(3.227.208.0) 您好!臺灣時間:2021/04/21 00:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:古承逸
研究生(外文):GU, CHENG-YI
論文名稱:熱塑性聚氨酯複合粉體應用於選擇性雷射燒結系統之研究
論文名稱(外文):Study on TPU composite powder apply to Selective Laser Sintering System
指導教授:蘇程裕蘇程裕引用關係
指導教授(外文):SU, CHERNG-YUH
口試委員:張忠傑汪家昌
口試委員(外文):JHANG, JHONG-JIEWANG, JIA-CHANG
口試日期:2019-07-29
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機械工程系機電整合碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:59
中文關鍵詞:熱塑性聚氨酯發泡材核殼結構選擇性雷射燒結
外文關鍵詞:FoamThermoplastic PolyurethaneCore-ShellSLS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,大量客製化概念被引進到製鞋產業,各項3D列印技術被導入製鞋業當中。故本研究透過熱塑性聚氨酯(Thermoplastic Polyurethane, TPU)料粒發泡的構思,製備具有核殼結構(Core-Shell)之TPU複合粉體,再導入選擇性雷射燒結(Selective Laser Sintering, SLS)列印技術為基礎,配合不同雷射燒結參數調變,使樣品經雷射燒結後具有輕、軟、彈的效果並保有強度。複合粉體主要以低溫破碎TPU發泡料粒並透過部分混溶將不同性質之TPU包覆方式製備。粒度和微觀形態分析表明,具核殼結構之TPU複合粉體粒徑控制在0.3 mm,複合外殼厚度約20 μm±5。透過不同能量密度的SLS燒結參數,於能量密度120 kJ/m2下,雷射燒結樣品得到最佳的機械性能。最後,透過熱處理使雷射燒結樣品之拉伸應力及伸長率各提升約81.4 %和84 %。此外,將核殼型TPU複合粉體與碳黑混摻TPU複合粉體製備的SLS樣品在機械性能進行比較,核殼型TPU複合粉體之SLS樣品具有較優異的機械性能。因此,本研究製備核殼型TPU複合粉體可以改善SLS燒結樣品的機械性能,並且為各種工程應用開發提供許多配方自由度。
In recent years, a large number of customization concepts have been introduced into the shoe industry, and various 3D printing technologies have been introduced into the shoe industry. In this study, prepared TPU composite powders with core-shell structure, introduced into Selective Laser Sintering (SLS) and adjusted with different laser sintering parameters, the samples have the light, soft and elastic after laser sintering and maintain a certain strength. The particle size of the TPU composite powder with core-shell structure is 0.3mm , and thickness of the shell is about 20 μm±5. SLS samples showed that the best mechanical properties were obtained at the energy density of 120 kJ/m2. Finally, the tensile stress and elongation were increased by about 81.4% and 84% by heat treatment. In addition, the preparation of core-shell TPU composite powders in this study can improve the mechanical properties of SLS sintered samples and provide many formulation freedoms for various engineering applications.
摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
第二章 文獻回顧 3
2.1熱塑性聚氨酯簡介 3
2.2高分子發泡材料 3
2.2.1超臨界流體發泡技術 4
2.3高分子複合材料 5
2.3.1高分子複合材料之基材 6
2.3.1.1熱固性材料 6
2.3.1.2熱塑性材料 7
2.3.2高分子複合材料之增強材料 8
2.3.2.1二氧化矽 8
2.3.2.2碳纖維 9
2.3.2.3奈米碳管 9
2.3.3碳黑/高分子複合材料 10
2.4選擇性雷射燒結 11
2.4.1高分子聚合物應用於粉末床熔融系統 12
2.5核殼型(Core-Shell)之複合材料 14
第三章 實驗方法與步驟 16
3.1 實驗流程 16
3.2熱塑性聚氨酯複合材料製備 17
3.2.1 粉體原料 17
3.2.2 複合粉體製備方法(一):碳黑混摻(Mixing) 18
3.2.3 複合粉體製備方法(二):核殼型(Core-Shell) 18
3.3熱塑性聚氨酯複合粉體導入SLS系統 19
3.3.1 SLS製程原理 20
3.3.2雷射燒結參數設定 20
3.3.3熱處理 21
3.4 分析儀器及原理 22
3.4.1 掃描式電子顯微鏡(SEM) 22
3.4.2 傅立葉轉換紅外線光譜分析儀(FTIR) 22
3.4.3 示差掃描量熱儀分析(DSC) 22
3.4.4 熱重損失分析儀(TGA) 23
3.4.5 拉伸試驗機(MTS) 23
3.4.6 電腦斷層掃描儀(CT) 23
第四章 結果與討論 24
4.1粉體形貌分析 24
4.1.1 熱塑性聚氨酯粉體形貌分析 24
4.1.2 核殼型TPU複合粉體形貌分析 25
4.2 示差掃描熱量熱儀 26
4.3 熱重損失分析儀 28
4.4傅立葉轉換紅外線光譜分析 31
4.5雷射燒結結構分析 33
4.5.1表面形貌分析 33
4.5.2截面形貌分析 34
4.5.3尺寸精度分析 36
4.6 TPU複合材料之SLS特性 38
4.6.1缺陷與孔隙率分析 38
4.6.2拉伸性能分析 40
4.6.3斷裂面分析 43
第五章 結論 44
未來工作 45
參考文獻 46
符號彙編 59

[1] B. Chu, T. Gao, Y. J. Li, J. Wang, C. R. Desper, et al, "Microphase separation kinetics in segmented polyurethanes - effects of soft segment length and structure," Macromolecules, vol. 25, no. 21, 1992, pp. 5724-5729
[2] M. J. Elwell, A. J. Ryan, H. J. M. Grunbauer, H. C. VanLieshout, "In-situ studies of structure development during the reactive processing of model flexible polyurethane foam systems using FT-IR spectroscopy, synchrotron SAXS, and rheology, " Macromolecules, vol. 29, no. 8, 1996, pp. 2960-2968
[3] A. J. Ryan, W. R. Willkomm, T. B. Bergstrom, C. W. Macosko, J. T. Koberstein, et al. "Dynamics of (micro)phase separation during fast, bulk copolymerization – Some synchrotron SAXS Experiments," Macromolecules, vol.24, no. 10, 1991, pp. 2883-2889
[4] D. J. Martin, A. F. Osman, Y. Andriani, G. A. Edwards, "Thermoplastic polyurethane (TPU)-based polymer nanocomposites," Advances in Polymer Nanocomposites, 2012, pp. 321-350
[5] L. D. Tomasko, H. Li, D. Liu, X. Han, J. M. Wingert, J. L. Lee, et al. "A Review of CO2 Applications in the Processing of Polymers," Industrial & Engineering Chemistry Research, vol.42, no.25, 2003, pp. 6431-6456
[6] V. Kumar, N. P. Suh, "A process for making microcellular thermoplastic parts," Polymer Engineering and Science, vol.30, no.20, 1990, pp. 1323-1329
[7] S. K. Goel, E. J. Beckman, "Generation of microcellular polymeric foams using supercritical carbon dioxide. I: Effect of pressure and temperature on nucleation," Polymer Engineering and Science, vol.34, no. 14, 1994, pp. 1137-1147
[8] C. B. Park, Baldwin S D. F. , N. P. Suh, "Effect of the pressure drop rate on the cell nucleation in continuous processing of microcellular polymers," Polymer Engineering Science, vol. 35, no. 5, 1995, pp. 432-440
[9] J. Fu, C. Jo, H. E. Naguib, "Effect of processing parameters on cellular structures and mechanical properties of PMMA microcellular foams," Cellular Polymers, vol. 24, no. 4, 2005, pp. 177-196
[10] L. M. Matuana, C. B. Park, J. J. Balatinecz, "Structures and mechanical properties of microcellular foamed polyvinyl chloride," Cellular Polymers, vol. 17, no. 1, 1998, pp. 1-16
[11] K. A. Seeler, V. Kumar, "Tension-tension fatigue of microcellular polycarbonate: initial results," Journal of Reinforced Plastics and Composites, vol. 12, no.3, 1993, pp. 359
[12] M. Shimbo, D. F. Baldwin, N. P. Suh, "The ciscoelastic behavior of microcellular plastics with varying cell size," Polymer Engineering Science, vol. 35, no. 17, 1995, pp. 1387-1393
[13] H. Sun, J. E. Mark, "Preparation, characterization, and mechanical properties of some microcellular polysulfone foams," Journal Applied Polymer Science, vol. 86, no. 7, 2002, pp. 1692-1701
[14] I. Tsivintzelis, A. G. Angelopoulou, C. Panayiotou, "Foaming of polymers with supercritical CO2: an experimental and theoretical study," Polymer, vol.48, no.20, 2007, pp. 5928-5939
[15] R. Gendron, M. Huneault, J. Tatibouet, "Foam extrusion of polystyrene blown with HFC-134a," Cellular Polymers, vol. 21, no. 05, 2002, pp. 315-341
[16] S. Siripurapu, J. M. Desimone, S. A. Khan, R. J. Spontak, "Low-temperature, surface-mediated foaming of polymer films," Advanced Materials, vol.16, no. 12, 2004, pp. 989-994
[17] Q. Huang, B. Seibig, D. Paul, "Melt extruded open-cell microcellular foams for membrane separation: processing and cell morphology relationship," Journal Cellular Plastics, vol.36, no. 02, 2000, pp. 112-125
[18] M. Y. S. , Ahmed, C. B. Park, N. Atalla, "Control of the structure and morphology for production of novel LDPE acoustical foams," Cellular Polymers, vol. 25, no. 05, 2006, pp. 277-292
[19] Z. M. Xu, X. L. Jiang, T. Liu, G. H. Hu, L. Zhao, Z. N. Zhu, W. K. Yuan, "Foaming of polypropylene with supercritical carbon dioxide," The Journal of Supercritical Fluids, vol. 41, no. 2, 2007, pp. 299-310
[20] S. K. Goel, E. J. Beckman, "Generation of microcellular polymeric foams using supercritical carbon dioxide. I. Effect of pressure and temperature on nucleation," Polymer Engineering and Science, vol.34, no.14, 1994, pp. 1137-1147
[21] S. K. Goel, E. J. Beckman, "Generation of microcellular polymeric foams using supercritical carbon dioxide. II. Cell growth and skin formation," Polymer Engineering and Science, vol.34, no.14, 1994, pp. 1148-1156
[22] 馬振基, 高分子複合材料(上冊),臺北:國立編譯館,1988
[23] C. Sonnenfeld, H. Mendil-Jakani, R. Agogue, P. Nunez, P. Beauchaene, "Thermoplastic/thermoset multilayer composites: a way to improve the impact damage tolerance of thermosetting resin matrix composites," Composite Structures, vol. 171, 2017, pp. 298-305
[24] G. Mittal, K. Y. Rhee, V. Miskovic-Stankovic, D. Hui," Reinforcements in multi-scale polymer composites: Processing, properties, and applications," Composites Part B : Engineering, vol. 138, no. 1, 2018, pp. 122-139
[25] A. O. Konuray, X. Fernandez-Francos, X. Ramis, "Latent curing of epoxy-thiol thermosets," Polymer, vol.116, 2017, pp. 191-203
[26] J. Chang, G. Liang, A. Gu, S. Cai, L. Yuan, "The production of carbon nanotube/epoxy composites with a very high dielectric constant and low dielectric loss by microwave curing," Carbon, vol.50, no.2, 2012, pp. 689-698
[27] M. G. B. , Odom, C. B. Sweeney, D. Parviz, L. P. Sill, M. A. Saed, M. J. Green, "Rapid curing and additive manufacturing of thermoset systems using scanning microwave heating of carbon nanotube/epoxy composites," Carbon ,vol.120, 2017, pp. 447-453
[28] A. R. Offringa, "Thermoplastic composites-rapid processing applications," Composites Part A : Applied Science and Manufacturing, vol.27, no. 4, 1996, pp.329-336
[29] S. R. Iyer, L. T. Drzal, "Manufacture of powder-impregnated thermoplastic composites," Journal of Thermoplastic Composite Materials, vol.3, no. 4, 1990, pp. 325-355
[30] M. N. Ghasemi Nejhad, A. Parvizi-Majidi," Impact behaviour and damage tolerance of woven carbon fibre-reinforced thermoplastic composites,"Composites, vol.21, no. 2, 1990, pp. 155-168
[31] H. Ning, G. M. Janowski, U. K. Vaidya, G. Husman," Thermoplastic sandwich structure design and manufacturing for the body panel of mass transit vehicle," Composite Structures, vol.80, no.1, 2007, pp. 82-91
[32] B. Vieille, W. Albouy, L. Chevalier, L. Taleb," About the influence of stamping on thermoplastic-based composites for aeronautical applications," Composites Part B : Engineering, vol.45, no.1, 2013, pp. 821-834
[33] S. Ramakrishna, J. Mayer, E. Wintermantel, K. W. Leong," Biomedical applications of polymer–composite materials: a review," Composites Science and Technology, vol.61, no. 9, 2001, pp. 1189-1224
[34] X. C. Sun, L. F. Kawashita, A. S. Kaddour, M. J. Hiley, S. R. Hallett," Comparison of low velocity impact modelling techniques for thermoplastic and thermoset polymer composites," Composite Structures, vol.203, no.1, 2018, pp. 659-671
[35] I. Chou, T. Inutake, K. Namba," Correlation of damage resistance under low velocity impact and Mode II delamination resistance in CFRP laminates," Advanced Composite Materials, vol.8, no.2, 1999, pp.167-176
[36] G. Dorey, S. M. Bishop, P. T. Curtis," On the impact performance of carbon fibre laminates with epoxy and PEEK matrices," Composites Science and Technology, vol. 23, no. 3, 1985, pp. 221-237
[37] L. Wang, L. Q. Weng, S. H. Song, S. L. Tian, R. Ma," Characterization of polyetheretherketone–hydroxyapatite nanocomposite materials," Materials Science Engineer : A, vol.528, no.10-11, 2001, pp. 3689-3696
[38] A. Mazzoli, G. Moriconi, M. G. Pauri," Characterization of an aluminum-filled polyamide powder for applications in selective laser sintering," Materials & Design, vol.28, no.3, 2007, pp. 993-1000
[39] Z. Zhang, C. Breidt, L. Chang, K. Friedrich," Wear of PEEK composites related to their mechanical performances," Tribology International, vol.37, no.3, 2004, pp. 271-277
[40] V. Datsyuk, S. Trotsenko, S. Reich," Carbon-nanotube–polymer nanofibers with high thermal conductivity," SciVerse ScienceDirect, vol. 52, 2013, pp.605-620
[41] Y. Shi, J. Chen, Y. Wang, Z. Li, S. Huang," Study of the selective laser sintering of polycarbonate and postprocess for parts reinforcement," Journal of Materials : Design and Applications, vol. 221, no. 1, 2007, pp. 37-42
[42] H. C. Kim, H. T. Hahn, Y. S. Yang," Synthesis of PA12/functionalized GNP nanocomposite powders for the selective laser sintering process," Journal of Composite Materials, vol. 47, no. 4, 2013, pp. 501-509
[43] K. Pathmanathan, G. P. Johari," The effect of increased crystallization on the electrical properties of nylon‐12,"Journal of Polymer Science Part B Polymer Physics, vol. 31, no. 3, 1993, pp. 265-272
[44] C. Yan, Y. Shi, J. Yang, J. Liu," A nanosilica/nylon-12 composite powder for selective laser sintering," Journal of Reinforced Plastics and Composites, vol.28, no. 23, 2009, pp. 2889-2902
[45] G. Zhang, Y. Xia, H. Wang, Y. Tao, G. Tao, S. Tu," A percolation model of thermal conductivity for filled polymer composites," Journal of Composite Materials, vol. 44, no. 8, 2010, pp. 963-970
[46] A. Bitar, N. M. Ahmad, H. Fessi, A. Elaissari," Silica-based nanoparticles for biomedical applications," Drug Discovery Today, vol.17, no. 19-20, 2012, pp. 1147-1154
[47] J. Seyfi, S. H. Jafari, H. A. Khonakdar, G. M. M. Sadeghi, G. Zohuri, I. Hejazi, F. Simon," Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles," Applied Suface Science, vol. 347, no. 30, 2015, pp. 224-230
[48] D. Sarkar, D. Sen, B. K. Nayak, S. Mazumder, A.Ghosh," Spray-dried encapsulated starch and subsequent synthesis of carbon-silica core-shell micro-granules," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 529, no. 20, 2017, pp. 696-704
[49] S. Immanuel, T. K. Aparna, R. Sivasubramanian," A facile preparation of Au—SiO2nanocomposite for simultaneous electrochemical detection of dopamine and uric acid," Surfaces and Interfaces, vol. 14, 2019, pp. 82-91
[50] D. D. Edie," The effect of processing on the structure and properties of carbon fibers," Carbon, vol. 36, no. 4, 1998, pp. 345-362
[51] S. Chand, " Review Carbon fibers for composites," Journal of Materials Science, vol. 35, no. 6, 2000, pp. 1303-1313
[52] M. Menini, P. Pesce, F. Pera, F. Barberis, A. Lagazzo, L.Bertola," Biological and mechanical characterization of carbon fiber frameworks for dental implant applications," Materials Science and Engineering : C, vol. 70, 2017, pp. 646-655
[53] C. Mejean, L. Pometcu, R. Benzerga, A. Sharaiha, C. LePaven-Thivet, M. Badard," Electromagnetic absorber composite made of carbon fibers loaded epoxy foam for anechoic chamber application," Materials Science Engineering : B, vol. 220, 2017, pp. 59-65
[54] K. S. Pandya, N. K. Naik," Analytical and experimental studies on ballistic impact behavior of carbon nanotube dispersed resin," International Journal of Impact Engineering, vol. 76, 2015, pp. 49-59
[55] G. Mittal, V. Dhand, K. Y. Rhee, S. J. Park, W. R. Lee," A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites," Journal of Industrial and Engineering Chemistry, vol. 21, no. 25, 2015, pp. 11-25
[56] N. P. Sahu, D. K. Khande, G. C. Patel, P. K. Sen, S. K. Bohidar,"Study on aramid fibre and comparison with other composite materials, study on aramid fibre and comparison with other composite materials," Internation Journal for Innovative Research in Science & Technology, vol. 1, no. 7, 2014, pp. 303-306
[57] D. Janas, M. Rdest, K. K. K. Koziol," Flame-retardant carbon nanotube films," Applied Surface Science, vol. 411, 2017, pp. 177-181
[58] Josef F. Christ, N. Aliheidari, A. Ameli, P. Potschke," 3D printed highly elastic strain sensors of multiwalled carbon/nanotube/thermoplastic polyurethane nanocomposites," Materials and Design, vol. 131, 2017, pp. 394-401
[59] Y. H. Nien," The Application of Carbon Nanotube to Bone Cement," Carbon Nanotubes - Polymer Nanocomposites, 2010
[60] K. Dai , X. B. Xu, Z. M. Li," Electrically conductive carbon black (CB) filled in situ microfibrillar poly(ethylene terephthalate) (PET)/polyethylene (PE) composite with a selective CB distribution," Polymer, vol. 48, no. 3, 2007, pp. 849-859
[61] Y. Hoshikawa, B. G. An, S. Kashihara, T. Ishii, M. Ando, S. Fujisawa, K. Hayakawa, S. Hamatani, H. Yamada, T. Kyotani," Analysis of the interaction between rubber polymer and carbon black surfaces by efficient removal of physisorbed polymer from carbon rubber composites," Carbon, vol. 99, 2016, pp. 148-156
[62] R. Vie, S. Berthon-Fabry, S. Blayac, E. Drahi, S. Jacomet," Inkjet printing of 200 nm monodisperse carbon nanoparticles: from smart ink formulation to thin film sensor properties," Nanotechnology, vol. 2, 2013, pp. 243-246
[63] M. C. Lonergan, E. J. Severin, B. J. Doleman, S. A. Beaber, R. H. Grubbs, N. S. Lewis," Array-based vapor sensing using chemically sensitive, carbon black-Polymer resistors," Chemistry of Materials, vol. 8, no. 9, 1996, pp. 2298-2312
[64] G. R. Hamed," Reinforcement of rubber," Rubber Chemistry and Technology, vol. 73, no. 3, 2000, pp. 524-533
[65] V. M. Lobe, J. L. White," An experimental study of the influence of carbon black on the rheological properties of a polystyrene melt," Polymer Engineering Science, vol. 19, no. 9, 2004, pp. 617
[66] H. Han, J. Lee, D.W. Park, S. E. Shim," Surface modification of carbon black by oleic acid for miniemulsion polymerization of styrene," Macromolecular Research, vol. 18, no. 5, 2010, pp. 435-441
[67] N. Romyen, S. Thongyai, P. Praserthdam," Surfactant-dispersed carbon black in polyimide nanocomposites: spectroscopic monitoring of the dispersion state in the polymer matrix," Journal of Applied Polymer Science, vol. 115, no. 3, 2010, pp. 1622-1629
[68] N. Li, X. Ma, Q. Zha, K. Kim, Y. Chen, C. Song," Maximizing the number of oxygen-containing functional groups on activated carbon by using ammonium persulfate and improving the temperature-programmed desorption characterization of carbon surface chemistry," Carbon, vol. 49, no. 15, 2011, pp. 5002-5013
[69] A. A. Redzuan, N. N. Bonnia, S. S. Shakirah, M. R. H. Mohamed, S. N. Surip," Mechanical Properties of Rubber Toughened Polyester Filled Carbon Black," Advanced Materials Research, vol. 701, pp. 37-41
[70] N. A. Habis, A. E. Moumen, M. Tarfaoui, K. Lafd," Mechanical properties of carbon black/poly (ε-caprolactone)-based tissue scaffolds," 2018
[71] F. Samyn, S. Bourbigot, C. Jama, S. Bellayer," Fire retardancy of polymer clay nanocomposites: is there an influence of the nanomorphology?," Polymer Degradation Stability, vol. 93, 2008, pp. 2019-2024
[72] J. P. Song, K. Y. Tian, L. X. Ma, W. Li, S. C. Yao," The effect of carbon black morphology to the thermal conductivity of natural rubber composites," International Journal of Heat and Mass Transfer, vol. 137, 2019, pp. 184-191
[73] H. Yang, J. Gong, X. Wen, J. Xue, Q. Chen, Z. Jiang, N. Tian, T. Tang," Effect of carbon black on improving thermal stability, flame retardancy and electrical conductivity of polypropylene/carbon fiber composites," Composites Science and Technology, vol. 113, no. 5, 2015, pp. 31-37
[74] F. Sillani, Rob G. Kleijnen, M. Vetterli, M. Schmid, K. Wegener," Selective laser sintering and multi jet fusion: Process-induced modification of the raw materials and analyses of parts performance," Additive Manufacturing, vol. 27, 2019, pp. 32-41
[75] B. Liu, P. Bai, Y. Li," Post treatment process and selective laser sintering mechanism of polymer-coated Mo powder,"Open Materials Science Journal, vol. 5, 2011, pp. 194-198
[76] K. Şirin, F. Dogan, M. Çanlı, M. Yavuz," Mechanical properties of polypropylene (PP) + high-density polyethylene (HDPE) binary blends: non-isothermal degradation kinetics of PP + HDPE (80/20) blends," Polymers Advanced Technologies, vol. 24, no. 8, 2013, pp. 715-722
[77] D. Gan, W. Cao, C. Song, Z. Wang," Mechanical properties and morphologies of poly(ether ketone ketone)/glass fibers/mica ternary composites," Materials Letters, vol. 51, no. 2, 2001, pp. 120-124
[78] R. D. Goodridge, C. J. Tuck, R. J. M. Hague," Laser sintering of polyamides and other polymers," Progress in Materials Science, vol. 57, no. 2, 2012, pp. 229-267
[79] S. Dadbakhsh, L. Verbelen, T. Vandeputte, D. Strobbe, P. Van Puyvelde, J. P. Kruth," Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer," Physics Procedia, vol. 83, 2016, pp. 971-980
[80] M. Schmid, K. Wegener," Thermal and molecular properties of polymer powders for selective laser sintering (SLS)," AIP Conference Proceedings, 2016
[81] M. Schmidt, D. Pohle, T. Rechtenwald," Selective laser sintering of PEEK," CIRP Annals, vol. 56, no. 1, 2007, pp. 205-208
[82] S. Berretta, K.E. Evans, O.R. Ghita," Processability of PEEK, a new polymer for in high temperature laser sintering (HT-LS)," European Polymer Journal, vol. 68, 2015, pp. 243-266
[83] H. C. H. Ho, I. Gibson, W. L. Cheung," Effects of energy density on morphology and properties of selective laser sintered polycarbonate," Journal of Materials Processing Technology, 89 (1999), pp. 204-210
[84] R. G. Chaudhuri, S. Paria," Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications," Chemical Reviews, vol. 112, pp. 2373-2433
[85] I. Miki, K. Hiroki, H. Iwao, H. Yoshikazu," Synthesis of sapphire nanoparticles with graphite shells by hot-filament chemical vapor deposition," Ingenta, vol. 4, 2014, pp. 135-143
[86] A. V. Nomoev, S. P. Bardakhanov," Synthesis and structure of Ag-Si nanoparticles obtained by the electron-beam evaporation/condensation method," Technical Physics Letters, vol. 38, no. 4, 2012, pp. 375-378
[87] J. Temuujin, S. P. Bardakhanov, A. V. Nomoev, V. I. Zaikovskii, A. Minjigmaa, G. Dugersuren, A. V. Riessen," Preparation of copper and silicon/copper powders by a gas evaporation-condensation method," Bulletin of Materials Science, vol. 32, no. 5, 2009, pp. 543-547
[88] N. Hopkinson, C.E. Majewski, H. Zarringhalam," Quantifying the degree of particle melt in selective laser sintering," CIRP Annals, vol. 58, no. 1, 2009, pp. 197-200
[89] S. Berretta, K. E. Evans, O. Ghita,"Predicting processing parameters in High Temperature Laser Sintering (HT-LS) from powder properties," Materials & Design, vol. 105, 2016, pp. 301-314
[90] S. Yuan, F. Shen, J. Bai, C. K. Chua, J. Wei, K. Zhou," 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization," Materials & Design, vol. 120, 2017, pp. 317-327
[91] Y. I. Tien, K. H. Wei," Thermal transitions of montmorillonite/polyurethane nanocomposites," Journal of Polymer Research, vol. 7, no. 4, 2000, pp. 245-250
[92] H. Y. Mi, X. Jing, X. F. Peng," Approach to Fabricating Thermoplastic Polyurethane Blends and Foams with Tunable Properties by Twin‐Screw Extrusion and Microcellular Injection Molding," Advances in Polymer Technology, Vol. 33, No. 1, 2014
[93] S. Yuan, F. Shen, C. K. Chua, K. Zhou," Polymeric composites for powder-based additive manufacturing: Materials and applications," Progress in Polymer Science, vol. 91, 2019, pp. 141-168
[94] D. Tabuani, F. Bellucci, A. Terenzi, G. Camino," Flame retarded Thermoplastic Polyurethane (TPU) for cable jacketing application," Polymer Degradation and Stability, vol. 97, no. 12, 2012, pp. 2594-2601
[95] H. Quan, B. Q. Zhang, Q. Zhao, R. K. K. Yuen, R. K. Y. Li," Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites," Composites Part A: Applied Science and Manufacturing, vol. 40, no. 9, 2009, pp. 1506-1513
[96] J. Dutta, T. Chatterjee, K. Naskar," LDH as a multifunctional additive in EVA/TPU blends: Influence on mechanical, thermal, rheological and flame retardancy properties," Materials Science and Engineering: B, vol. 236-237, 2018, pp. 84-94
[97] M. Bera, P. K. Maji," Effect of structural disparity of graphene-based materials on thermo-mechanical and surface properties of thermoplastic polyurethane nanocomposites," Polymer, vol. 119, 2017, pp. 118-133
[98] J. Vega-Baudrit, M. Sibaja-Ballestero, P. Vázquez, R. Torregrosa-Maciá, and J. Miguel Martín-Martínez,"Properties of thermoplastic polyurethane adhesives containing nanosilicas with different specific surface area and silanol content," International Journal of Adhesion and Adhesives, vol. 27, no. 6, 2007,pp. 469-479.
[99] M. Kannan, S. Bhagawan, S. Thomas, K. Joseph," Comparison of Theory with Experimental Data for Nanoclay-Filled TPU/PP Blend," ACS Publications, vol. 51, no. 41, 2012, pp. 13379-13392
[100] R. D. Goodridge, C. J. Tuck, R. J. M. Hague," Laser sintering of polyamides and other polymers," Progress in Materials Science, vol. 57, no. 2, 2012, pp. 229-267
[101] R. J. Wang, L. L. Wang, L. Zhao, Z. Liu," Influence of process parameters on part shrinkage in SLS," The International Journal of Advanced Manufacturing Technology, vol. 33, no. 5-6, 2007, pp. 498-504
[102] Z. Li, Z. Wang, X. Gan, D. Fu, G. Fei, H. Xia," Selective Laser Sintering 3D Printing: A Way to Construct 3D Electrically Conductive Segregated Network in Polymer Matrix," Macromolecular Materials and Engineering, vol. 302, no. 11, 2017
[103] S. Yuan, F. Shen, J. Bai, C. K. Chua, J. Wei, K. Zhou," 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization," Materials & Design, vol. 120, no. 15, 2017, pp. 317-327
[104] S. Dadbakhsh, L. Verbelen, T. Vandeputte, D. Strobbe, P. V. Puyvelde, J. P. Kruth," Effect of Powder Size and Shape on the SLS Processability and Mechanical Properties of a TPU Elastomer," Physics Procedia, vol. 83, 2016, pp. 971-980

電子全文 電子全文(網際網路公開日期:20241001)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔