i. Ishiwata, T. Nakamura, M. Shimada, N. Makiguchi, Journal of fermentation and bioengineering, 67 (1989) 169-172.
[81] S.-T. Huang, K.-N. Ting, K.-L. Wang, Analytica chimica acta, 620 (2008) 120-126.
[82] F. Ali, H. Anila, N. Taye, R.G. Gonnade, S. Chattopadhyay, A. Das, Chemical Communications, 51 (2015) 16932-16935.
[83] S. Manna, P. Karmakar, S.S. Ali, U.N. Guria, R. Sarkar, P. Datta, D. Mandal, A.K. Mahapatra, New Journal of Chemistry, 42 (2018) 4951-4958.
[84] Y. Yu, H. Xu, W. Zhang, B. Wang, Y. Jiang, Talanta, 176 (2018) 151-155.
[85] D.H. Ma, D. Kim, E. Seo, S.-J. Lee, K.H. Ahn, Analyst, 140 (2015) 422-427.
[86] J. Zhang, J. Wang, J. Liu, L. Ning, X. Zhu, B. Yu, X. Liu, X. Yao, H. Zhang, Analytical chemistry, 87 (2015) 4856-4863.
[87] H. Lv, X.-F. Yang, Y. Zhong, Y. Guo, Z. Li, H. Li, Analytical chemistry, 86 (2014) 1800-1807.
[88] H. Xu, C. Li, D. Song, X. Xu, Y. Zhao, X. Liu, Z. Su, Electroanalysis, 29 (2017) 2410-2416.
[89] M.C.C. Areias, K. Shimizu, R.G. Compton, Analyst, 141 (2016) 5563-5570.
[90] P.T. Lee, J.E. Thomson, A. Karina, C. Salter, C. Johnston, S.G. Davies, R.G. Compton, Analyst, 140 (2015) 236-242.
[91] X. Wang, C. Luo, L. Li, H. Duan, Journal of Electroanalytical Chemistry, 757 (2015) 100-106.
[92] E.A. Tsochatzis, J. Bosch, A.K. Burroughs, The Lancet, 383 (2014) 1749-1761.
[93] K. Gu, Y. Liu, Z. Guo, C. Lian, C. Yan, P. Shi, H. Tian, W.-H. Zhu, ACS Applied Materials & Interfaces, 8 (2016) 26622-26629.
[94] S. Xu, H.-W. Liu, X.-X. Hu, S.-Y. Huan, J. Zhang, Y.-C. Liu, L. Yuan, F.-L. Qu, X.-B. Zhang, W. Tan, Analytical Chemistry, 89 (2017) 7641-7648.
[95] S.K. Burley, P.R. David, W.N. Lipscomb, Proceedings of the National Academy of Sciences, 88 (1991) 6916-6920.
[96] M. Su, M. Wei, Z. Zhou, S. Liu, Biomedical Chromatography, 27 (2013) 946-952.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top