跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/25 16:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳又豪
研究生(外文):CHEN, YU-HAO
論文名稱:以有限元素分析探討應力分散型腰椎 人工椎間盤之生物力學表現
論文名稱(外文):The Biomechanical Investigation of a Stress-Attenuation Lumbar Artificial Disc-Finite Element Analysis
指導教授:陳文斌陳文斌引用關係
指導教授(外文):CHEN, WENG-PIN
口試委員:鍾次文戴金龍賴伯亮施魯孫
口試委員(外文):CHUNG, TZE-WENTAI, CHING-LUNGLAI, PO-LIANGSHIH, LU-SUN
口試日期:2019-07-19
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機械工程系機電整合碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:88
中文關鍵詞:全人工椎間盤置換應力分散腰椎人工椎間盤錐體結構球窩關節機構有限元素分析
外文關鍵詞:Total disc replacementStress-Attenuation lumbar artificial discTapered structureBall and Socket jointFinite element analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全人工椎間盤置換手術目前已廣泛運用於治療椎間盤退化疾病,全人工椎間盤置換術不僅能夠恢復脊椎間高度,其核心機構設計能使脊椎在術後保有運動學特性,並避免傳統融合手術引發之鄰近節段併發症。目前市售產品核心多以球窩關節機構為主,但較容易引起核心應力分佈、磨耗不均與磨耗碎屑等問題仍無法有效克服,且人工椎間盤在植入人體後仍有植入物損壞之可能性。本研究目標為設計一款應力分散型腰椎人工椎間盤,透過特殊的核心錐體結構達到核心應力均勻分散,使人工椎間盤之力學特性更趨近於人體椎間盤。
本研究第一部分首先以簡化組瞭解特殊錐體結構之力學特性,隨後對整體核心之幾何外型與圍牆高度進行設計與改良,並得到FullWall-3.5 mm組、FullWall-2.5 mm組、CircularWall-3.5 mm組與CircularWall-2.5 mm組,共4組應力分散型腰椎人工椎間盤模型,並進行單純植入物活動度分析,探討其力學特性;第二部分運用腰椎運動單元L4-L5節段有限元素模型,將本研究設計之4組應力分散型腰椎人工椎間盤與市售產品Prodisc-L植入於腰椎內,並探討植入組與完整組各活動方向之生物力學表現。負載條件於腰椎兩側施加定向負載400 N,並於L4上方給予前屈與伸展10 Nm;側向彎曲與軸向旋轉8 Nm,並固定L5下方所有自由度,模擬腰椎日常運動情形。
第一部分植入物活動分析結果顯示,在前屈/伸展活動方向FullWall-3.5 mm組皆有最低之最大蒙麥斯應力,其數值分別為28.09 MPa與16.42 MPa;在軸向旋轉時,CircularWall-3.5 mm組有最低之最大蒙麥斯應力,其數值為35.71 MPa。整體而言,核心內部最大蒙麥斯應力會受到圍牆高度與核心分佈面積改變而有所影響。
第二部分5組人工椎間盤植入組中,應力分散型腰椎人工椎間盤在壓縮勁度、活動度、小面關節應力與瞬時旋轉中心較市售組Prodisc-L皆有較佳之結果,以FullWall-3.5 mm組表現最為平均。FullWall3.5 mm組前屈/伸展、側向彎曲活動度相對於完整組分別上升19.4 %與71.5 %,而軸向旋轉則下降60.6 %;在瞬時旋轉中心路徑多位於椎間盤內部,其路徑與完整組接近。在植入介面最大蒙麥斯應力部分,各組最大應力皆在海綿骨安全範圍內,應力分散型腰椎人工椎間盤介面應力分佈全面且均勻分散,其中以FullWall-3.5 mm組表現最好。
本研究設計之應力分散型腰椎人工椎間盤在壓縮勁度、活動度、小面關節應力與瞬時旋轉中心明顯優於Prodisc-L組,並能提供更接近於人體椎間盤之生物力學特性;而核心錐體結構能使應力均勻分散,並減緩應力集中區域,減少人工椎間盤發生破壞的可能性。

Total Disc Replacement (TDR) has been widely used to treat disc degenerative disease (DDD). TDR can restore intervertebral disc height, and the mechanism of the core can not only maintain the postoperative kinematic properties of spine but also avoid the adjacent segmental complications as compared to fusion surgery. Currently, ball and socket joint is the most commonly used mechanism for lumbar artificial disc, but there are still some issues can not be overcome effectively, such as un-uniformed stress and wear distribution, also the wear debris problems of the core materials. The aim of this study was to develop a stress-attenuation lumbar artificial disc that can present better stress distribution by special tapered columns and achieve similar biomechanical properties of human intervertebral disc.
The current study was divided into two parts. First, the simplified core models were created and investigated to understand the basic mechanical properties of the core with special tapered columns. Then the tapered column with two different geometries and two different surrounding wall heights for the cores of the stress-attenuation lumbar artificial disc were designed. They were named as FullWall-3.5 mm group, FullWall-2.5 mm group, CircularWall-3.5 mm group and CircularWall-2.5 mm group. The implants were analyzed to explore its mechanical characteristic during flexion/ extension and axial rotation. In the second part of the study, the finite element model of the L4/L5 lumbar motion segment was created as intact model and the biomechanical performance of the L4/L5 model implanted with the stress-attenuation lumbar artificial discs and the commercial Prodisc-L implant were analysed and compared using finite element analysis. The intact model and the implanted models were analyzed under 400 N follower load and pure moment of 10 Nm in flexion/ extension; 8 Nm in lateral bending/ axial rotation. In addition, all degree of freedoms (DOF’s) of the nodes on the bottom surface of L5 were constrained.
First, the results of implant mobility showed that the FullWall-3.5 mm group presented the lowest von Mises stress during flexion and extension, the values were 28.09 MPa and 16.42 MPa, respectively; the CircularWall-3.5 mm group presented the lowest von Mises stress during axial rotation, the value was 35.71 MPa. Overall, the maximum von Mises stress on the core of the stress-attenuation lumbar artificial disc was affected by the cross-sectional area of the tapered column and the height of the wall. Second, the results of the 5 implanted models showed that the stress-attenuation lumbar artificial disc presented better biomechanical properties in compression stiffness, range of motion (ROM), facet joint von Mises stress and instantaneous center of rotation (ICR) path than the Prodisc-L implant. The most consistent performance of all the 5 designs was the FullWall-3.5 mm group. The ROM results of the FullWall-3.5 mm group increased 19.4 % and 71.5 % in flexion-extension/ lateral bending and decreased 60.6 % in axial rotation as compared to the intact model. Most of the path of ICR was located within the intervertebral disc region and was similar to the ICR path of the intact model. The maximum von Mises stress on the implant interface for all the implanted groups were within the safty range of the failure strength of the cancellous bone. The stress distributions of all the stress-attenuation artificial disc groups were better than that of the Prodisc-L implanted model, and the FullWall-3.5 mm group has the best performance.
The design of the stress-attenuation lumbar artificial disc presented better compression stiffness, range of motion, facet joint von Mises stress and ICR path than the Prodisc-L artificial implant, all the results showed that it could provide closer biomechanical properties to the human intervertebral disc. The core with tapered column of stress-attenuation lumbar artificial disc showed evenly stress distribution, relieved the stress concentration area and also reduced the possibility of the lumbar artificial disc failure.

摘要 i
ABSTRACT iii
致謝 vi
目 錄 viii
表目錄 xi
圖目錄 xii
第1章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.2.1 人體脊椎解剖學 2
1.2.2 腰椎解剖學及運動學 3
1.2.3 椎間盤解剖學與力學特性 5
1.3 椎間盤退化 7
1.4 椎間盤減壓手術 8
1.5 人工腰椎椎間盤置換術 9
1.5.1 拘束設計(Constrained design) 9
1.5.2 非拘束設計(Unconstrained design) 11
1.6 文獻回顧 13
1.6.1 人工腰椎椎間盤之體外實驗 13
1.6.2 人工腰椎椎間盤臨床追蹤報告 14
1.6.3 人工腰椎椎間盤有限元素分析 16
1.7 研究動機與目的 19
第2章 材料與方法 20
2.1 研究流程 20
2.2 應力分散型腰椎人工椎間盤置換裝置 22
2.2.1 應力分散型腰椎人工椎間盤之核心結構參數探討 22
2.2.1.1 簡化組錐體幾何接觸設計 23
2.2.1.2 簡化組圍牆幾何參數設計 25
2.2.2 應力分散型腰椎人工椎間盤完整組幾何外型設計 26
2.2.2.1 填滿核心組(FullWall)幾何外型設計 27
2.2.2.2 圓形核心組(CircularWall)幾何外型設計 28
2.2.2.3 完整組圍牆幾何參數設計變更 29
2.2.3 填滿核心組與圓形核心組之活動度分析 31
2.2.4 市售腰椎人工椎間盤Prodisc-L模型建立 32
2.2.5 腰椎人工椎間盤網格收斂分析 33
2.2.6 腰椎人工椎間盤壓縮勁度分析 35
2.3 有限元素分析 36
2.3.1 腰椎L4-L5有限元素模型建立 36
2.3.2 材料參數設定 37
2.3.3 邊界條件及負載條件 39
2.3.4 模型驗證 39
2.3.5 腰椎人工椎間盤植入組有限元素模型建立 40
2.3.6 腰椎運動單元L4-L5節段力學參數分析 42
2.3.6.1 腰椎活動度(Range of Motion, ROM) 42
2.3.6.2 腰椎瞬時旋轉中心(Instantaneous Center of Rotation, ICR) 43
第3章 結果 45
3.1 填滿核心組與圓形核心組活動度結果 45
3.2 腰椎人體椎間盤與人工椎間盤壓縮勁度 46
3.3 腰椎運動單元L4-L5模型活動度驗證 48
3.4 腰椎人工椎間盤植入組之生物力學表現 49
3.4.1 完整組與腰椎人工椎間盤植入組活動度比較 49
3.4.2 腰椎人工椎間盤核心最大蒙麥斯應力與分佈 51
3.4.3 腰椎人工椎間盤植入組與腰椎L5節段之介面應力 56
3.4.4 腰椎人工椎間盤植入組小面關節最大蒙麥斯應力 59
3.5 腰椎人工椎間盤植入組瞬時旋轉中心(ICR) 61
第4章 討論 66
4.1 腰椎人工椎間盤壓縮勁度 66
4.2 腰椎人工椎間盤植入組對活動度之影響 68
4.3 腰椎人工椎間盤核心最大蒙麥斯應力 70
4.4 腰椎人工椎間盤植入組與腰椎L5節段之介面應力 74
4.5 腰椎人工椎間盤植入組小面關節最大蒙麥斯應力 75
4.6 腰椎人工椎間盤植入組瞬時旋轉中心(ICR) 76
4.7 研究限制與未來展望 78
第5章 結論 79
參考文獻 80


[1]Dreischarf, M., Schmidt, H., Putzier, M., & Zander, T. (2015). Biomechanics of the L5–S1 motion segment after total disc replacement–Influence of iatrogenic distraction, implant positioning and preoperative disc height on the range of motion and loading of facet joints. Journal of biomechanics, 48(12), 3283-3291.
[2]Garcia Jr, R., Yue, J. J., Blumenthal, S., Coric, D., Patel, V. V., Leary, S. P., Dinh, D.H., Buttermann, G.R., Deutsch, H., Girardi, F., Miller, L.E & Billys, J. (2015). Lumbar total disc replacement for discogenic low back pain: two-year outcomes of the activL multicenter randomized controlled IDE clinical trial. Spine, 40(24), 1873-1881.
[3]Panjabi, M., Malcolmson, G., Teng, E., Tominaga, Y., Henderson, G., & Serhan, H. (2007). Hybrid testing of lumbar CHARITE discs versus fusions. Spine, 32(9), 959-966
[4]Choi, J., Shin, D. A., & Kim, S. (2015). Biomechanical Effects of the Geometry of Ball-and-Socket Intervertebral Prosthesis on Lumbar Spine Using Finite Element Method. BIOINFORMATICS, 116-120.
[5]Wu, Y., Wang, Y., Wu, J., Guan, J., Mao, N., Lu, & Cai, B. (2016). Study of double-level degeneration of lower lumbar spines by finite element model. World neurosurgery, 86, 294-299.
[6]Kepler, C. K., Ponnappan, R. K., Tannoury, C. A., Risbud, M. V., & Anderson, D. G. (2013). The molecular basis of intervertebral disc degeneration. The Spine Journal, 13(3), 318-330.
[7]BUCKWALTER, J. M. (2000). Intervertebral disk structure, composition, and mechanical function. Orthopaedic Basic Science-Biology and Biomechanics of the Musculoskeletal System.
[8]Boos, N., Weissbach, S., Rohrbach, H., Weiler, C., Spratt, K. F., & Nerlich, A. G. (2002). Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine, 27(23), 2631-2644.
[9]Weiner, B. K., Fraser, R. D., & Peterson, M. (1999). Spinous process osteotomies to facilitate lumbar decompressive surgery. Spine, 24(1), 62-66.
[10]Fritzell, P., Hägg, O., & Nordwall, A. (2003). Complications in lumbar fusion surgery for chronic low back pain: comparison of three surgical techniques used in a prospective randomized study. A report from the Swedish Lumbar Spine Study Group. European Spine Journal, 12(2), 178-189.
[11]Hanley, E. N., & David, S. M. (1999). Lumbar arthrodesis for the treatment of back pain. JBJS, 81(5), 716-730.
[12]Madan, S. S., Harley, J. M., & Boeree, N. R. (2003). Anterior lumbar interbody fusion: does stable anterior fixation matter?. European Spine Journal, 12(4), 386-392.
[13]McAFEE, P. C. (1999). Interbody fusion cages in reconstructive operations on the spine. JBJS, 81(6), 859-880.
[14]Fritzell, P., Hägg, O., & Nordwall, A. (2003). Complications in lumbar fusion surgery for chronic low back pain: comparison of three surgical techniques used in a prospective randomized study. A report from the Swedish Lumbar Spine Study Group. European Spine Journal, 12(2), 178-189.
[15]Marchesi, D. G. (2000). Spinal fusions: bone and bone substitutes. European Spine Journal, 9(5), 372-378.
[16]Zigler, J. E., Blumenthal, S. L., Guyer, R. D., Ohnmeiss, D. D., & Patel, L. (2018). Progression of Adjacent-level Degeneration After Lumbar Total Disc Replacement: Results of a Post-hoc Analysis of Patients With Available Radiographs From a Prospective Study With 5-year Follow-up. Spine, 43(20), 1395.
[17]Denoziere, G., & Ku, D. N. (2006). Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc. Journal of biomechanics, 39(4), 766-775.
[18]Vacas, F. G., Juanco, F. E., de la Blanca, A. P., Novoa, M. P., & Pozo, S. P. (2014). The flexion–extension response of a novel lumbar intervertebral disc prosthesis: A finite element study. Mechanism and Machine Theory, 73, 273-281.
[19]Delécrin, J., Allain, J., Beaurain, J., Steib, J. P., Huppert, J., Chataigner, H., Ameil, M., Aubourg, L., & Nguyen, J. M. (2012). Effects of lumbar artificial disc design on intervertebral mobility: in vivo comparison between mobile-core and fixed-core. European Spine Journal, 21(5), 630-640.
[20]Kim, K. T., Lee, S. H., Suk, K. S., Lee, J. H., & Jeong, B. O. (2010). Biomechanical changes of the lumbar segment after total disc replacement: Charite®, Prodisc® and Maverick® using finite element model study. Journal of Korean Neurosurgical Society, 47(6), 446.
[21]Mathews, H. H., LeHuec, J. C., Friesem, T., Zdeblick, T., & Eisermann, L. (2004). Design rationale and biomechanics of Maverick Total Disc arthroplasty with early clinical results. The Spine Journal, 4(6), S268-S275.
[22]Geisler, F. H. (2006). The CHARITE Artificial Disc: Design History, FDA IDE Study, Results, and Surgical Technique. Clinical neurosurgery, 53, 223.
[23]Lazennec, J. Y., Even, J., Skalli, W., Rakover, J. P., Brusson, A., & Rousseau, M. A. (2014). Clinical outcomes, radiologic kinematics, and effects on sagittal balance of the 6 df LP-ESP lumbar disc prosthesis. The Spine Journal, 14(9), 1914-1920.
[24]Chung, S. K., Kim, Y. E., & Wang, K. C. (2009). Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis. Spine, 34(12), 1281-1286.
[25]Rohlmann, A., Mann, A., Zander, T., & Bergmann, G. (2009). Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study. European Spine Journal, 18(1), 89-97.
[26]Zander, T., Rohlmann, A., & Bergmann, G. (2009). Influence of different artificial disc kinematics on spine biomechanics. Clinical biomechanics, 24(2), 135-142.
[27]Choi, J., Shin, D. A., & Kim, S. (2017). Biomechanical effects of the geometry of ball-and-socket artificial disc on lumbar spine: a finite element study. Spine, 42(6), E332-E339.
[28]Zigler, J. E., Glenn, J., & Delamarter, R. B. (2012). Five-year adjacent-level degenerative changes in patients with single-level disease treated using lumbar total disc replacement with ProDisc-L versus circumferential fusion. Journal of Neurosurgery: Spine, 17(6), 504-511.
[29]Trincat, S., Edgard-Rosa, G., Geneste, G., & Marnay, T. (2015). Two-level lumbar total disc replacement: functional outcomes and segmental motion after 4 years. Orthopaedics & Traumatology: Surgery & Research, 101(1), 17-21.
[30]Dmitriev, A. E., Gill, N. W., Kuklo, T. R., & Rosner, M. K. (2008). Effect of multilevel lumbar disc arthroplasty on the operative-and adjacent-level kinematics and intradiscal pressures: an in vitro human cadaveric assessment. The Spine Journal, 8(6), 918-925.
[31]Miller, A. T., Safranski, D. L., Smith, K. E., Sycks, D. G., Guldberg, R. E., & Gall, K. (2017). Fatigue of injection molded and 3D printed polycarbonate urethane in solution. Polymer, 108, 121-134.
[32]Beckmann, A., Heider, Y., Stoffel, M., & Markert, B. (2018). Assessment of the viscoelastic mechanical properties of polycarbonate urethane for medical devices. Journal of the mechanical behavior of biomedical materials, 82, 1-8.
[33]Elsner, J. J., Shemesh, M., Shefy-Peleg, A., Gabet, Y., Zylberberg, E., & Linder-Ganz, E. (2015). Quantification of in vitro wear of a synthetic meniscus implant using gravimetric and micro-CT measurements. journal of the mechanical behavior of biomedical materials, 49, 310-320.
[34]Jacobs, E., Roth, A. K., Arts, J. J., van Rhijn, L. W., & Willems, P. C. (2017). Reduction of intradiscal pressure by the use of polycarbonate-urethane rods as compared to titanium rods in posterior thoracolumbar spinal fixation. Journal of Materials Science: Materials in Medicine, 28(10), 148.
[35]Schmidt, H., Midderhoff, S., Adkins, K., & Wilke, H. J. (2009). The effect of different design concepts in lumbar total disc arthroplasty on the range of motion, facet joint forces and instantaneous center of rotation of a L4-5 segment. European Spine Journal, 18(11), 1695-1705.
[36]Yue, J. J., Garcia Jr, R., & Miller, L. E. (2016). The activL® Artificial Disc: a next-generation motion-preserving implant for chronic lumbar discogenic pain. Medical devices (Auckland, NZ), 9, 75.
[37]Mroz, A., Skalski, K., & Walczyk, W. O. J. C. I. E. C. H. (2015). New lumbar disc endoprosthesis applied to the patient’s anatomic features. Acta of Bioengineering and Biomechanics, 17(2).
[38]Erbulut, D. U., Zafarparandeh, I., Hassan, C. R., Lazoglu, I., & Ozer, A. F. (2015). Determination of the biomechanical effect of an interspinous process device on implanted and adjacent lumbar spinal segments using a hybrid testing protocol: a finite-element study. Journal of Neurosurgery: Spine, 23(2), 200-208.
[39]Borkowski, P., Marek, P., Krzesiński, G., Ryszkowska, J., Waśniewski, B., Wymysłowski, P., & Zagrajek, T. (2012). Finite element analysis of artificial disc with an elastomeric core in the lumbar spine. Acta Bioeng. Biomech, 14(1), 59-66.
[40]White, A. A., & Panjabi, M. M. Clinical biomechanics of the spine. 1990. Philadelphia, PA, USALippincott.
[41]Kim, H. J., Chun, H. J., Lee, H. M., Kang, K. T., Lee, C. K., Chang, B. S., & Yeom, J. S. (2013). The biomechanical influence of the facet joint orientation and the facet tropism in the lumbar spine. The Spine Journal, 13(10), 1301-1308.
[42]Lee, K. K., & Teo, E. C. (2004). Poroelastic analysis of lumbar spinal stability in combined compression and anterior shear. Clinical Spine Surgery, 17(5), 429-438.
[43]Azari, F., Arjmand, N., Shirazi-Adl, A., & Rahimi-Moghaddam, T. (2018). A combined passive and active musculoskeletal model study to estimate L4-L5 load sharing. Journal of biomechanics, 70, 157-165.
[44]Rohlmann, A., Mann, A., Zander, T., & Bergmann, G. (2009). Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study. European Spine Journal, 18(1), 89-97.
[45]Ibarz, E., Herrera, A., Más, Y., Rodríguez-Vela, J., Cegoñino, J., Puértolas, S., & Gracia, L. (2012). Development and kinematic verification of a finite element model for the lumbar spine: application to disc degeneration. BioMed research international, 2013.
[46]T. H. Pingel, "Mitteilungen aus dem Institut fur Mechanik," 1991.
[47]Panjabi, M., Henderson, G., Abjornson, C., & Yue, J. (2007). Multidirectional testing of one-and two-level ProDisc-L versus simulated fusions. Spine, 32(12), 1311-1319.
[48]Patwardhan, A. G., Havey, R. M., Meade, K. P., Lee, B., & Dunlap, B. (1999). A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine, 24(10), 1003-1009.
[49]Liu, C. L., Zhong, Z. C., Hsu, H. W., Shih, S. L., Wang, S. T., Hung, C., & Chen, C. S. (2011). Effect of the cord pretension of the Dynesys dynamic stabilisation system on the biomechanics of the lumbar spine: a finite element analysis. European Spine Journal, 20(11), 1850-1858.
[50]Dahl, M. C., Ellingson, A. M., Mehta, H. P., Huelman, J. H., & Nuckley, D. J. (2013). The biomechanics of a multilevel lumbar spine hybrid using nucleus replacement in conjunction with fusion. The Spine Journal, 13(2), 175-183.
[51]Delamarter, R. B., Fribourg, D. M., Kanim, L. E., & Bae, H. (2003). ProDisc artificial total lumbar disc replacement: introduction and early results from the United States clinical trial. Spine, 28(20S), S167-S175.3
[52]Modular Intervertebral Disc Prosthesis designed for Stabilizing the Lumbar Spine and Restoring the Physiological Range of Motion Prodisc-L Surgical Technique. https://www.depuysynthes.com/ifu.
[53]Inoue, M., Mizuno, T., Sakakibara, T., Kato, T., Yoshikawa, T., Inaba, T., & Kasai, Y. (2017). Trajectory of instantaneous axis of rotation in fixed lumbar spine with instrumentation. Journal of orthopaedic surgery and research, 12(1), 177.
[54]Eijkelkamp, M. F., Van Donkelaar, C. C., Veldhuizen, A. G., Van Horn, J. R., Huyghe, J. M., & Verkerke, G. J. (2001). Requirements for an artificial intervertebral disc. The International journal of artificial organs, 24(5), 311-321.
[55]Abi-Hanna, D., Kerferd, J., Phan, K., Rao, P., & Mobbs, R. (2018). Lumbar disk arthroplasty for degenerative disk disease: literature review. World neurosurgery, 109, 188-196.
[56]Newell, N., Little, J. P., Christou, A., Adams, M. A., Adam, C. J., & Masouros, S. D. (2017). Biomechanics of the human intervertebral disc: a review of testing techniques and results. Journal of the mechanical behavior of biomedical materials, 69, 420-434.
[57]Saavedra, F., Iannotti, C. A., Bidros, D., & Benzel, E. C. (2016). Biomechanics of Lumbar Disk Arthroplasty. In Advanced Concepts in Lumbar Degenerative Disk Disease (pp. 613-632). Springer, Berlin, Heidelberg.
[58]Van Ooij, A., Oner, F. C., & Verbout, A. J. (2003). Complications of artificial disc replacement: a report of 27 patients with the SB Charite disc. Spine, 28, 369-383.
[59]Demetropoulos, C. K., Sengupta, D. K., Knaub, M. A., Wiater, B. P., Abjornson, C., Truumees, E., & Herkowitz, H. N. (2010). Biomechanical evaluation of the kinematics of the cadaver lumbar spine following disc replacement with the ProDisc-L prosthesis. Spine, 35(1), 26-31.
[60]Ford, A. C., Gramling, H., Li, S. C., Sov, J. V., Srinivasan, A., & Pruitt, L. A. (2018). Micromechanisms of fatigue crack growth in polycarbonate polyurethane: Time dependent and hydration effects. Journal of the mechanical behavior of biomedical materials, 79, 324-331.
[61]Chen, W. M., Park, C., Lee, K., & Lee, S. (2009). In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement. Spine, 34(20), E716-E723.
[62]Baker, D. A., Hastings, R. S., & Pruitt, L. (1999). Study of fatigue resistance of chemical and radiation crosslinked medical grade ultrahigh molecular weight polyethylene. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 46(4), 573-581.
[63]Schmidt, H., Kettler, A., Heuer, F., Simon, U., Claes, L., & Wilke, H. J. (2007). Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading. Spine, 32(7), 748-755.
[64]Banse, X., Sims, T. J., & Bailey, A. J. (2002). Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross‐links. Journal of bone and mineral research, 17(9), 1621-1628.
[65]Huang, R. C., Girardi, F. P., Cammisa, F. P., Tropiano, P., & Marnay, T. (2003). Long-term flexion-extension range of motion of the prodisc total disc replacement. Clinical Spine Surgery, 16(5), 435-440.
[66]Shim, C. S., Lee, S. H., Shin, H. D., Kang, H. S., Choi, W. C., Jung, B., Choi,G., Ahn, Y., Lee, H., & Lee, H. Y. (2007). CHARITE versus ProDisc: a comparative study of a minimum 3-year follow-up. Spine, 32(9), 1012-1018.
[67]White, A. A. P. M. (1990). Clinical biomechanics of the spine. Clinical biomechanics of the spine.
[68]Patwardhan, A., Wharton, N., Lorenz, M., Havey, R., Carandang, G., Nicolakis, M., ... & Ghanayem, A. (2006). P35. Location and Mobility of Instantaneous Centers of Rotation in the Lumbar Spine–Implications to Design of Lumbar Disc Prostheses. The Spine Journal, 6(5), 100S-101S.
[69]Schmidt, H., Heuer, F., Claes, L., & Wilke, H. J. (2008). The relation between the instantaneous center of rotation and facet joint forces–a finite element analysis. Clinical biomechanics, 23(3), 270-278.
[70]Cui, X. D., Li, H. T., Zhang, W., Zhang, L. L., Luo, Z. P., & Yang, H. L. (2018). Mid-to long-term results of total disc replacement for lumbar degenerative disc disease: a systematic review. Journal of orthopaedic surgery and research, 13(1), 326.

電子全文 電子全文(網際網路公開日期:20240821)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top