( 您好!臺灣時間:2024/04/12 22:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):CHEN, CHEN-YU
論文名稱(外文):Synthesis and Characterization of Sodium Super Ionic Conductor for All Solid State Lithium Ion Battery
指導教授(外文):CHANG, HO
外文關鍵詞:Solid state electrolyteLAGPLithium ion battery
  • 被引用被引用:0
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
本研究以不同之燒結溫度合成鋰鋁鍺磷固態電解質,並以X光繞射(X-ray diffraction)與X光吸收光譜(X-ray absorption spectroscopy; XAS)測定晶相與價數,再以掃描式電子顯微鏡(scanning electron microscope; SEM)與能量色散X射線光譜(Energy-dispersive X-ray spectroscopy; EDS)觀測表面形貌與元素分布。分析方法使用交流阻抗(electronic impedance spectroscopy; EIS)測定離子傳導性並以阿瑞尼士法(Arrhenius plot)推算鋰離子傳導之活化能,最終組裝全固態鋰離子電池並使用充放電機量測電池電容量與循環穩定性証明所生產之固態電解質之應用性。

The development of science and technology brought along with the Industrial Revolution has brought people a high standard of living. When thermal power generation and coal are used as power sources, it also causes negative effects such as air pollution, hole in the ozone layer, and global warming. The energy crisis and environmental pollution problems have increased day and night. If we want the sustainable development of the earth, research on green energy generation is currently a top priority. Compared to other renewable energy sources, such as thermal power generation and wind power generation, lithium battery development is late, but its high-efficiency energy storage characteristics make it a lithium battery. Energy storage technology is currently the focus of scientists' research.
In this study, lithium aluminum germanium phosphorous solid electrolyte was synthesized with different sintering temperatures. Determine the crystal phase and valence by using X-ray diffraction and X-ray absorption spectroscopy (XAS). Scanning electron microscope and transmission electron microscopy were used to observe the inner and outer morphology of the catalysts. Cyclic voltammetry and electrochemical impedance spectroscopy were operated to detect electrochemical activity. Finally, battery capacity and cycle stability were tested by galvanostatic discharge/charge process.

中文摘要 i
英文摘要 ii
誌謝 ⅳ
目錄 1
圖目錄 4
表目錄 7
第一章 緒論 8
1.1 電池之發展與介紹 9
1.2 鋰離子電池 10
1.2 鋰離子電池歷史 10
1.3 鋰離子電池之電化學原理 11
1.4 正極材料 11
1.4.1 嵌入型正極材料 13 鋰鈷氧(LiCoO2) 14 鋰鎳氧,鋰錳氧(LiMnO2, LiNiO2) 15 鋰鐵磷(LiFePO4) 16
1.4.2 反應型正極材料 17
1.5負極材料 18
1.5.1鋰金屬 18
1.5.2 碳材 19 石墨 19 硬碳 20 軟碳 20
1.5.3 矽 20
1.5.4 鋰鈦氧(Lithium Titanium Oxide; Li4Ti5O12) 21
1.6電解質 22
1.6.1液態電解質 23
1.6.2膠態電解質 23
1.6.3無機固態電解質 23
1.6.4 鋰鋁鍺磷(Li1.5Al0.5Ge1.5(PO4)3, LAGP) 25
1.7固態電解質界面(Solid Electrolyte Interface; SEI) 27
1.8 研究動機與目的 28
第二章 實驗步驟與儀器分析原理 30
2.1 化學藥品 31
2.2 鋰鋁鍺磷之合成步驟 32
2.3 全固態鋰離子電池 32
2.3.1 適用於全固態鋰離子電池之正極漿料製作 32
2.3.2 全固態鋰離子電池之組裝 33
2.4 X光放射技術(Emission techniques) 33
2.4.1 XRD工作原理 34
2.4.2 X光繞射儀(X-ray diffraction; XRD) 35
2.4.3 X光吸收光譜之近邊緣結構(X-ray absorption near edge structure; XANES) 36
2.5 固態核磁共振(solid-state nuclear magnetic resonance) 39
2.6 掃描式電子顯微鏡(Scanning Electron Microscopy; SEM) 39
2.6.1 工作原理 40
2.6.2 能量色散X射線光譜(Energy-dispersive X-ray spectroscopy;EDS) 41
2.6.3 X射線光電子能譜儀(X-ray photoelectron spectroscopy; XPS) 42
2.7 伏安循環法(cyclic voltammetry; CV) 43
2.8 電化學交流阻抗法(Electrical Impedance Spectroscopy; EIS) 44
2.9 阿瑞尼士圖(Arrhenius Plot) 46
2.10 充放電測試儀 47
第三章 結果與討論 48
3.1 固態電解質鋰鋁鍺磷之材料分析 48
3.1.1 XRD結構鑑定分析 48
3.1.2 XANES鑑定 54
3.1.3 SEM鑑定 56
3.1.4 NMR鑑定 58
3.2 鋰鋁鍺磷之電化學性質測試 61
3.2.1 交流阻抗測試 61
3.2.2 阿瑞尼士圖 63
3.2.3 充放電分析 64
第四章 結論與未來展望 66
4.1 結論 66
4.2 未來展望 66
參考文獻 67

(1) Riemer, M.; Athay, M. M.; Bickman, L.; Breda, C.; Kelley, S. D. ; De Andrade, A. R. V. The Peabody Treatment Progress Battery: History and Methods for Developing a Comprehensive Measurement Battery for Youth Mental Health. Administration and Policy in Mental Health and Mental Health Services Research 2012, 39, 3-12.
(2) Marten, V., Voltaic Pile with Charge Equalizing System. Google Patents: 2003.
(3) Croce, F.; d’Epifanio, A.; Hassoun, J.; Deptula, A.; Olczac, T. Scrosati, B. A Novel Concept for the Synthesis of an Improved LiFePO4 Lithium Battery Cathode. Electrochem. Solid-State Lett. 2002, 5, A47-A50.
(4) Sallán, J.; Villa, J. L.; Llombart, A. ; Sanz, J. F. Optimal Design of Icpt Systems Applied to Electric Vehicle Battery Charge. IEEE Transactions on Industrial Electronics 2009, 56, 2140-2149.
(5) Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192, 1126-1127.
(6) Mizushima, K.; Jones, P.; Wiseman, P. ; Goodenough, J. B. LixCoO2 (0< X<-1): A New Cathode Material for Batteries of High Energy Density. Mater. Res. Bull. 1980, 15, 783-789.
(7) Shibuya, M.; Nishina, T.; Matsue, T. ; Uchida, I. In Situ Conductivity Measurements of LiCoO2 Film During Lithium Insertion/Extraction by Using Interdigitated Microarray Electrodes. J. Electrochem. Soc. 1996, 143, 3157-3160.
(8) Padhi, A. K.; Nanjundaswamy, K. S. ; Goodenough, J. B. Phospho‐Olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144, 1188-1194.
(9) Nitta, N.; Wu, F.; Lee, J. T. ; Yushin, G. Li-Ion Battery Materials: Present and Future. Mater. Today 2015, 18, 252-264.
(10) Stoyanova, R.; Zhecheva, E. ; Zarkova, L. Effect of Mn-Substitution for Co on the Crystal Structure and Acid Delithiation of LiMnyCo1− YO2 Solid Solutions. Solid State Ionics 1994, 73, 233-240.
(11) Cho, J.; Kim, Y. J.; Kim, T.-J. ; Park, B. Enhanced Structural Stability of O-LiMno2 by Sol− Gel Coating of Al2O3. Chem. Mater. 2001, 13, 18-20.
(12) Jung, S. K.; Gwon, H.; Hong, J.; Park, K. Y.; Seo, D. H.; Kim, H.; Hyun, J.; Yang, W. ; Kang, K. Understanding the Degradation Mechanisms of LiNi0. 5Co0. 2Mn0.3O2 Cathode Material in Lithium Ion Batteries. Advanced Energy Materials 2014, 4, 1300787.
(13) Wang, F.; Yu, H.C.; Chen, M.H.; Wu, L.; Pereira, N.; Thornton, K.; Van der Ven, A.; Zhu, Y.; Amatucci, G. G. ; Graetz, J. Tracking Lithium Transport and Electrochemical Reactions in Nanoparticles. Nat. Commun. 2012, 3, 1201.
(14) Badway, F.; Mansour, A.; Pereira, N.; Al-Sharab, J.; Cosandey, F.; Plitz, I. ; Amatucci, G. Structure and Electrochemistry of Copper Fluoride Nanocomposites Utilizing Mixed Conducting Matrices. Chem. Mater. 2007, 19, 4129-4141.
(15) Aurbach, D.; Zinigrad, E.; Cohen, Y. ; Teller, H. A Short Review of Failure Mechanisms of Lithium Metal and Lithiated Graphite Anodes in Liquid Electrolyte Solutions. Solid State Ionics 2002, 148, 405-416.
(16) Paczkowska, M.; Makuch, N. ; Kulka, M. The Influence of Various Cooling Rates During Laser Alloying on Nodular Iron Surface Layer. Opt. Laser Technol. 2018, 102, 60-67.
(17) Zanini, M.; Basu, S. ; Fischer, J. Alternate Synthesis and Reflectivity Spectrum of Stage 1 Lithium—Graphite Intercalation Compound. Carbon 1978, 16, 211-212.
(18) Frackowiak, E. ; Beguin, F. Carbon Materials for the Electrochemical Storage of Energy in Capacitors. Carbon 2001, 39, 937-950.
(19) Dischler, B.; Bubenzer, A. ; Koidl, P. Bonding in Hydrogenated Hard Carbon Studied by Optical Spectroscopy. Solid State Commun. 1983, 48, 105-108.
(20) Noda, T.; Kamiya, K. ; Inagaki, M. Effect of Pressure on Graphitization of Carbon. I. Heat Treatment of Soft Carbon under 1, 3 and 5 Kbar. Bull. Chem. Soc. Jpn. 1968, 41, 485-492.
(21) Lee, G.; Kim, S.; Kim, S. ; Choi, J. SiO2/TiO2 Composite Film for High Capacity and Excellent Cycling Stability in Lithium‐Ion Battery Anodes. Adv. Funct. Mater. 2017, 27, 1703538.
(22) Rezvani, S.; Pasqualini, M.; Witkowska, A.; Gunnella, R.; Birrozzi, A.; Minicucci, M.; Rajantie, H.; Copley, M.; Nobili, F. ; Di Cicco, A. Binder-Induced Surface Structure Evolution Effects on Li-Ion Battery Performance. Appl. Surf. Sci. 2018, 435, 1029-1036.
(23) Takami, N.; Inagaki, H.; Tatebayashi, Y.; Saruwatari, H.; Honda, K. ; Egusa, S. High-Power and Long-Life Lithium-Ion Batteries Using Lithium Titanium Oxide Anode for Automotive and Stationary Power Applications. J. Power Sources 2013, 244, 469-475.
(24) Lahiri, A.; Borisenko, N. ; Endres, F. Electrochemical Synthesis of Battery Electrode Materials from Ionic Liquids. Top. Curr. Chem. 2018, 376, 9.
(25) Feuillade, G. ; Perche, P. Ion-Conductive Macromolecular Gels and Membranes for Solid Lithium Cells. J. Appl. Electrochem. 1975, 5, 63-69.
(26) Goktas, M.; Bolli, C.; Berg, E. J.; Novák, P.; Pollok, K.; Langenhorst, F.; Roeder, M. v.; Lenchuk, O.; Mollenhauer, D. ; Adelhelm, P. Graphite as Cointercalation Electrode for Sodium‐Ion Batteries: Electrode Dynamics and the Missing Solid Electrolyte Interphase (Sei). Advanced Energy Materials 2018, 1702724.
(27) Kanno, R. ; Murayama, M. Lithium Ionic Conductor Thio-Lisicon: The Li2SGeS2P2S5 System. J. Electrochem. Soc. 2001, 148, A742-A746.
(28) Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S. ; Lamp, P. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem. Rev. 2015, 116, 140-162.
(29) Thokchom, J. S. ; Kumar, B. Composite Effect in Superionically Conducting Lithium Aluminium Germanium Phosphate Based Glass-Ceramic. J. Power Sources 2008, 185, 480-485.
(30) Zhu, Y.; Zhang, Y. ; Lu, L. Influence of Crystallization Temperature on Ionic Conductivity of Lithium Aluminum Germanium Phosphate Glass-Ceramic. J. Power Sources 2015, 290, 123-129.
(31) Liu, Y.; Li, C.; Li, B.; Song, H.; Cheng, Z.; Chen, M.; He, P. ; Zhou, H. Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid‐State Li Batteries. Advanced Energy Materials 2018, 8, 1702374.
(32) Nie, M.; Abraham, D. P.; Chen, Y.; Bose, A. ; Lucht, B. L. Silicon Solid Electrolyte Interphase (Sei) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy. The Journal of Physical Chemistry C 2013, 117, 13403-13412.
(33) Du, F.; Zhao, N.; Li, Y.; Chen, C.; Liu, Z. ; Guo, X. All Solid State Lithium Batteries Based on Lamellar Garnet-Type Ceramic Electrolytes. J. Power Sources 2015, 300, 24-28.
(34) West, A. R.; Solid State Chemistry and Its Applications. 2014, 375.
(35) Wang, M.; Qian, R.; Bao, M.; Gu, C. ; Zhu, P. Raman, Ft-Ir and XRD Study of Bovine Bone Mineral and Carbonated Apatites with Different Carbonate Levels. Mater. Lett. 2018, 210, 203-206.
(36) Lynch, V. ; Miotti, L. Introduction to Micro-Residues Analysis: Systematic Use of Scanning Electron Microscope and Energy Dispersive X-Rays Spectroscopy (Sem-Edx) on Patagonian Raw Materials. Journal of Archaeological Science: Reports 2017, 16, 299-308.
(37) Hinz, B.; Phan, S. H.; Thannickal, V. J.; Galli, A.; Bochaton-Piallat, M.L. ; Gabbiani, G. The Myofibroblast: One Function, Multiple Origins. The American journal of pathology 2007, 170, 1807-1816.
(38) Wilson, W.; Rivera-Torres, J.; Sorelli, L.; Durán-Herrera, A. ; Tagnit-Hamou, A. The Micromechanical Signature of High-Volume Natural Pozzolan Concrete by Combined Statistical Nanoindentation and Sem-Eds Analyses. Cem. Concr. Res. 2017, 91, 1-12.
(39) Jain, V.; Biesinger, M. C. ; Linford, M. R. The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) Functions in the Context of Peak Fitting X-Ray Photoelectron Spectroscopy (XPS) Narrow Scans. Appl. Surf. Sci. 2018, 447, 548-553.
(40) Chastain, J.; King, R. C. ; Moulder, J. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Physical Electronics Division, Perkin-Elmer Corporation Eden Prairie, Minnesota: 1992.
(41) Glatthaar, M.; Riede, M.; Keegan, N.; Sylvester-Hvid, K.; Zimmermann, B.; Niggemann, M.; Hinsch, A. ; Gombert, A. Efficiency Limiting Factors of Organic Bulk Heterojunction Solar Cells Identified by Electrical Impedance Spectroscopy. Sol. Energy Mater. Sol. Cells 2007, 91, 390-393.
(42) Johnson, C. Optimal Control of the Linear Regulator with Constant Disturbances. IEEE Transactions on Automatic Control 1968, 13, 416-421.
(43) Green, P.; Duddy, I.; Gleadow, A.; Tingate, P. ; Laslett, G. Fission-Track Annealing in Apatite: Track Length Measurements and the Form of the Arrhenius Plot. Nuclear Tracks and Radiation Measurements (1982) 1985, 10, 323-328.

第一頁 上一頁 下一頁 最後一頁 top