跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 07:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡予欣
研究生(外文):HU, YU-SHIN
論文名稱:具有相控波束成型之雙頻天線陣列設計與實現
論文名稱(外文):Design and Implementation of Analog Beamforming for the Dual-Band Antenna Array
指導教授:孫卓勳孫卓勳引用關係
指導教授(外文):SUN, JWO-SHIUN
口試委員:孫卓勳鄭瑞清賴柏洲楊昌正
口試委員(外文):SUN, JWO-SHIUNCHENG, JUI-CHINGLAI, PO-CHOUYANG, CHANG-JENG
口試日期:2019-07-10
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:66
中文關鍵詞:波束成型雙頻天線陣列四位元相移器吞吐量
外文關鍵詞:BeamformingDual-Band Antenna ArrayFour Phase ShifterThroughput
相關次數:
  • 被引用被引用:0
  • 點閱點閱:312
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出具有波束成型之雙頻天線陣列,是先設計單極天線元件,將四個單極天線元件組成天線陣列並分析其波束效果。再將單極天線元件及單極天線陣列加入背板,並分析天線間之耦合效應及天線陣列之波束成型結果。為了達到波束偏移,設計四位元相移器及相控電路並與天線陣列串聯,透過調整天線元件之間的相位差,達到波束偏移方向的效果。最後觀察本論文所設計之天線陣列在複雜的環境中,調整波束位置對通道品質的影響。
按照上述之研究流程去設計與實現,其指向性單極天線元件之阻抗頻寬為2.27 GHz -2.72 GHz及4.49 GHz-6 GHz,低頻段之輻射增益大於2.5 dBi且輻射效率大於45%。另一方面,在高頻段之輻射增益大於3 dBi且輻射效率大於70%以上。接著實現指向性單極天線陣列,其輻射場型在2.4 GHz之波束掃描範圍為正負30˚且最大輻射增益為8.51 dBi,以及5.4 GHz之波束掃描範圍為正負45˚且最大輻射增益為11.06 dBi。最後,實測通道吞吐量時,可測得802.11n的2.4 GHz頻段,最高吞吐量為67 Mbps以及802.11n的5 GHz頻段,最高吞吐量為96 Mbps,與Baseline相比有明顯的提升吞吐量。

The design and implementation of analog beamforming for dual-band antenna array is proposed in this thesis. The directivity monopole antenna is comprised of a monopole antenna element and a back panel, which the both distance between of 15 mm. Measured impedance bandwidth of the directivity monopole antenna array is divided into two sections, which are 2.27 GHz – 2.72 GHz and 4.49 GHz – 6 GHz. Measured radiation gain at the lower band is more than 2.5 dBi, and the radiation efficiency is more than 45 %. In addition, measured radiation gain at the higher band is more than 3 dBi, and the radiation efficiency is more than 70 %. So, that presents the directivity monopole antenna array has good impedance matching and isolation. Next, the dual-band antenna array with analog beamforming is composed of four directivity monopole antenna elements, four phase shifter and a phase controller. The four directivity monopole elements are perpendicular to the ground and interelement distance of 60 mm. Measured results at the lower band are maximum radiation gain of 8.51 dBi and measured beam scanning range of plus or minus 30˚. On the other hand, measured results at the higher band are maximum radiation gain of 11.06 dBi and measured beam scanning range of plus or minus 45˚. Finally, the effect of the dual-band antenna array with analog beamforming on throughput in complex environments. The measured results are the maximum throughput of 67 Mbps at the lower band and the maximum throughput of 96 Mbps at the higher band. The results are significantly improved performance compared to baseline.
摘要 i
英文摘要 ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論1
1.1研究背景及動機 1
1.2論文大綱 3
第二章 智慧型天線之基礎理論 4
2.1智慧型天線定義 4
2.2波束成型技術理論 6
第三章 相控波束成型天線陣列 10
3.1單極天線元件 10
3.1.1單極天線元件參數分析及模擬 11
3.1.2單極天線元件模擬結果 14
3.2天線陣列設計 17
3.2.1單極天線陣列參數分析及模擬 17
3.3指向性單極天線 24
3.3.1指向性單極天線參數模擬及分析 25
3.3.2指向性單極天線模擬結果 25
3.4 指向性單極天線陣列 29
3.4.1指向性單極天線陣列參數分析及模擬 29
3.5相移器電路之設計 36
3.6相控電路之設計 37
第四章 量測相控波束成型天線陣列 40
4-1指向性單極天線之實測 40
4-2四位元相移器之實測 47
4-3指向性單極天線陣列之實測 49
4-4波束成型之實測 53
4-5通道吞吐量之實測 59
第五章 結論與未來展望 62
參考文獻 63


[1] S. M. Mikki and Y. M. M. Antar, “On Cross Correlation in Antenna Array with Applications to Spatial Diversity and MIMO Systems,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 4, pp. 1798-1810, Apr. 2015.
[2] S. Clauzier, S. M. Mikki, and Y. M. M. Antar, “A Generalized Methodology for Obtaining Antenna Array Surface Current Distributions with Optimum Cross-Correlation Performance for MIMO and Spatial Diversity Applications,” IEEE Antennas and Wireless Propagation Letters, vol. 14, pp. 1451-1454, 2015.
[3] H.-H. Chen, Y.-C. Yeh, M. G., and Y.-M. Huang, “Space-Time Complementary Coding MIMO with Joint Spatial Diversity and Multiplex Capability,” IEEE Transactions on Wireless Communications, vol. 7, no.8, pp. 2950-2956, Aug. 2008.
[4] S. Silva, G. Amarasuriya, C. Tellambura, and M. Ardakani, “Rely Selection Strategies for MIMO Two-Way Relay Networks with Spatial Multiplexing,” IEEE Transactions on Communications, vol. 63, no.12, pp. 4694-4710, Dec. 2015.
[5] D. A. Basnayaka and H. Haas, “MIMO Interference Channel Between Spatial Multiplexing and Spatial Modulation,” IEEE Transactions on Communications, vol. 64, no. 8, pp. 3369-3381, Aug. 2016.
[6] K. Zhang, C. Xiong, B. Chen, J. Wang, and J. Wei, “A Maximum Likelihood Combining Algorithm for Spatial Multiplexing MIMO Amplify-and-Forward Relaying Systems,” IEEE Transactions on Vehicular Technology, vol. 64, no.12, pp. 5767-5774, Dec. 2015.
[7] T. N. Kaifas and J. N. Sahalos, “Design and Performance Aspects if an Adaptive Cylindrical Beamforming Array,” IEEE Antennas and Propagation Magazine, vol. 54, no.2, pp. 51-65, Feb. 2012.
[8] F. Venneri, S. Costanzo, and G. D. Massa, “Design and Validation of a Reconfigurable Single Varactor-Tuned Reflectarray,” IEEE Transactions on Antennas and Propagation, vol. 61, no.2, pp. 635-645, Feb. 2013.
[9] Y.-F. Cheng, X. Ding, W. Shao, and B. Z. Wang, “Planar Wide-Angle Scanning Phased Array with Pattern-Reconfigurable Windmill-Shaped Loop Elements,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 2, pp. 932-936, Feb. 2017.
[10] T. Chaioun, W. Menzel, F. Tabarani, T. Purtova, H. Schumacher, M. Kaynak, Q. Luo, S. Gao, R. Starec, and V. Ziegler, “Wide-Angle Scanning Active Transmit/Receive Reflectarray,” IET Microwaves Antennas and Propagation, vol. 8, pp. 811-818, 2014.
[11] T. Li, F.-S. Zhang, F. Zhang, Y.-L. Yao, and L. Jiang, “Wideband and High-Gain Uniform Circular Array with Calibration Element for Smart Antenna Application,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 230-233, 2016.
[12] F. Hutu, D. Cordeau, and J.-M. Paillot, “2.4 GHz Antenna Array Using Vector Modulator-Based Active Phase Shifters for Beamforming,” IET Microwaves Antennas and Propagation, vol. 5, pp. 245-254, 2014.
[13] W. Yang, J. Zhou, K. Zhou, and Z. Yu, “A 5.8-GHz Active Transmitting Array Based on Frequency Shiftable Vector Modulator Module,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1085-1088, 2016.
[14] B. Babakhani, S. K. Sharma, and N. R. Labadie, “A Frequency Agile Microstrip Patch Phased Array Antenna with Polarization Reconfiguration,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 10, pp. 4316-4327, Oct. 2016.
[15] T. Nishio, H. Xin, Y. Wang, and T. Itoh, “A Frequency-Controlled Active Phased Array,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 3, pp. 115-117, Mar. 2004.
[16] H. Bolandhemmat, M. Fakharzadeh, P. Mousavi, S. H. Jamali, G. Z. Rafi, and S.-N. Safieddin, “Active Stabilization of Vehicle-Mounted Phased-Array Antennas,” IEEE Transactions on Vehicular Technology, vol. 58, no. 6, pp. 2638-2650, Jul. 2009.
[17] H.-T. Liu, S. Gao, and T.-H. Loh, “Dual-Band WLAN Diversity Antenna System with High Port-to-Port Isolation,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 3, pp. 1540-1549, Mar. 2012.
[18] Y. Nakane, T. Noguchi, and Y. Kuwahara, “Trial Model of Adaptive Antenna Equipped with Switched Loads on Parasitic Elements,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 10, pp. 3398-3402, Oct. 2005.
[19] S. Jeong and W. J. Chappell, “A City-Wide Smart Wireless Sewer Sensor Network Using Parasitic Slot Array Antennas,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 760-763, 2010.
[20] A. Cidronali, S. Maddio, G. Giorgetti, and G. Manes, “Analysis and Performance of a Smart Antenna for 2.45-GHz Single-Anchor Indoor Positioning,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no.1, pp. 21-31, Jan. 2010.
[21] C. Gu, S. Gao, H. Liu, O. Luo, T.-H. Loh, Mohammed Sobhy, Jianzhou Li, Gao Wei, Jiadong Xu, Fan Qui, B. Sanz-lzquierdo, and Raed A. Abd-Alhammeed, “Compact Smart Antenna with Electronic Beam-Switching and Reconfigurable Polarizations,” IEEE Transactions on Antennas and Propagation, vol. 63, no. 12, pp. 5325-5333, Dec. 2015.
[22] J. R. D. Luis and F. D. Flaviis, “Frequency Agile Switched Beam Antenna Array System,” IEEE Transactions on Antennas and Propagation, vol. 58, no.10, pp. 3196-3204, Oct. 2010.
[23] M. Li, A. G. Dempster, A. T. Balaei, C. Rizos, and F. Wang, “Switchable Beam Steering/Null Steering Algorithm for CW Interference Mitigation in GPS C/A Code Receivers,” IEEE Transactions on Aerospace and Electronic System, vol. 47, no. 3, pp. 1564-1579, Jul. 2011.
[24] A. Narbudowicz, M. J. Ammann, and D. Heberling, “Switchless Reconfigurable Antenna with 360˚ Steering,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1689-1692, 2016.
[25] W. Lin and H. Wong, “Polarization Reconfigurable Aperture-Fed Patch Antenna and Array,” IEEE Access, vol. 4, pp. 1510-1517, 2016.
[26] H. Yang, F. Yang, S. Xu, Y. Mao, M. Li, X. Cao, and J. Gao, “A 1-Bit 10 × 10 Reconfigurable Reflectarray Antenna:Design, Optimization, and Experiment,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 6, pp. 2246-2254, Jun. 2016.
[27] C. E. Patterson, T. K. T. kraman, A. M. Yepes, S. M. Begley, S. K. Bhattacharya, J. D. Cressler, and J. Papapolymerou, “A Lightweight Organic X-Band Active Receiving Phased Array with Integrated SiGe Amplifiers and Phase Shifters,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 1, pp. 100-109, Jan. 2011.
[28] E. Taillefer, A. Hirata, and T. Ohira, “Direction-of-Arrival Estimation Using Radiation Power Pattern with an ESPAR Antenna,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 2, pp. 678-684, Feb. 2005.
[29] K. R. Dandekar, H. Ling, and G. Xu, “Experimental Study of Mutual Coupling Compensation in Smart Antenna Applications,” IEEE Transactions on Wireless Communications, vol. 1, no. 3, pp. 480-487, Jul. 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top