跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/27 04:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊詠甯
研究生(外文):YANG,YONG-NING
論文名稱:TPU粉末SLS系統開發及運用熱顯像表面溫度偵測分析
論文名稱(外文):Development of TPU powder based SLS system with thermal imaging for surface temperature distribution.
指導教授:汪家昌
指導教授(外文):WANG,JIA-CHANG
口試委員:沈永清蘇程裕汪家昌
口試委員(外文):SHEN,YONG-QINGSU,CHENG-YUWANG,JIA-CHANG
口試日期:2019-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:製造科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:66
中文關鍵詞:選擇性雷射燒未發泡TPU粉末CO2雷射鏤空結構氣密熱顯像溫度分布偵測
外文關鍵詞:Selective Laser Sinteringunfoamed -TPU powderCO2 laserspecial hollow structureairtightthermal imagetemperature distribution detection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:2
本研究主要以粉末床3D列印PBF技術中的選擇性雷射燒結SLS列印方法為基礎,將粒徑為20~30µn的未發泡TPU粉末以波長為10600nm的CO2雷射進行燒結列印,以期待能滿足鞋業需求。本研究以未發泡的TPU粉末進行燒結,雖然軟彈性不如發泡材,但仍可利用特殊設計簍空結構來達到中底吸震緩衝效果。規劃300*400*400mm的列印區域,可以同時列印一雙中底,加強氣密成型室設計,可在列印時灌入氮氣製造低氧環境抑制材料燃燒避免過溶變形,另外,建置熱顯像表面溫度分佈偵測裝置,可在設備進行列印時截取表面溫度分佈行為,蒐集溫度資訊並與強度、精細度及速度比較進行參數最佳化。實驗結果顯示基本加工參數為掃描速度4800mm/s、掃描間距0.045mm、雷射功率80%,但由於掃描間距過細導致加工效率低落,因此搭配表面溫度分析系統進行參數最佳化後得到新參數,速度2700mm/s、掃描間距0.08mm、雷射功率80%,新參數雖然成品強度較基本參數低,但本研究實驗發現使用後燒結後處理法對成品進行二次燒結後兩參數成品強度趨近一致,因此選用強度適中且加工速度較快的新參數做為日後加工參數以完成參數最佳化。本研究所開發SLS系統最終可在六小時三十分鐘內以最佳化參數印製一雙重量為280克,尺寸9.5號,具有精細鏤空結構並具好的彈性的中底,期待得以滿足鞋業製鞋的需求。
For the needs of Shoe Manufacturing, this research is based on a Selective Laser Sintering method of the Powder Bed Fusion technology that sinters an unfoamed-TPU powder with a powder diameter of 20~30µm with a 10600nm CO2 laser.
Although the softness and the elasticity of the unfoamed-TPU is not better than the foamed material, the same shock absorption and suspension effects can be achieved by using a special hollow structure design.
This research is going to arrange a 300*400*400mm printing volume that can print both halves of a pair of shoe insoles simultaneously. The forming room has an airtight design which is filled with nitrogen during the printing process providing a low-oxygen environment to inhibit the burning of material which could cause over-melt and deformation. In addition, establishing a thermal image printing surface temperature distribution detection and analysis system will allow the user to detect the temperature distribution on the printing surface and compare the temperature information with strength, accuracy, and speed to find the best parameters. Experiments show that the basic parameters are scanning speed: 4800mm/s, scanning gap: 0.045mm, and laser power: 80%. The efficiency of the basic parameter is too low because the scanning gap is too thin. Parameter optimization was performed using the surface temperature distribution detection and analysis system to get new parameters for scanning speed: 2700mm/s, scanning gap: 0.08mm, and laser power: 80%. The strength of the part achieved with the new parameters was not better than that of the part with the basic parameters. However, this research spotted that after using post sintering, letting the object be second-sintered, the strength of the objects from the two sets of parameters is almost the same. Therefore, this research selected the new parameter set, which provides faster manufacturing speed and moderate strength as the manufacturing parameters to be used in the future. This SLS system uses the optimized parameters to print the insoles with a detailed hollow structure that has lightweight and elastic characteristics within 6 hours and 30 minutes which is suitable for the needs of shoe insole manufacturing.

摘 要 i
英文摘要 ii
誌 謝 iv
目 錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1前言 1
1.2研究背景與目的 2
1.3論文架構 4
第二章 文獻回顧 6
2.1國內外積層製造技術概述 6
2.2積層製造彈性材料於鞋業應用之現況 7
2.3彈性材料於積層製造應用特點與優劣分析 16
2.4結論 19
第三章 具熱顯像表面溫度分布偵測系統之SLS系統開發 22
3.1製程原理 22
3.2機台設計架構 24
3.2.1雷射系統 25
3.2.2成型室 27
3.2.3冷卻裝置 28
3.2.4鋪粉機構 28
3.2.5粉槽體升降機構 30
3.3 控制系統 34
3.3.1運動控制 34
3.3.2雷射控制 36
3.3.3表面燒結溫度分佈偵測系統 37
3.4整機完成組裝 38
第四章 機台驗證 40
4.1系統校正 40
4.1.1雷射打標變形校正 40
4.1.2運動軸校正及檢測 43
4.2加工參數測試 44
4.2.1基本加工參數 45
4.2.2提升加工效率參數 46
4.3熱堆積現象及冷卻 51
4.4印成品密度分析 54
4.5燒結處理 55
4.6數最佳化結果 58
4.7尺寸簍空鞋中底列印 58
4.8新舊中底比較 60
第五章 結論與未來展望 62
5.1結論 62
5.2未來展望 62
參考文獻 64




[1] Kaufui V. Wong, Aldo Hernandez, ” A Review of Additive Manufacturing”, (2012), ISRN Mechanical Engineering, International Scholarly Research Network, Department of Mechanical and Aerospace Engineering, University of Miami, USA
[2] CNN, 13 February 2013. "Obama's speech highlights riseof3-D
[3] 鄭正元, 江卓培, 林宗翰, 林榮信, 蘇威年, 汪家昌, 蔡明忠, 賴維祥, 鄭逸琳, 洪基彬, (2017), 3D列印:積層製造技術與應用, 台北:全華圖書
[4] Leo, (2018.06.07), ”運動風潮興起 製鞋業面面觀”, 股感
[5] 曾如瑩, (2016.10.12), ”一張訂單 撼動台灣製鞋霸業”, 商業周刊
[6] 鄧凱元, (2017.12.19), ”3D列印量產10萬雙鞋!愛迪達與矽谷新創如何做” 天下雜誌
[7] William E. Frazier, ” Metal Additive Manufacturing: A Review”, (2014), Journal of Materials Engineering and Performance, DOI: 10.1007/s11665-014-0958-z
[8] Ian Gibson , David Rosen , Brent Stucker, (2010), “Additive Manufacturing Technologies 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing Second Edition”, New York, Springer Science+ Business Media
[9] 葉錦清, ” 3D列印(積層製造)產業發展現況分析”, (2016), 光電科技工業協進會, No.124
[10] Deckard et al., (1992), ” METHOD FOR SELECTIVE LASER SINTERING WITH LAYERWISE CROSS-SCANNING”, United States Patent, 5,155,324
[9] Chris Wawrousek,(2016)” CUSTOMIZED FOOTWEAR, AND SYSTEMS AND METHODS FOR DESIGNING AND MANUFACTURING SAME”, United States Patent, US 0135537 A1]
[11] 蔣益民, (2018), 近紅外雷射燒結TPU發泡粉末雙掃描頭SLS系統開發, 臺北: 國立臺北科技大學機電整合研究所, 碩士論文
[12] Hull, C. (1986). Apparatus for Production of Three-Dimensional Objects by StereoLithography, US Patent 4,575,330.
[13] M. Hatzenbichler, M. Geppert, R. Seemann, J. Stampf., (2013), ” Additive manufacturing of photopolymers using the Texas Instruments DLP lightcrafter”, San Francisco, California, United States: SPIE MOEMS-MEMS
[14] JR Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, AR Johnson, D. Kelly, K. Chen, R. Pinschmidt, JP Rolland, A. Ermoshkin, ET Samulski, JM DeSimone. Continuous liquid interface production of 3D objects. Science, (2015); DOI: 10.1126/science.aaa2397
[15] ADIDAS TO RELEASE A NEW VERSION OF 3D PRINTED SHOE, ALPHAEDGE 4D (2019). Retrieved from https://3dprintingindustry.com/news/adidas-to-release-a-new-version-of-3d-printed-shoe-alphaedge-4d-155578/
[16] P. Dudek. (2013),” FDM 3D PRINTING TECHNOLOGY IN MANUFACTURING COMPOSITE ELEMENTS”, Archives of Metallugy and Materials, Doi: 10.2478/amm
[17] Alfredo BALLESTER, Eduardo PARRILLA, Julio A. VIVAS, Ana PIÉROLA, Jordi URIEL, Sergio A. PUIGCERVER, Paola PIQUERAS, Clara SOLVES-CAMALLONGA, Marisol RODRÍGUEZ, Juan C. GONZÁLEZ, Sandra ALEMANY, (2015), Low-Cost Data-Driven 3D Reconstruction and its Applications, Instituto de Biomecánica de Valencia, Universidad Politécnica de Valencia, Valencia, Spain, DOI: 10.15221/15.184
[18] Nigel Beard, (2017), ” SYSTEMS AND METHODS FOR WAVE FUNCTION BASED ADDITIVE MANUFACTURING”, United States Patent, US 0066196A1
[19] Hadi MIYANAJI, Morgan ORTH, Junaid Muhammad AKBAR, Li YANG, (2018), “Process development for green part printing using binder jetting additive manufacturing”, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
[20] Aamer Nazir, Jeng-Ywan Jeng, (2019), A High-Speed Additive Manufacturing Approach for Achieving High Printing Speed and Accuracy, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
[21] HP Jet Fusion 3D 4200 Printing Solution Reinvent how you prototype and produce functional parts
[22] Fred Fischer, (2014), ”FDM AND POLYJET 3D PRINTING”, Stratasys Inc, United States
[23] GuilongWang, JinchuanZhao, Lun HoweMark, GuizhenWang,KejingYu, ChongdaWang, Chul B.Park, GuoqunZhao, (2017), Ultra-tough and super thermal-insulation nanocellular PMMA/TPU, Chemical Engineering Journal, Pages 632-646
[24] SasanDadbakhsh, LeanderVerbelen, TomVandeputte, DieterStrobbe, PeterVan, Puyvelde, Jean-PierreKruth, (2016), Effect of Powder Size and Shape on the SLS Processability and Mechanical Properties of a TPU Elastomer, Physics Procedia, Pages 971-980

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top