|
[1] Federal Communications Commission Office of Engineering & Technology, “Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields,” Supplement C(Edition 01-01) to OET Bulletin(65 Edition 97-01), June 2001. [2] IEEE C95.1-1999, “IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz,” IEEE Std C95.1-2005 (Revision of IEEE Std C95.1-1991) , vol., no., pp.1-238, 19 Apr. 2006. [3] J. C. Lin, “A New IEEE Standard for Safety Levels with Respect to Human Exposure to Radio-Frequency Radiation,” IEEE Antennas Propag. Mag., 48, 1, February 2006, pp. 157- 159. [4] E. Piuzzi, P. Bernardi, M. Cavagnaro, S. Pisa, and J. C. Lin, “Analysis of adult and child exposure to uniform plane waves at mobile communication systems frequencies (900 MHz–3 GHz),” IEEE Trans. Electromagn. Compat., vol. 53, pp.38-47, 2011. [5] FCC KDB 447498 D01, Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies, Feb. 2014. [6] FCC KDB 648474, SAR Evaluation Considerations for Wireless Handsets, Oct. 2015. [7] C. Pelletti, L. Li, M. Abdel-Mageed, G. Bianconi and R. Mittra, “Techniques for reducing the SAR in mobile devices by using graphene-type absorbing materials,” in Proc. 9th Eur. Conf. Antennas Propag. (EuCAP), Lisbon, Apr. 2015, pp. 1-3. [8] M. Abdel-Mageed, C. Pelleti and R. Mittra, “Penta-band PIFA for SAR reduction for mobile and WLAN applications using R-Card,” in Proc. IEEE Int. Symp. Antennas Propag./USNC/URSI Nat. Radio Sci. Meeting, Vancouver, BC, Canada, Jul. 2015, pp. 374-375. [9] K. S. Sultan, H. H. Abdullah, E. A. Abdallah, and E. A. Hashish, “Low-SAR, miniaturized printed antenna for mobile, ISM, and WLAN Services,” IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 1106–1109, 2013. [10] K. S. Sultan, H. H. Abdullah, E. A. Abdallah, and E. A. Hashish, “Low SAR, compact and multiband antenna for mobile and wireless communication,” in Proc. IEEE Middle East Conf. Antennas Propag., Cairo, 2012, pp. 1-5. [11] S. I. Kwak, D.-U. Sim, and J. H. Kwon, “Design of optimized multilayer PIFA with the EBG structure for SAR reduction in mobile applications,” IEEE Trans. Electromagn. Compat., vol. 53, no. 2, pp. 325–333, May 2011. [12] R. Ikeuchi and A. Hirata, “Dipole antenna above EBG substrate for local SAR reduction,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 904–906, 2011. [13] K. H. Chan, R. Ikeuchi, and A. Hirata, “Effects of Phase Difference in Dipole Phased-Array Antenna above EBG Substrates on SAR,” IEEE Antennas Wirel. Propag. Lett., vol. 12, pp. 579–582, 2013. [14] S. I. Kwak, D. U. Sim, J. H. Kwon, and H. D. Choi, “Experimental tests of SAR reduction on mobile phone using EBG structures,” Electron. Lett., vol. 44, no. 9, pp. 568–569, 2008. [15] J. Bang and J. Choi, “A SAR reduced mm-Wave beam-steerable array antenna with dual-mode operation for fully metal-covered 5G cellular handsets,” IEEE Antenna Wireless Propag. Lett., vol. 17, no. 6, pp. 1118–1122, Jun. 2018. [16] G. P. Kumar, N. Agarwal, P. Kranthi and S. S. Babu, “Design considerations to calculate SAR in multiband MIMO antenna for mobile handsets,” in Proc. Int. Conf. Wireless Commun., Signal Process. Netw. (WiSPNET), Chennai, 2016, pp. 2434-2438. [17] K. Zhao, S. Zhang, Z. Ying, T. Bolin, and S. He, “SAR study of different MIMO antenna designs for LTE application in smart mobile handsets,” IEEE Trans. Antennas Propag., vol. 61, no. 6, pp. 3270–3279, Jun. 2013. [18] K. Zhao, S. Zhang, K. Ishimiya, Z. Ying, and S. He, “Body-insensitive multimode MIMO terminal antenna of double-ring structure,” IEEE Trans. Antennas Propag., vol. 63, no. 5, pp. 1925–1936, May 2015. [19] H. Li, A. Tsiaras, and B. K. Lau, “Analysis and estimation of MIMO-SAR for multi-antenna mobile handsets,” IEEE Trans. Antennas Propag., vol. 65, no. 3, pp. 1522–1527, Mar. 2017. [20] H. Li and B. K. Lau, “Efficient evaluation of specific absorption rate for MIMO terminals,” Electron. Lett., vol. 50, no. 22, pp. 1561–1562, 2014. [21] H. Li and B. K. Lau, “Simple assessment of Specific Absorption Rate (SAR) for MIMO terminals,” in Proc. IEEE Int. Symp. Antennas Propag./ USNC/URSI Nat. Radio Sci. Meeting, Vancouver, BC, 2015, pp. 1228-1229. [22] D. T. Le, L. Hamada, S. Watanabe, and T. Onishi, “A fast estimation technique for evaluating the specific absorption rate of multiple-antenna transmitting devices,” IEEE Trans. Antennas Propag., vol. 65, no. 4, pp. 1947– 1957, Apr. 2017. [23] D. T. Le, L. Hamada, S. Watanabe, and T. Onishi, “An estimation method for vector probes used in determination SAR of multiple-antenna transmission systems,” in Proc. IEEE Int. Symp. Electromagn. Compat., Tokyo, Japan, May 2014, pp. 629–632. [24] D. T. Le, L. Hamada, S. Watanabe, and T. Onishi, “Measurement procedure to determine SAR of multiple antenna transmitters using scalar electric field probes,” in Proc. Int. Conf. Adv. Technol. Commun. (ATC), Hanoi, Vietnam, Oct. 2014, pp. 54–59. [25] D. T. Le and V. H. Chu, “Analyses on the maximum local specific absorption rate of multiple antenna devices in different measurement planes,” in Proc. Int. Conf. Adv.Technol. Commun. (ATC), Ho Chi Minh City, Vietnam, Oct. 2015, pp. 496–500. [26] F. H. Chu and K. L. Wong, “Internal coupled-fed dual-loop antenna integrated with a USB connector for WWAN/LTE mobile handset,” IEEE Trans. Antennas Propag., vol. 59, no. 11, pp. 4215–4221, Nov. 2011. [27] C. H. Chang and K. L. Wang, “Printed λ/8-PIFA for Penta Band WWAN Operation in the Mobile Phone,” IEEE Trans. Antennas Propag., vol. 57, pp. 1381–1373, May 2009. [28] IEEE 1528-2003, “IEEE Draft Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques,” IEEE P1528/D6, March 2013, vol., no., pp.1-253, 30 Mar. 2013. [29] D. M. Pozar, Microwave Engineering, 4th ed., John Wiley and Sons, New York, 2012, pp. 324–333.
|