跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/14 07:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁心芸
研究生(外文):WENG,HSIN-YUN
論文名稱:透水鋪面對都市熱島效應影響之評估 -以國立臺北科技大學為例
論文名稱(外文):Evaluation of the Effect of Permeable Pavement on Urban Heat Island Effect-A Case Study of National Taipei University of Technology
指導教授:林鎮洋林鎮洋引用關係
指導教授(外文):LIN,JEN-YANG
口試委員:廖桂賢徐宗宏
口試委員(外文):LIAO,KUEI-HSIENHSU,TSUNG-HUNG
口試日期:2019-07-17
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:土木工程系土木與防災碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:105
中文關鍵詞:透水鋪面都市熱島效應監測數值模擬Fluent模式
外文關鍵詞:Permeable PavementUrban Heat IslandMonitorNumerical SimulationFluent model.
相關次數:
  • 被引用被引用:3
  • 點閱點閱:489
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
都市化(urbanization)已為全球趨勢,都市高度發展的過程中,產生自然生態系統與環境的負面影響且更加嚴重與普遍,使原本可以透水的土地開發成水泥叢林(Concrete jungle)。不透水路面增加與建物結構改變,不僅產生淹水問題,並且大量吸收太陽輻射與廢熱,導致都市熱島效應加劇。都市熱島效應已成為一個全球性的問題,其中大氣溫度高溫化為最顯著的影響,同時對於我們所居住的城市產生重大的影響,因此如何有效減緩都市熱島效應已成為全球高度關注之議題。本研究目的以探討透水鋪面對都市熱島效應影響之評估為主軸,將國立臺北科技大學校園作為研究範圍,於校園中三處鋪面裝置溫度監測儀器,分別為一處不透水鋪面與兩處透水鋪面,透過實際監測鋪面溫度,並應用ANSYS Fluent模式模擬鋪面溫度與比較在不同情境下校園鋪面溫度變化,探討透水鋪面對於都市熱島效應之影響。研究結果顯示,透水鋪面於晴天時溫度低於不透水鋪面,此現象於秋季與冬季時最為顯著,並且透過模擬結果得知校園的環域溫度變化。
Urbanization has become a global trend. In the process of urban development, the negative impacts of natural ecosystems and the environment have become more serious and widespread, and the land that could be permeable to water has been developed into the Concrete Jungle. The impervious pavement increases and the structural changes of the building not only cause flooding problems but also absorb a large amount of solar radiation and waste heat, increasing the urban heat island effect. The urban heat island effect has become a global problem. The atmospheric temperature was the most significant impact, and it has a significant impact on the cities we live in. Therefore, how to effectively mitigate the urban island effect has become a global concern. This study is to explore the assessment of the impact of the permeable pavement on the urban heat island effect. In this thesis, the National Taipei University of Technology were identified as the study area. The temperature sensor of the three paving installations on the campus was respectively an impervious paving and two permeable paving. Through the actual monitoring of the pavement temperature, and using the ANSYS Fluent model to simulate the pavement temperature and compare the campus pavement temperature changes in different situations, the study was to investigate the effect of permeable paving for urban heat island effect. The results show that the temperature of the permeable pavement was lower than the impervious pavement on the sunny day, which was most noticeable in autumn and winter. The temperature change of the campus ranges area was known by simulation results.
目錄
摘 要 i
ABSTRACT iii
誌 謝 v
目錄 vi
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2研究目的 2
1.3章節介紹與流程 3
第二章 文獻回顧 5
2.1 都市熱島效應 5
2.1.1 定義與成因 6
2.1.2 影響 7
2.1.3 緩解辦法 8
2.2 鋪面溫度變化之相關研究 12
2.2.1 鋪面溫度監測文獻介紹 12
2.2.2 數值模擬相關文獻介紹 15
2.3 環境溫度模擬模式評估 16
2.3.1計算流體力學(Computational Fluid Dynamics) 16
2.3.2 流體力學模式評估與Fluent模式應用實例 17
第三章 研究方法 19
3.1研究區域概述 19
3.1.1研究區位背景介紹 19
3.1.2北科大概述 21
3.1.3北科大校園LID設施 23
3.1.4北科大透水鋪面介紹 25
3.2透水鋪面溫度監測說明 26
3.2.1監測點位評選 26
3.2.2溫度監測介紹 33
3.3校園環域溫度模擬 38
3.3.1模式介紹 38
3.3.2模式流程與建置 42
3.3.3模擬情境說明 44
3.3.4 研究模擬限制 45
3.3.5 模擬設置說明 45
第四章 結果與討論 58
4.1實際溫度監測數據 58
4.1.1長時間鋪面溫度變化 59
4.1.2每日12時 62
4.1.3長時間無降雨 67
4.1.4有效降雨之場次 76
4.2環域溫度模擬結果 84
4.2.1晴天情境模擬 85
4.2.2雨天情境模擬 88
第五章 結論與建議 91
5.1結論 91
5.2建議 92
參考文獻 93
附錄一 98
附錄一、各月有效降雨之鋪面溫度趨勢圖 99
1.Asaeda, T., & Ca, V. T. (2000). Characteristics of permeable pavement during hot summer weather and impact on the thermal environment. Building and Environment, 4(35), 363-375.
2.Akbari, H., Pomerantz, M., & Taha, H. (2001). Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Solar energy, 70(3), 295-310.
3.Brückner, M. (2012). Economic growth, size of the agricultural sector, and urbanization in Africa. Journal of Urban Economics, 71(1), 26-36.
4.Chang, C. R., Li, M. H., & Chang, S. D. (2007). A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning, 80(4), 386-395.
5.Chen, Q. (1995). Comparison of different k-ε models for indoor air flow computations. Numerical Heat Transfer, Part B Fundamentals, 28(3), 353-369.
6.Chen, Q. Y. (2004). Using computational tools to factor wind into architectural environment design. Energy and buildings, 36(12), 1197-1209.
7.Childers, D., Cadenasso, M., Grove, J., Marshall, V., McGrath, B., & Pickett, S. (2015). An ecology for cities: A transformational nexus of design and ecology to advance climate change resilience and urban sustainability. Sustainability, 7(4), 3774-3791.
8.Ferguson, B., Fisher, K., Golden, J., Hair, L., Haselbach, L., Hitchcock, D., & Waye, D. (2008). Reducing urban heat islands: compendium of strategies-cool pavements.
9.Gorsevski, V., Taha, H., Quattrochi, D., & Luvall, J. (1998). Air pollution prevention through urban heat island mitigation: An update on the Urban Heat Island Pilot Project. Proceedings of the ACEEE Summer Study, Asilomar, CA, 9, 23-32.
10.Grimmond, S. U. E. (2007). Urbanization and global environmental change: local effects of urban warming. Geographical Journal, 173(1), 83-88.
11.Guan, K. K. (2011). Surface and ambient air temperatures associated with different ground material: a case study at the University of California, Berkeley. Environmental Science, 196, 1-14.
12.Gui, J., Phelan, P. E., Kaloush, K. E., & Golden, J. S. (2007). Impact of pavement thermophysical properties on surface temperatures. Journal of materials in civil engineering, 19(8), 683-690.
13.Haselbach, L. M., & Gaither, A. (2008). Preliminary field testing: urban heat Island impacts and pervious concrete. In Concrete Technology Forum. Focus on Sustainable DevelopmentNational Ready Mixed Concrete Association.
14.Hatvani-Kovacs, G., Belusko, M., Skinner, N., Pockett, J., & Boland, J. (2016). Heat stress risk and resilience in the urban environment. Sustainable Cities and Society, 26, 278-288.
15.Herb, W. R., Janke, B., Mohseni, O., & Stefan, H. G. (2008). Ground surface temperature simulation for different land covers. Journal of Hydrology, 356(3-4), 327-343.
16.Hussein, A. S., & El-Shishiny, H. (2009). Influences of wind flow over heritage sites: A case study of the wind environment over the Giza Plateau in Egypt. Environmental Modelling & Software, 24(3), 389-410.
17.Hulley, M. E. (2012). The urban heat island effect: causes and potential solutions. In Metropolitan Sustainability (pp. 79-98). Woodhead Publishing.
18.Hu, L., Li, Y., Zou, X., Du, S., Liu, Z., & Huang, H. (2017). Temperature characteristics of porous Portland cement concrete during the hot summer session. Advances in Materials Science and Engineering, 2017.
19.Juan, Y. H., Yang, A. S., Wen, C. Y., Lee, Y. T., & Wang, P. C. (2017). Optimization procedures for enhancement of city breathability using arcade design in a realistic high-rise urban area. Building and Environment, 121, 247-261.
20.Kevern, J. T., Haselbach, L., & Schaefer, V. R. (2012). Hot weather comparative heat balances in pervious concrete and impervious concrete pavement systems. Journal of Heat Island Institute International Vol, 7(2).
21.Landsberg, H. E. (1981). The urban climate (Vol. 28). Academic press.
22.Li, X., & Zhou, W. (2019). Optimizing urban greenspace spatial pattern to mitigate urban heat island effects: Extending understanding from local to the city scale. Urban Forestry & Urban Greening.
23.Martins, T. A., Adolphe, L., Bonhomme, M., Bonneaud, F., Faraut, S., Ginestet, S., ... & Guyard, W. (2016). Impact of Urban Cool Island measures on outdoor climate and pedestrian comfort: simulations for a new district of Toulouse, France. Sustainable Cities and Society, 26, 9-26.
24.Meier, A. K. (1990). Measured cooling savings from vegetative landscaping. Proc. American Council for an Energy-Efficient Economy, Environment, 4, 133-143.
25.Meineke, E. K., Dunn, R. R., Sexton, J. O., & Frank, S. D. (2013). Urban warming drives insect pest abundance on street trees. PloS one, 8(3), e59687.
26.Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017).The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197, 522-538.
27.Nelson, R. M., & Pletcher, R. H. (1974). An explicit scheme for the calculation of confined turbulent flows with heat transfer. Heat Transfer and Fluid Mechanics Institute, 24 th, Corvallis, Ore, 154-170.
28.Oke, T. R. (1982). The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455), 1-24.
29.Qin, Y. (2015). A review on the development of cool pavements to mitigate urban heat island effect. Renewable and sustainable energy reviews, 52, 445-459.
30.Rowe, A. A., Borst, M., O'Connor, T. P., & Stander, E. K. (2010). Permeable pavement monitoring at the Edison Environmental Center demonstration site. In World Environmental and Water Resources Congress 2010: Challenges of Change (pp. 2908-2916).
31.Sailor, D. J. (1995). Simulated urban climate response to modifications in surface albedo and vegetative cover. Journal of applied meteorology, 34(7), 1694-1704.
32.Santamouris, M. (2013a). Energy and climate in the urban built environment. Routledge.
33.Santamouris, M. (2013b). Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments. Renewable and Sustainable Energy Reviews, 26, 224-240.
34.Stempihar, J. J., Pourshams-Manzouri, T., Kaloush, K. E., & Rodezno, M. C. (2012). Porous asphalt pavement temperature effects for urban heat island analysis. Transportation Research Record, 2293(1), 123-130.
35.Stone, B., Hess, J. J., & Frumkin, H. (2010). Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities?. Environmental health perspectives, 118(10), 1425-1428.
36.Synnefa, A., Karlessi, T., Gaitani, N., Santamouris, M., Assimakopoulos, D. N., & Papakatsikas, C. (2011). Experimental testing of cool colored thin layer asphalt and estimation of its potential to improve the urban microclimate. Building and Environment, 46(1), 38-44.
37.Taha, H., Sailor, D. J., & Akbari, H. (1992). High-albedo materials for reducing building cooling energy use.
38.Takahashi, K., Yoshida, H., Tanaka, Y., Aotake, N., & Wang, F. (2004). Measurement of thermal environment in Kyoto city and its prediction by CFD simulation. Energy and Buildings, 36(8), 771-779.
39.Toraldo, E., Mariani, E., Alberti, S., & Crispino, M. (2015). Experimental investigation into the thermal behavior of wearing courses for road pavements due to environmental conditions. Construction and Building Materials, 98, 846-852.
40.Tran, N., Powell, B., Marks, H., West, R., & Kvasnak, A. (2009). Strategies for design and construction of high-reflectance asphalt pavements. Transportation Research Record, 2098(1), 124-130.
41.Wang, J., Zhou, W., Pickett, S. T., Yu, W., & Li, W. (2019). A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Science of The Total Environment, 662, 824-833.
42.Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses-a guide to conservation planning. Predicting rainfall erosion losses-a guide to conservation planning.
43.Wu, H., Sun, B., Li, Z., & Yu, J. (2018). Characterizing thermal behaviors of various pavement materials and their thermal impacts on ambient environment. Journal of cleaner production, 172, 1358-1367.
44.Yamamoto, Y. (2006). Measures to mitigate urban heat islands. NISTEP Science & Technology Foresight Center.
45.Yang, J., Wang, Z. H., & Kaloush, K. E. (2015). Environmental impacts of reflective materials: Is high albedo a ‘silver bullet’for mitigating urban heat island. Renewable and Sustainable Energy Reviews, 47, 830-843.
46.Yang, A. S., Su, Y. M., Wen, C. Y., Juan, Y. H., Wang, W. S., & Cheng, C. H. (2016). Estimation of wind power generation in dense urban area. Applied energy, 171, 213-230.
47.Yang, A. S., Juan, Y. H., Wen, C. Y., & Chang, C. J. (2017). Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park. Applied energy, 192, 178-200.
48.內政部營建署(2016),水環境低衝擊開發設施操作手冊。
49.余嘯雷(2013),「低衝擊開發技術:來由與內涵」,城市低衝擊開 發防洪論壇講義資料,國立台北科技大學水環境研究中心主辦。
50.李明晃(2004),都市公園與局地氣溫效應之關係研究-以臺北市公園為例,中國文化大學景觀學研究所碩士論文。
51.林志棟,陳世晃,簡婉芸,王信越(2008),透水性鋪面於熱島效應上之成效,第七屆鋪面材料再生學術研討會論文集,第12-21頁。
52.林炯明(2010),都市熱島效應之影響及其環境意涵. 環境與生態學報, 3(1), 1-15.
53.林憲德(2002),「綠建築評估體系之雨水貯留滲透對策」,水資源管理季刊,第四127卷,第二期,20-25頁。
54.林優陸(2009),減緩都市熱島之數值模擬研究,國立臺北科技大學能源與冷凍空調工程系碩士班碩士論文。
55.邱英浩(2012),植栽及透水鋪面對減緩都市熱島之研究,行政院國家科學委員會補助專題研究計畫成果報告。
56.翁銘宏(2010),都市熱環境與表面溫度關係之研究-以臺北市為例,中國文化大學景觀系碩士論文
57.張兆睿(2014),利用CFD模擬與實驗量測探討值災對周遭環境為氣候之影響-以新生公園為例,國立臺北科技大學能源與冷凍空調工程系碩士班碩士論文。
58.郭昭廷(2018),LID導入新舊城區對於逕流分擔影響之研究,國立臺北科技大學土木與防災所碩士論文。
59.歐陽嶠暉(2001),都市環境學,詹氏書局。
60.戴明鳳、董俊良(2009),熱電偶式與熱敏式電子溫度器,電子式溫度感測元件實驗報告書。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊