(3.230.143.40) 您好!臺灣時間:2021/04/21 20:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:方昱翔
研究生(外文):FANG,YU-XIANG
論文名稱:應用半橋LLC諧振轉換器於LED驅動
論文名稱(外文):Applying Half-Bridge LLC Resonant Converter to LED Driving
指導教授:胡國英
指導教授(外文):HWU, KUO-ING
口試委員:胡國英姚宇桐江文莊
口試委員(外文):HWU, KUO-INGYAU,YEU-TORNGJIANG,WEN-ZHUANG
口試日期:2019-02-16
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:152
中文關鍵詞:均流電容可擴充性LED驅動器半橋LLC諧振轉換器
外文關鍵詞:Current-Sharing CapacitorExtensibilityLED DriverHalf-Bridge LLC Resonant Converter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係提出一種基於均流電容之雙通道半橋LLC串聯諧振式LED驅動器。就所提出之LED驅動器而言,半橋LLC諧振轉換器用於提供LED電隔離及穩定的電流。同時,主動開關具有零電壓切換,可以降低切換損失;除此之外,於次級側中心抽頭接一電容以平衡兩串LED串列的電流。值得一提的是,此電路所驅動之LED串列數具有擴充性。於本論文中,首先,將針對所提之LED驅動器之動作原理進行分析與說明,並藉由PSIM模擬軟體來驗證其可行性。最後,再藉由數位訊號處理器UCD3138來做為電路控制核心,並以實驗結果來驗證其有效性。
A two-channel LED driver based on a half-bridge LLC resonant converter with a current-sharing capacitor is presented herein. For the proposed LED driver, the half-bridge LLC resonant converter is used to provide LED strings with galvanic isolation and stable current. At the same time, main switches have zero voltage switching so as to decrease switching loss. Furthenmore, the current-sharing capacitor is connected to the center-tapped point of the secondary winding so as to balance the currents in two LED strings. Above all, the proposed circuit has extensibility. In this paper, the operating principles of such an LED driver are firstly described and analyzed. After this, the simulated results based on PSIM software are provided so as to verify the feasibility of this LED driver. Eventually, a digital signal processor, named UCD3138, is used as a circuit control kernel, and the corresponding experimental results are offered to demonstrate the effectiveness of this LED driver.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究動機及目的 1
1.2 研究方法 14
1.3 論文內容架構 16
第二章 諧振式轉換器原理及簡介 17
2.1諧振式轉換器之分類 17
2.1.1 準諧振式轉換器 17
2.1.2 串聯諧振式轉換器 20
2.1.3 並聯諧振式轉換器 22
2.1.4 串並聯諧振式轉換器 25
2.1.5 LLC串聯諧振式轉換器 27
第三章 具LLC諧振轉換器及電流平衡電路之LED驅動器 30
3.1前言 30
3.2電路符號定義及假設 30
3.3所提電路之工作原理與數學分析 32
3.4 LLC串聯諧振式轉換器特性分析 52
3.4.1電壓增益推導 52
3.4.2 電壓增益與K值關係 55
3.4.3 電壓增益與品質因素Q關係 57
3.5 均流電路及其延伸應用 58
3.5.1 LED串列之自動均流原理 58
3.5.2 所提LED均流電路之延伸架構 58
第四章 系統之硬體電路設計 60
4.1 前言 60
4.2系統架構 60
4.3 架構之系統規格 61
4.3.1 所採用LED之規格 61
4.4 系統設計 63
4.4.1參數設計 64
4.4.2功率開關及二極體的選配 69
4.4.3諧振槽元件選配 71
4.4.4 驅動電路設計 79
第五章 軟體規劃與控制法則 80
5.1 前言 80
5.2 DSP UCD3138RGC簡介 80
5.2.1 UCD3138RGC晶片說明 83
5.2.2 數位電源外部週邊(DPP) 84
5.2.2.1 前端(Front End)控制模組 85
5.2.2.2 PID數位濾波器(Filter)模組 86
5.2.2.3 數位脈衝寬度調變(DPWM)模組 87
5.2.2.4 類比數位轉換器(ADC12)模組 88
5.3控制器之動作流程 89
5.3.1 EADC模組之運作 90
5.3.2 Fliter模組之運作 91
5.3.3 DPWM模組之運作 92
5.4應用場合 93
第六章 模擬與實作結果 94
6.1 前言 94
6.2 電路模擬結果 94
6.2.1 於100%額定輸出負載下之波形圖 95
6.2.2於50%額定輸出負載下之波形圖 99
6.2.3於25%額定輸出負載下之波形圖 103
6.3電路實驗波形圖 108
6.3.1於100%額定輸出負載下之波形圖 108
6.3.2於50%額定輸出負載下之波形圖 112
6.3.3於25%額定輸出負載下之波形圖 116
6.3.4 ZVS波形圖 122
6.4 效率量測 126
6.4.1 效率對負載之關係圖 126
6.5 功率損耗計算 127
6.6 LED串列之電流誤差率 131
第七章 結論與未來展望 133
7.1 結論 133
7.2 未來展望 133
參考文獻 134
附錄 145
符號彙編 148


[1]Marcus Conrad and Rik W. DeDoncker, “Avoiding reverse recovery effects in super junction MOSFET based half-bridges,” IEEE PEDG’15, pp. 1-5, 2015.
[2]W. M. Blewitt and D. I. Gurwicz, “Reduction of power MOSFET losses in hard-switched converters,” IEEE Electronics Letters, vol. 44, no. 18, pp. 1088-1089, 2008.
[3]Shehab Ahmed, “Hard switched MOSFET inverter for elevated temperature applications,” IEEE PESC’08, pp. 3184-3190, 2008.
[4]Petros Alexakis, Olayiwola Alatise, Li Ran and Phillip Mawby, “Modeling power converters using hard switched silicon carbide MOSFETs and Schottky barrier diodes,” IEEE EPE’13, pp. 1-9, 2013.
[5]Guichao Hua and Fred C. Lee, “Soft-switching techniques in PWM converters,” IEEE Transactions on Industrial Electronics, vol. 42, no. 6, pp. 595-603, 1995.
[6]Y. Khersonsky, M. Zahzah, C. Mak, G. Robinson, P. Huynh and J. Sink, “Evolution of soft-switched, high-frequency, high-power isolated DC-DC converter,” IEEE IAS’01, vol. 3, pp. 1851-1857, 2001.
[7]Aditya Jayam Prabhakar, Joshua David Bollinger, Hong Tao Ma, Mehdi Ferdowsi and Keith Corzine, “Efficiency analysis and comparative study of hard and soft switching DC-DC converters in a wind farm,” IEEE IECON’08, pp. 2156-2160, 2008.
[8]Y. Tang, H. Zhu, B. Song, J. S. Lai and C. Chen, “EMI experimental comparison of PWM inverters between hard- and soft-switching techniques,” IEEE Power Electronics in Transportation, pp. 71-77, 1998.
[9]R. Vijayalakshmi, M. Trivedi and K. Shenai, “Power bipolar transistor performance in hard- and soft-switching power converters,” IEEE IAS’98, vol. 2, pp. 888-892, 1998.
[10]Jaroslav Dudrik, Pavol Spanik and Nistor-Daniel Trip, “Zero-voltage and zero-current switching full-bridge DC-DC converter with auxiliary transformer,” IEEE Transactions on Power Electronics, vol. 21, no. 5, pp. 1328-1335, 2006.
[11]Jung G. Cho, Juan A. Sabate and Fred C. Lee, “Novel full bridge zero-voltage-transition PWM DC/DC converter for high power applications,” IEEE APEC’94, vol. 1, pp. 143-149, 1994.
[12]Kwang-Hwu Liu and Fred C. Lee, “Zero-voltage switching technique in DC/DC converters,” IEEE Transactions on Power Electronics, vol. 5, no. 3, pp. 293-304, 1990.
[13]Jiangtao Feng, Yuequan Hu, Wei Chen and W. Chau-Chun, “ZVS analysis of asymmetrical half-bridge converter”, IEEE PESC’01, vol. 1, pp. 243-247, 2001.
[14]Carlos A. Canesin and Ivo Barbi, “Novel zero-current-switching PWM converters,” IEEE Transactions on Industrial Electronics, vol. 44, no. 3, pp. 372-381, 1997.
[15]F. T. Wakabayashi and C. A. Canesin, “A new family of zero-current-switching PWM converters and a novel HPF-ZCS boost rectifier,” IEEE APEC’99, vol. 1, pp. 605-611, 1999.
[16]Vencislav Valchev, Dimitre Yudov, Jeliazko Batchvarov, Alex Van den Bossche and Jan Melkebeek, “Zero-voltage and zero-current-switching half bridge DC/DC converter,” IEEE IAC’02, vol. 4, pp. 2327-2334, 2002.
[17]D. Maksimovic and S. Cuk, “Constant-frequency control of quasi-resonant converters,” IEEE Transactions on Power Electronics, vol. 6, no. 1, pp. 141-151, 1991.
[18]F. C. Lee, “High-frequency quasi-resonant converter technologies,” Proceedings of the IEEE, vol. 76, no. 4, pp. 377-390, 1988.
[19]Kwang-Hwa Liu, Ramesh Oruganti and Fred C. Lee, “Quasi-resonant converters-topologies and characteristics,” IEEE Transactions on Power Electronics, vol. 2, no. 1, pp. 62-71, 1987.
[20]R. L. Steigerwald, “A comparison of half-bridge resonant converter topologies,” IEEE APEC’87, pp. 135-144, 1987.
[21]V. Vorperian and Slobodan Cuk, “A complete DC analysis of the series resonant converter,” IEEE PESC’82, pp. 85-100, 1982.
[22]R. King and T. A. Stuart, “A normalized model for the half-bridge series resonant converter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 17, no. 2, pp. 190-198, 1981.
[23]A. K. S. Bhat, “Analysis and design of LCL-type series resonant converter,” IEEE INTELEC’90, pp. 172-178, 1990.
[24]V. Vorperian, “Approximate small-signal analysis of the series and the parallel resonant converters,” IEEE Transactions on Power Electronics, vol. 4, no. 1, pp. 15-24, 1989.
[25]Ramesh Oruganti, James J. Yang and Fred C. Lee, “Implementation of optimal trajectory control of series resonant converter,” IEEE PESC’97, pp. 451-459, 1987.
[26]C. T. Rim and G. H. Cho, “Phasor transformation and its application to the DC-AC analyses of frequency phase-controlled series resonant converters (SRC),” IEEE Transactions on Power Electronics, vol. 5, no. 2, pp. 201-211, 1990.
[27]Hariharan Krishnaswami and Ned Mohan, “Three-port series-resonant DC-DC converter to interface renewable energy sources with bidirectional load and energy storage ports,” IEEE Transactions on Power Electronics, vol. 24, no. 10, pp. 2289-2297, 2009.
[28]Mohamed Khalil-Abaker, Juan Shi and Akhtar Kalam, “Design of a 100W bi-directional LCC series-parallel resonant DC-DC converter,” IEEE AUPEC’16, pp. 1-5, 2016.
[29]Bekir Fincan, Taha Nurettin Gucin and Muhammet Biberoglu, “State-plane analysis of parallel resonant converter,” IEEE PESC’16, pp. 1-11, 2016.
[30]Steven D. Johnson and Robert W. Erickson, “Steady-state analysis and design of the parallel resonant converter,” IEEE PESC’86, pp. 154-165, 1986.
[31]G. Ivensky, A. Kats and S. Ben-Yaakov, “An RC load model of parallel and series-parallel resonant DC-DC converters with capacitive output filter,” IEEE Transactions on Power Electronics, vol. 14, no. 3, pp. 515-521, 1999.
[32]A. K. S. Bhat, “Analysis and design of a series-parallel resonant converter with capacitive output filter,” IEEE Transactions on Industry Applications, vol. 27, no. 3, pp. 523-530, 1991.
[33]A. K. S. Bhat, “Analysis and design of a series-parallel resonant converter,” IEEE Transactions on Power Electronics, vol. 8, no. 1, pp. 1-3, 1993.
[34]M. K. Kazimierczuk, N. Thirunarayan and S. Wang, “Analysis of series-parallel resonant converter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 29, no. 1, pp. 88-99, 1993.
[35]A. J. Forsyth, G. A. Ward and S. V. Mollov, “Extended fundamental frequency analysis of the LCC resonant converter,” IEEE Transactions on Power Electronics, vol. 18, no. 6, pp. 1286-1292, 2003.
[36]D. Czarkowski and M. K. Kazimierczuk, “Phase-controlled series-parallel resonant converter,” IEEE Transactions on Power Electronics, vol. 8, no. 3, pp. 309-319, 1993.
[37]Dianbo Fu, Ya Liu, Fred C. Lee and Ming Xu, “A novel driving scheme for synchronous rectifiers in LLC resonant converters,” IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1321-1329, 2009.
[38]Xiaogao Xie, Zhuo Zhao, Chen Zhao, J. M Zhang and Zhaoming Qian, “Analysis and optimization of LLC resonant converter with a novel over-current protection circuit,” IEEE INTELEC’05, pp. 487-490, 2005.
[39]Bo Yang, F. C. Lee, A. J. Zhang and Guisong Huang, “LLC resonant converter for front end DC-DC conversion,” IEEE APEC’02, vol. 2, pp.1108-1112, 2002.
[40]Bing Lu, Wenduo Liu, Yan Liang , F. C. Lee and J. D. van Wyk, “Optimal design methodology for LLC resonant converter,” IEEE APEC’06, pp. 1-6, 2006.
[41]J. F. Lazar and R. Martinelli, “Steady-state analysis of the LLC series resonant converter,” IEEE APEC’01, vol. 2, pp. 728-735, 2001.
[42]Yilei Gu, Zhengyu Lu, Lijun Hang, Zhaoming Qian and Guisong Huang, “Three-level LLC series resonant DC-DC converter,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 781-789, 2005.
[43]M. S. Shur and A. Zukauskas, “Solid-state lighting: Toward superior illumination,” Proceedings of the IEEE, vol. 93, no. 10, pp. 1691-1703, 2005.
[44]燦鋐企業社, “LED植物燈規格Grow Light-ALT.植物燈.LED燈.植物工廠.LED植物燈.LED植物生長燈.植物補光.精緻農業.室內栽培.糧荒.增加產量.縮短生長期LED燈.LED照明,” Available: http://www.led98.org/
[45]Chia-Lin Chiu and Ke-Horng Chen, “A high accuracy current-balanced control technique for LED backlight,” IEEE PESC’08, pp. 4202-4206, 2008.
[46]Pedro S. Almeida, Joao M. Jorge, Claudio R. B. S. Rodrigues, Guilherme M. Soares, Danilo P. Pinto and Henrique A. C. Braga, “A novel method of current equalization in LED strings based on simple linear circuit,” IEEE ISIE’11, pp. 95-100, 2011.
[47]Wensong Yu, Jih-Sheng Lai, Hongbo Ma and Cong Zheng, “High-efficiency dc-dc converter with twin bus for dimmable LED lighting,” IEEE Transactions on Power Electronics, vol. 26, no. 8, pp. 2095-2100, 2011.
[48]Xu Dianguo, Zhang Xiangjun and Liu Huaiyuan, “Study of digital LED driving technology based on auto-identifying open strings in LEDs array,” IEEE IECON’11, pp. 2964-2968, 2011.
[49]Lukas Lohaus, Lei Liao, Sebastian Strache, Ralf Wunderlich and Stefan Heinen, “Energy efficient current control technique for driving high power LEDs,” VDE PRIME’12, pp. 1-4, 2012.
[50]Si Nan Li, W. X. Zhong, Wu Chen and S. Y. R. Hui, “Novel self-configurable current-mirror techniques for reducing current imbalance in parallel light-emitting diode (LED) strings,” IEEE Transactions on Power Electronics, vol. 27, no. 4, pp. 2153-2162, 2012.
[51]Yan-Cun Li and Chern-Lin Chen, “A novel primary-side regulation scheme for single-stage high-power-factor ac-dc LED driving circuit,” IEEE Transactions on Industrial Electronics, vol. 60, no. 11, pp. 4978-4986, 2013.
[52]Rongrong Zhao and Junming Zhang, “High efficiency hybrid current balancing method for multi-channel LED drive,” IEEE APEC’15, pp. 854-860, 2015.
[53]Xueshan Liu, Jianping Xu, Qi Yang and Duo Xu, “High-efficiency multi-string LED driver based on constant current bus with time-multiplexing control,” IET Electronics Letters, vol. 52, no. 9, pp. 746-748, 2016.
[54]Sang-Ho Cho, Sang-Hyun Lee, Sung-Soo Hong, Dong-Sung Oh and Sang-Kyoo Han, “High-accuracy and cost-effective current-balanced multi-channel LED backlight driver using single-transformer,” IEEE ECCE ASIA’08, pp. 520-527, 2011.
[55]Yuequan Hu and Milan M. Jovanovic, “A new current-balancing method for paralleled LED strings,” IEEE APEC’11, pp. 705-712, 2011.
[56]K. I. Hwu and Sheng-Chien Chou, “A simple current-balancing converter for LED lighting,” IEEE APEC’09, pp. 587-590, 2009.
[57]Kwang-Hyun Jung, Jin-Wan Yoo and Chong-Yeun Park, “A design of current balancing circuit for parallel connected LED strings using balancing transformers,” IEEE ECCE ASIA’11, pp. 528-535, 2011.
[58]Xinke Wu, Zhaohui Wang and Junming Zhang, “Design considerations for dual-output quasi-resonant flyback LED driver with current-sharing transformer,” IEEE Transactions on Power Electronics, vol. 28, no. 10, pp. 4820-4830, 2013.
[59]K. I. Hwu, W. C. Tu and M. J. Hon, “A dimmable LED driver based on current balancing transformer with magnetizing energy recycling considered,” IEEE Journal of Display Technology, vol. 10, no. 5, pp. 388-395, 2014.
[60]Yu-Liang Lin, Huang-Jen Chiu, Yu-Kang Lo and Chung-Ming Leng, “LED backlight driver circuit with dual-mode dimming control and current-balancing design,” IEEE IGBSG’14, pp. 1-4, 2014.
[61]Ruihong Zhang and Henry Shu-Hung Chung, “Use of daisy-chained transformers for current-balancing multiple LED strings,” IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1418-1433, 2014.
[62]Yu-Liang Lin, Huang-Jen Chiu, Yu-Kang Lo and Chung-Ming Leng, “Light-emitting diode driver with a combined energy transfer inductor for current balancing control,” IET Power Electronics, vol. 8, no. 10, pp. 1834-1843, 2015.
[63]Ruihong Zhang and Henry Shu-Hung Chung, “Capacitor-isolated multistring LED driver with daisy-chained transformers,” IEEE Transactions on Power Electronics, vol. 30, no. 7, pp. 3860-3875, 2015.
[64]K. I. Hwu, W. Z. Jiang and C. W. Hsiao, “Dimmable LED driver based on twin-bus converter and differential-mode transformer,” IEEE Journal of Display Technology, vol. 12, no. 10, pp. 1122-1129, 2016.
[65]Sungjin Choi, Pankaj Agarwal, Teahoon Kim, Joonhyun Yang and Baikhee Han, “Symmetric current balancing circuit for multiple dc loads,” IEEE APEC’10, pp. 512-518, 2010.
[66]Junming Zhang, Lianghui Xu, Xinke Wu and Zhaoming Qian, “A precise passive current balancing method for multioutput LED drivers,” IEEE Transactions on Power Electronics, vol. 26, no. 8, pp. 2149-2159, 2011.
[67]Jianfeng Wang, Junming Zhang, Xiucheng Huang and Lianghui Xu, “A family of capacitive current balancing methods for multi-output LED drivers,” IEEE APEC’11, pp. 2040-2046, 2011.
[68]Junming Zhang, Jianfeng Wang and Xinke Wu, “A capacitor-isolated LED driver with inherent current balance capability,” IEEE Transactions on Industrial Electronics, vol. 59, no. 4, pp. 1708-1716, 2012.
[69]Sungjin Choi and Taehoon Kim, “Symmetric current-balancing circuit for LED backlight with dimming,” IEEE Transactions on Industrial Electronics, vol. 59, no. 4, pp. 1689-1707, 2012.
[70]Rui Wang and Junming Zhang, “A simple current balancing method for multi-output flyback LED driver,” IEEE IFEEC’15, pp. 1-5, 2015.
[71]Xiaohui Qu, Siu-Chung Wong and Chi K.Tse, “An improved LCLC current-source-output multistring LED driver with capacitive current balancing,” IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5783-5791, 2015.
[72]Yuanmao Ye, Ka Wai Eric Cheng, Jiongkang Lin and Daohong Wang, “Single-switch multichannel current-balancing LED drive circuits based on optimized SC techniques,” IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4761-4768, 2015.
[73]Jong-Woo Kim, Jung-Pil Moon and Gun-Woo Moon, “Analysis and design of a single-switch forward-flyback two-channel LED driver with resonant-blocking capacitor,” IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2314-2323, 2016.
[74]K. I. Hwu and W. Z. Jiang, “Input-current-ripple-free two-channel LED driver,” IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5865-5874, 2017.
[75]Ramprakash Kathiresan, Pritam Das, Thomas Reindl and Sanjib K. Panda, “A novel high-power non-resonant multi-channel LED driver,” IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5851-5864, 2017.
[76]Xinke Wu, Chen Hu, Junming Zhang and Chen Zhao, “Series-parallel autoregulated charge-balancing rectifier for multioutput light-emitting diode driver,” IEEE Transactions on Industrial Electronics, vol. 61, no. 3, pp. 1262-1268, 2014.
[77]Weiyi Feng, Fred C. Lee and Paolo Mattavelli, “Optimal trajectory control of LLC resonant converters for LED PWM dimming,” IEEE Transactions on Power Electronics, vol. 29, no. 2, pp. 979-987, 2014.
[78]Xuebing Chen, Daocheng Huang, Qiang Li and Fred C. Lee, “Multichannel LED driver with CLL resonant converter,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 3, pp. 589-598, 2015.
[79]K. I. Hwu and W. Z. Jiang, “Non-isolated two-channel LED driver with automatic current balance and zero voltage switching,” IEEE Transactions on Power Electronics, vol. 31, no. 12, pp. 8359-8370, 2016.
[80]K. I. Hwu and W. Z. Jiang, “Single-switch coupled-inductor-based two-channel LED driver with a passive regenerative snubber, ” IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4482-4490, 2017.
[81]X. Wu, J. Zhang, and Z. Qian, “A simple two-channel LED driver with automatic precise current sharing,” IEEE Transactions on Industrial Electronics, vol. 58, no. 10, pp. 4783-4788, 2011.
[82]C. Zhao, X. Xie, and S. Liu, “Multioutput LED drivers with precise passive current balancing,” IEEE Transactions on Industrial Electronics, vol. 28, no. 3, pp. 1438-1448, 2013.
[83]X. Wu, C. Hu, J. Zhang, and Z. Qian, “Analysis and design considerations of LLCC resonant multioutput DC/DC LED driver with charge balancing and exchanging of secondary series resonant capacitors,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 780-789, 2015.
[84]Dake He and R. M. Nelms, “Peak current-mode control for a boost converter using an 8-bit microcontroller,” IEEE PESC’03, vol. 2, pp. 938-943, 2003.
[85]Mohammad Faridun Naim Tajuddin and Nasrudin Abdul Rahim, “Small-signal ac modeling technique of buck converter with DSP based proportional-integral-derivative (PID) controller,” IEEE ISIEA’09, vol. 2, pp. 904-909, 2009.
[86]Xing Zhou, LiWei Zhang and Yan Li, “Design and implementation of a digital controller for multi-input converter used in new energy combined power supply system,” IEEE ICECE’11, pp. 1511-1515, 2011.
[87]Ghulam Abbas, Umar Farooq and Muhammad Usman Asad, “Design and FPGA implementation of 1-degree-of-freedom discrete PID controller for power switching converter,” IEEE ICIEA’12, pp. 1070-1074, 2012.
[88]Chun-Nan Liu, Chun-Hung Yang and Chien-Hung Tsai, “Digital compensator design for power-aware dc-dc converters,” IEEE ISAC’10, pp. 177-180, 2010.
[89]G. Tapia and N. Garcia, “Digital current control of a thyristor-based converter using a DSC,” IEEE PESGM’12, pp. 1-6, 2012.
[90]UCD3138_datasheet
[91]H. Wu, S. Ji, F. C. Lee and X. Wu, “Multi-channel constant current (MC3) LLC resonant LED driver,” IEEE ECCE’11, pp. 2568-2575, 2011.
[92]Yijie Wang, Shanshan Gao, Yueshi Guan, Jiaoping Huang Dianguo Xu and Wei Wang, “A single-stage LED driver based on double LLC resonant tanks for automobile headlight with digital control,” IEEE Transactions on Power Electronics, vol. 2, no. 3, pp. 357-368, 2016.
[93]Jong-Woo Kim, Jung-Pil Moon and Gun-Woo Moon, “Duty-ratio-control-aided LLC converter for current balancing of two-channel LED driver,” IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1178-1184, 2017.
[94]Hongbo Ma, Gang Chen, Junhong Yi, Qingwei Meng, Lanhua Zhang and Jianping Xu, “A single-stage PFM-APWM hybrid modulated soft-switched converter with low bus voltage for high-power LED lighting applications,” IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5777-5788, 2017.
[95]Hongbo Ma, Jih-Sheng Lai, Cong Zheng and Pengwei Sun, “A high-efficiency quasi-single-stage bridgeless electrolytic capacitor-free high-power AC-DC driver for supplying multiple LED strings in parallel,” IEEE Transactions on Power Electronics, vol. 31, no. 8, pp. 5825-5836, 2016.
[96]Yijie Wang, Yueshi Guan, Jiaoping Huang, Wei Wang and Dianguo Xu, “A single-stage LED driver based on interleaved buck-boost circuit and LLC resonant converter,” IEEE Transactions on Industrial Electronics, vol. 3, no. 3, pp. 732-741, 2015.
[97]Yijie Wang, Na Qi, Yueshi Guan, Carlo Cecati and Dianguo Xu “A Single-stage LED driver based on SEPIC and LLC circuits,” IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5766-5776, 2017.
[98]Chun-An Cheng, Hung-Liang Cheng and Tsung-Yuan Chung, “A novel single-stage high-power-factor LED street-lighting driver with coupled inductors,” IEEE Transactions on Industry Applications, vol. 50, no. 5, pp. 3037-3045, 2014.
[99]EHP-AX08EL/GT01H-P01/5670/Y/K42 high power LED-1W datasheet. Everlight Electronics Co., Ltd.
[100] Huang Hong, “Designing an LLC resonant half-bridge power converter,” TI Power 3Supply Design Seminar, SEMI1900, 2010.
1Available:http://focus.ti.com/asia/download/Topic_3_Huang_28pages.pdf

電子全文 電子全文(網際網路公開日期:20240319)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔