跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 02:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林佳銘
研究生(外文):LIN, JIA-MING
論文名稱:使用主動式電流感測技術降壓式轉換器與仿電流感测技術磁滯電壓控制降壓式轉換器
論文名稱(外文):Buck Converter with Active-Current-Sensing Techniques and Hysteretic-Voltage-Controlled Buck Converter with Pseudo-Current-Sensing Techniques
指導教授:黃育賢陳建中陳建中引用關係
指導教授(外文):HWANG, YUH-SHYANCHEN, JIANN-JONG
口試委員:宋國明郭建宏黃育賢陳建中
口試委員(外文):SUNG, GUO-MINGKUO, CHIEN-HUNGHWANG, YUH-SHYANCHEN, JIANN-JONG
口試日期:2019-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:77
中文關鍵詞:降壓式轉換器仿電流控制主動式電流感測遲滯電壓控制
外文關鍵詞:Buck ConverterPseudo-Current ControlActive-Current-SensingHysteresis-Voltage-Control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
使用主動式電流感測技術降壓式轉換器是本論文所提出的第一個轉換器,使用主動式電流感測技術以感測電感電流,可降低切換所產生的突波,使電路具有快速暫態響應時間並提高轉換效率。電路由台灣積體電路公司0.35µm互補式金屬氧化物半導體製程實現。電源晶片面積為1.488×1.433 mm2,輸入電壓為3.3 V,輸出電壓為1.0 V到2.5 V。當輸出電壓為2.5 V,在負載電流為200 mA時,最高轉換效率為87.7%。
論文提出第二個轉換器為仿電流感測技術磁滯電壓控制降壓式轉換器,電路使用遲滯電壓控制電路,電路遲滯區間利用PMOS與NMOS以取代電阻。此架構電路簡單、易設計、傳統積分電路相比較,其優勢在於更快的暫態響應、更穩定以及低功耗。電路由台灣積體電路公司0.35µm互補式金屬氧化物半導體製程實現。電源晶片面積為1.500×1.373 mm2 ,輸入電壓為3.3 V,輸出電壓為1.0 V到2.5 V,當輸出電壓為2 V,在負載電流為250 mA時,最高轉換效率為90.6% 。

In the first converter, the active-current-sensing technique is used to sense the inductor current, which can reduce the glitch caused by switching. The proposed circuit not only performs with fast transient response time, but also improves the conversion efficiency. The first converter is implemented with TSMC 0.35-µm COMS process. The chip area is roughly 1.488×1.433 mm2, the input voltage is 3.3 V,and the output voltage varies from 1.0 V to 2.5 V, When the output voltage is 2.5 V and the output current is 200 mA, the highest efficiency is 87.2%.
The second converter of the paper is the hysteretic-voltage-controlled buck converter with pseudo-current-sensing technique. This architecture of the proposed circuit is simple and easy to design. Compared with traditional converter circuit, the proposed comments are faster transient response, more stability, and reduce power consumption. TSMC CMOS 0.35-µm process is used to design converters. The chip area is 1.500×1.373 mm2, the input voltage is 3.3 V, and the output voltage ranges from 1.0 V to 2.5 V. When the output voltage is 2.5 V and the output current is 250 mA, the peak efficiency is roughly 90.6%.

摘 要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1相關研究發展近況 1
1.2研究動機與目的 4
1.3 論文架構 5
第二章 切換式降壓轉換器電路理論分析 6
2.1 切換式降壓轉換器電路原理 6
2.1.1 電路架構與穩壓原理分析 9
2.2切換式降壓轉換器控制模式分析 13
2.2.1 電壓控制模式 14
2.2.2 電流控制模式 14
2.2.3 磁滯控制模式 15
2.2.4 固定導通時間控制 17
2.3 切換式轉換器特性與定義 19
2.3.1 暫態響應(Transient Response) 19
2.3.2 負載調節率(Load Regulation) 21
2.3.3 輸出電壓漣波(Output Voltage Ripple) 21
2.3.4 線性調節率(Line Regulation) 21
2.3.5效率(Efficiency) 22
第三章 使用主動式電流感測電路之仿電流模式降壓轉換器 23
3.1 架構介紹 23
3.1.1 轉導放大器 24
3.1.2 主動式電流感測電路 25
3.1.3 鋸齒波產生器 27
3.1.4電壓轉電流電路與減法器 28
3.1.5 Type-Ⅲ補償器 29
3.1.6 比較器電路 31
3.1.7 非重疊電路與驅動電路 32
3.2 電路模擬 34
3.3 整體電路佈局與量測結果 37
3.3.1 晶片佈局 37
3.3.2 晶片腳位與定義 38
3.3.3 量測環境考量 40
3.3.4 量測結果 41
3.3.5 規格表與相關文獻比較 50
第四章 仿電流感測技術之磁滯電壓控制降壓轉換器 52
4.1 架構介紹 52
4.1.1 仿電流感測電路 53
4.1.2 電壓區間產生電路 54
4.1.3 磁滯電壓控制電路 55
4.2 電路模擬 56
4.3整體電路佈局與量測結果 59
4.3.1 晶片佈局 59
4.3.2 晶片脚位與定義 60
4.3.3 量測環境考量 63
4.3.4 量測結果 64
4.3.5 規格表與相關文獻比較 71
第五章 結論與未來展望 73
5.1 結論 73
5.2未來展望 74
參考文獻 75

A. Br€oring et al., “Enabling IoT Ecosystems through platform interoperability,” Asian Solid-State Circuits Conference, vol. 34, no. 1, pp. 54–61, Jan. 2017.
S. H. Lu, W. J. Huang, and S. I. Liu, “A Fast-Recovery Low Dropout Linear Regulator for Any-Type Output Capacitors, in Proc. Asian Solid-State Circuits Conferen, Nov. 2005, pp.497-500.
R. Guo, Z. Liang, and A. Q. Huang, “A family of Multimodes charge pump based DC-DC converter with high efficiency over wide input and output range,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4788–4798, Nov. 2012.
B. P. Schweitzer and A. B. Rosenstein, “Free running switching mode power regulator: Analysis and design,” IEEE Trans. Aerosp., vol. AS-2, no. 4, pp. 1171–1180, Oct. 1964.
施榮練,使用磁滯控制與效率增強技術之快速暫態高效率電荷幫浦升壓轉換器,碩士論文,國立臺北科技大學,電腦與通訊研究所,臺北,2014。
Leung, Kelvin Ka Sing, Henry Shu-Hung Chung, and S. Y. R. Hui. "Use of state trajectory prediction in hysteresis control for achieving fast transient response of the buck converter." Circuits and Systems, Vol. 3, Jun. 2003.
粱適安,交換式電源供給器之理論與實務設計,全華書局,2001。
K. Stisumrit and K. Tripech, “Analysis continuous conduction mode of buck–boost converter using bridge rectifier control,” in Proc. ICIEA, pp. 1–4, 2006.
M. Siu, P. K. T. Mok, K. N. Leung, Lam, Y.-H. Lam, and K. WingHung, “A voltage-mode PWM buck regulator with end-point prediction,” IEEE Trans. Circuits Syst. II, vol. 53, no. 4, pp. 294–298, Apr. 2006.
R. Redl and J. Sun, “Ripple-Based Control of Switching Regulators— An Overview,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 2669 - 2680, Dec. 2009.
S. Maity, D. Tripathy, T. K. Bhattacharya, and S. Banerjee, “Bifurcation analysis of PWM- 1 voltage-mode controlled Buck converter using the exact discrete model,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 5, pp. 1120–1130, May 2007.
S. Xu, F. Li, Y. Yao, S. Lu, and W. Sun, “A high-frequency model for a PCM buck converter,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2304–2312, Apr. 2015.
Leung, K.K.S.; Chung, H.S.H.; Hui. S.Y.R.,’Vse of state trajectory prediction in hysteresis control for achieving fast transient response of the buck canvcrter”, Pmceedings of the 2003 International Symposium an Circuits and Systems, Vol. 3, pp. 111439 -111442, May 2003 .
C.L. Wey, Z.-Y. Li, K.-C. Chang, G.-N. Sung, and D.K. Wey, “A Fast Hysteretic Buck Converter with Adaptive Ripple Controller,” in Proc. of IEEE Midwest Symp. on Circuits and Systems, Boise, Idaho, August 2012.
J. J. Chen, “An active current-sensing constant-frequency HCC buck converter using phase-frequency-locked techniques,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 55, no. 4, pp. 761–769, Apr. 2008.
J. Wang, J. Xu, and B. Bao, “Analysis of pulse bursting phenomenon in constant-on-time-controlled buck converter,” IEEE Trans. Ind. Electron., vol. 58, no. 12, pp. 5406–5410, Dec. 2011.
H. C. Lin, B. C. Fung, and T. Y. Chang, “A current mode adaptive on-time control scheme for fast transient DC-DC converters,” in Proc. IEEE Int. Symp. Circuits Syst., May 2008, pp. 2602–2605.
O. Abdel-Rahman, J. A. Abu-Qahouq, L. Huang, and I. Batarseh, “Analysis and design of voltage regulator with adaptive FET modulation scheme and improved efficiency,” IEEE Trans. Power Electron., vol. 23, no. 2, pp. 896–906, Mar. 2008.
莊永強,使用相位頻率鎖定技術之磁滯控制降壓轉換器與使用新式電流感測技術之脈波寬度調變降壓轉換器,碩士論文,國立臺北科技大學,電子工程系研究所,臺北,2017。
劉政昜,主動式電流感測器應用於新型降壓轉換器,碩士論文,國立臺北科技大學,電子工程系研究所,臺北,2018。
P.E. Allen, “CMOS Analog Circuit Design,” Oxford University Press., 2002
T. Lee and H. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE Solid-State Circuits, vol. 39, no. 1, pp. 3–14, Jan. 2004.
S.W. Lee, “Demystifying Type II and Type III Compensators Using Op-Amp and OTA for DC/DC Converters,” Texas Instruments, Jul. 2014
張元柏,使用脈波寬度調變技術之寬輸出範圍飛馳電容式降升壓轉換器研製,碩士論文,國立台北科技大學,電腦與通訊研究所,臺北,2012。
S. Lee, S. Jung, C. Park, C.-T. Rim, and G.-H. Cho, “Accurate dead-time control for synchronous buck converter with fast error sensing circuits,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 11, pp. 3080–3089, Nov. 2013.
H.-H. Park and G.-H. Cho, “A DC–DC converter for a fully integrated PID compensator with a single capacitor,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 8, pp. 629–633, Aug. 2014.
P.-J. Liu, W.-S. Ye, J.-N. Tai, H.-S. Chen, J.-H. Chen, and Y.-J. E. Chen, “A high-efficiency CMOS dc-dc converter with 9- μs transient recovery time,” IEEE Trans. Circuits and Syst. I, Regular Papers, vol. 59, no. 3, pp. 575–583, Mar. 2012.
Q. Huang, C. Zhan, and J. Burm, “A 30-MHz voltage-mode buck converter using delay-line-based PWM control,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 11, pp. 1659-1663, Nov. 2018.
J.-D. Suh, et al., “A fast response PWM buck converter with active ramp tracking control in load transient period”, IEEE Trans. Circuits Syst. II Express Briefs, accept for publication. 2018.
J. J. Chen, F. C. Yang, and C. C. Chen, “A new monolithic fast-response buck converter using spike-reduction current-sensing circuits,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1101–1111, Mar. 2008.
X.-E. Hong, et al., "98.1%-Efficiency Hysteretic-Current-Mode Non-Inverting Buck–Boost DC–DC Converter with Smooth Mode Transition," IEEE Trans. Power Electron., vol. PP, no. 99, pp. 1-1, 2016.
S.-H. Lee et al., “12.1 A 0.518 mm^2 quasi-current-mode hysteretic buck DC-DC converter with 3 µs load transient response in 0.35 µm BCDMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2015, pp. 1–3 .
W.-C. Chen, C.-C. Chen, C.-Y. Yao, and R.-J. Yang, “A fast-transient widevoltage-range digital-controlled buck converter with cycle-controlled DPWM,” IEEE Trans. Very Large Scale Integr. Syst., vol. 24, no. 1, pp. 17–25, Jan. 2016.
Jiann-Jong Chen; Cheng-Yu Huang; Chang-I Chou; Yuh-Shyan Hwang; Cheng-Chieh Yu “A simple fast-transient-response buck converter using adaptive-hysteresis-controlled techniques”, Electron Devices and SolidState Circuits (EDSSC), 2015 IEEE International Conference on, Year: 2015, Pages: 45-48.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 使用電流平方與適應性導通時間控制之鎖相鎖頻技術降壓式轉換器與軌對軌電流感測技術之無差拍控制降壓式轉換器
2. 使用運算轉導放大器電流感測電路之遲滯電流降壓轉換器和使用軌對軌運算轉導放大器電流感測電路之電壓平方控制降壓轉換器
3. 適用於5G之超寬頻混合式電源調變器和使用軌對軌電流感測技術之無差拍控制升壓式轉換器
4. 使用新型積分式電流感測電路之磁滯控制降壓式轉換器與使用軌對軌電流感測電路之仿電流控制降壓式轉換器
5. 使用積分式電流感測技術之無差拍控制降壓式轉換器
6. 使用鎖相鎖頻與新型主動積分式電流感測電路技術之磁滯控制降壓式轉換器
7. 運用電流偵測與鎖頻技術之電流模式遲滯降壓式轉換器
8. 射頻直流整流器與遲滯電流控制降壓轉換器之設計
9. 主動式電流感測器應用於新型降壓轉換器
10. 使用OTA-C積分電路之磁滯電流控制降壓轉換器和使用仿電流感測技術之磁滯電壓控制降壓轉換器
11. 利用動力感測器偵測震動以保護資料中心 之儲存裝置
12. 整合高壓製程技術之返馳式轉換器與多迴路電流感測技術之遲滯降壓轉換器
13. 新型自適應導通時間控制電流模式降壓轉換器之研製
14. 解決同軸結構至微帶線垂直轉接的共振問題
15. 應用於5G之超高頻寬電源調變器和主動仿電流技術之磁滯電壓控制降壓轉換器