跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 08:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王博淵
研究生(外文):WANG, BO-YUAN
論文名稱:移位法於透地雷達地下管線探測之應用
論文名稱(外文):Application of Migration Method on Detecting Underground Utilities Using Ground Penetrating Radar
指導教授:陳水龍陳水龍引用關係
指導教授(外文):CHEN, SHONG-LOONG
口試委員:蔡道賜康裕明鄭丁興陳水龍
口試日期:2019-07-17
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:土木工程系土木與防災碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:196
中文關鍵詞:透地雷達非破壞性檢測地下管線砂箱試驗GprMax空間解析度移位
外文關鍵詞:GPRNDTUnderground UtilitySandbox TestGprMaxSpatial ResolutionMigration
相關次數:
  • 被引用被引用:7
  • 點閱點閱:353
  • 評分評分:
  • 下載下載:98
  • 收藏至我的研究室書目清單書目收藏:0
隨著都市持續發展,政府需要埋設新管線以應付市民需求。由於圖資遺失或與現況不符,導致施工單位易誤判地下管線的數量與位置,在施工過程中損害了既有管線。近年來,道管中心開始使用透地雷達(GPR)調查地下管線的確切位置,其檢測成果協助工程人員成功辨識出單一管線。然而以透地雷達探測過於擁擠的地下管線時,雷達剖面常發生管線圖徵交疊,造成工程人員辨識困難,無法判斷管線的確切數量。本研究目的乃探討透地雷達辨識地下管線的解析能力,並運用移位(Migration)處理資料,評估移位對管線圖徵識別的改善效果,其驗證方法透過三個階段來實現:1.規劃砂箱試驗配合不同管線材質與間距之組合,以瑞典MALÅ透地雷達取得雷達剖面與管線圖徵2.透過時域有限差分軟體GprMax模擬砂箱剖面,取得理想模擬雷達剖面3.北科大校內進行管線現地探測,取得涵管在剖面中的成像。

砂箱試驗與GprMax模擬結果皆證實水平空間解析度與天線的中心頻率成正比,與深度成反比,且以高頻率天線量測的剖面之解析度容易受到深度影響而降低。金屬干擾導致在相同管線間距與深度之條件下,金屬與PVC雙管剖面之解析度低於金屬雙管剖面。本研究分析了不同因子對移位效果的影響,結果指出移位速度為最關鍵影響因子,進行移位前應先分析最佳移位速度,以獲得良好移位效果。原先無法區分雙管之剖面經移位處理後,使單一雙曲線繞射圖徵收斂成兩點,最佳收斂度達80%,能夠從剖面中區分出雙管,證實移位能有效提升水平空間解析度。另外,現地管線探測結果顯示移位能適用於現地土層,其收斂度介於55~58%,能滿足基本移位需求。

The government has to install more utility pipelines for the needs of citizens as urban development grows every day. However, it is difficult for contractors to identify underground utilities and their quantity as cartographic data are lost or do not match the status quo and these utility pipelines are sometimes damaged this way. In recent years, RPIC started using ground penetrating radar (GPR) to pinpoint the location of underground utilities. Engineers were able to identify single pipelines successfully with the radar readings. Despite the success, the utility feature overlapping is frequent on the radar profiles when GPR is used to investigate overcrowded utilities, making it difficult for engineers to identify the exact quantity. It is the purpose of this study to investigate the resolution capability of GPR to identify underground utilities and evaluate the improvement of utility feature identification using migration for data process. The verification was realized in three stages: 1. A sandbox experiment was developed by introducing several combinations of pipeline material and interval and Sweden-made MALÅ GPR was used to determine radar profiles and utility features; 2. The sandbox cross sections were simulated with the FDTD software GprMax to determine ideal simulation of radar profiles; and 3. An in-situ detection of utilities was performed at NTUT for the images of culverts in the profiles.

The sandbox experiment and GprMax simulation both verified that the horizontal spatial resolution was proportional to the center frequency of antenna and inversely proportional to depth, and that the resolution in the profiles measured with high-frequency antenna decreased as it was susceptible to depth. The resolution of dual metal and PVC pipes was lower than that of dual metal pipes with the same pipeline interval and depth due to metal interference. The influence of several factors on the migration effect was analysis as a part of this study. The analysis showed that the migration velocity was the most critical factor of influence, indicating that it is better to analyze the optimal migration velocity to obtain good migration effect before starting the migration. The migration processing was conducted on the profiles where the pipes were unable to be identified at the beginning to have single hyperbola diffraction features collapse to two points. The convergence reached up to 80%, allowing for the identification of two pipes in the profiles. This proved that migration does improve horizontal spatial resolution effectively. In addition, the in-situ utility detection result suggested that the migration is applicable to in-situ soil with the convergence falling between 55 and 58%, enough to satisfy the basic need of migration.
摘 要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 ix
圖目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究方法與架構 3
第二章 文獻回顧 6
2.1 透地雷達概述 6
2.2 透地雷達原理 9
2.2.1 馬克士威爾方程式組 9
2.2.2 電磁波基本傳播性質與影響參數 12
2.2.3 電磁波折射與反射性質 19
2.3 透地雷達空間解析度影響因子 24
2.3.1 垂直空間解析度 25
2.3.2 水平空間解析度 29
2.4 透地雷達應用於管線探測之相關文獻 32
2.4.1 室內試驗分析案例 33
2.4.2 現地管線探測案例 40
2.5 移位處理之相關文獻 52
2.5.1 克希荷夫積分移位法 56
2.5.2 有限差分移位法 58
2.5.3 頻率-波數移位法 60
2.5.4 移位效果之影響因子 62
2.5.5 移位處理應用於透地雷達之相關案例 63
第三章 GprMax模擬與Reflexw應用 69
3.1 時域有限差分法與GprMax軟體介紹 69
3.1.1 時域有限差分法 69
3.1.2 GprMax介紹 73
3.2 GprMax模型運算流程與建置參數 74
3.2.1 基本指令與一般指令 77
3.2.2 材料指令 80
3.2.3 形狀指令 81
3.2.4 天線指令 82
3.2.5 PML指令 85
3.2.6 模型檢視 85
3.2.7 格式轉換 87
3.3 Reflexw軟體介紹 88
3.3.1 資料讀取 89
3.3.2 靜校正 89
3.3.3 Dewow濾波 92
3.3.4 去飽和 93
3.3.5 時間增益方程 94
3.3.6 背景移除 95
3.3.7 移位處理流程與參數介紹 96
第四章 管線空間解析度試驗 99
4.1 透地雷達儀器介紹 100
4.1.1 ProEx主機 101
4.1.2 全罩式天線與高頻天線 102
4.1.3 XV紀錄器與參數介紹 103
4.2 砂箱雙管並排試驗 107
4.2.1 金屬單管波速分析試驗 111
4.2.2 金屬雙管並排試驗 117
4.2.3 金屬雙管並排試驗結果 128
4.2.4 金屬與PVC雙管並排試驗 135
4.2.5 金屬與PVC雙管並排試驗結果 139
4.3 GprMax模型建置與模擬結果 142
4.4 水平空間解析度公式分析 154
4.5 移位效果影響因子分析 159
4.5.1 移位速度對收斂度之影響分析 160
4.5.2 取樣間距對收斂度之影響分析 163
4.5.3 天線中心頻率對收斂度之影響分析 164
4.6 移位處理對水平空間解析度之影響分析 165
第五章 現地管線探測分析 171
5.1 測區概述與測線規劃 171
5.2 天線參數設置與施測結果 174
5.3 開挖驗證結果 184
5.4 移位處理分析 187
第六章 結論與建議 189
6.1 結論 189
6.2 建議 191
參考文獻 193


1. Annan A.P., Ground Penetrating Radar: Principles, procedures & applications, Canada: Sensors & Software Inc., 2003, pp.1-171.
2. ASTM, "Standard Guide for Using the Surface Ground Penetrating Radar Method for Subsurface Investigation", D6432-11, West Conshohocken, Pa, 2011, pp. 5.
3. Byrnes Alan P., Alex Martinez, "Modeling Dielectric-constant Values of Geologic Materials: An Aid to Ground-Penetrating Radar Data Collection and Interpretation", Current Research in Earth Sciences, Bulletin 247, 2001, pp. 1-16.
4. Capozzoli Luigi, Enzo Rizzo, "Combined NDT Techniques in Civil Engineering Applications: Laboratory and Real Test", Construction and Building Materials, Vol.154, 2017, pp. 1139-1150.
5. Claerbout Jon F., Imaging the Earth's Interior, California: Blackwell Science Inc., 1985, pp. 1-39.
6. Cui Fan, Si yuan Li, Li bing Wang, "The Accurate Estimation of GPR Migration Velocity and Comparison of Imaging Methods", Journal of Applied Geophysics, Vol.159, 2018, pp. 573-585.
7. David J.L., and A.P.Annan, "Ground Penetrating Radar for High-Resolution Mapping of Soil and Rock Stratigraphy", Geophysical Prospecting, Vol.37, 1989, pp. 531-551.
8. Daniels David J., Ground Penetrating Radar 2nd Edition, London: The Institution of Electrical Engineers, 2004, pp. 1-281.
9. Erica Carrick Utsi, "Ground Penetrating Radar Time-slices from North Ballachulish Moss", Archaeological Prospection, Vol.11, 2004, pp. 65-75.
10. Erica Carrick Utsi, Ground Penetrating Radar Theory and Practice, Oxford: Butterworth-Heinemann, 2017, pp.1-92.
11. EM GeoSci, (https://em.geosci.xyz/content/maxwell1_fundamentals/reflection_and_refraction/Fresnel_equations.html)
12. Gazdag J., P. Sguazzero, "Migration of Seismic Data", Proceedings of the IEEE, Vol.72, Issue 10, 1984, pp. 1302-1315.
13. Gray F. Margrave, Numerical Methods of Exploration Seismology with Algorithms in MATLAB, Calgary: University of Calgary, 2003, pp. 112-188.
14. Gracia Vega Pérez, Ramón González Drigo, Daniel Di Capua, "Horizontal Resolution in a Non-destructive Shallow GPR Survey: An Experimental Evaluation", NDT&E International, Vol.41, 2008, pp. 611-620.
15. GprMax User Guide, ( http://docs.gprmax.com/en/latest/ )
16. Jol Harry M., Ground Penetrating Radar Theory and Application, Slovenia: Elsevier Science., 2009, pp.1-172.
17. Leucci Giovanni, Sergio Negri, "Use of Ground Penetrating Radar to Map Subsurface Archaeological Features in an Urban Area", Journal of Archaeological Science, Vol.33, 2006, pp. 502-512.
18. Maxwell’s Equations, (https://en.wikipedia.org/wiki/Maxwell%27s_equations)
19. MALÅ Operating Manual, "XV Monitor for ProEx and X3M with Ethernet Communication.", ver.1.5, 2012, pp.6-54.
20. MALÅ Operating Manual, "ProEx – Professional Explorer Control Unit.", ver.2.0, 2011, pp.7-48.
21. Neal Adrian, "Ground Penetrating Radar and Its Use in Sedimentology: Principles, Problems and Progress", Earth-Science Reviews, Vol.66, no. 3-4, 2004, pp. 261-330.
22. Prego F.J., M. Solla, I. Puente, P. Arias, "Efficient GPR Data Acquisition to Detect Underground Pipes", NDT&E International, Vol.91, 2017, pp. 22-31.
23. QIN Yao, Qi-Fu WANG, Li-Hong QIAO, Xiao-Zhen REN, "Research on Ground Penetrating Radar Migration Imaging Technology", Sensors & Transducers, Vol.180, Issue 10, 2014, pp. 51-55.
24. Rial Fernando I., Manuel Pereira, Henrique Lorenzo, Pedro Arias, Alexandre Novo, "Resolution of GPR Bowtie Antennas: An Experimental Approach", Journal of Applied Geophysics, Vol.67, 2009, pp. 367-373.
25. Sagnard Florence, Christophe Norgeot, Xavier Derobert, Vincent Baltazart, Erick Merliot, François Derkx, Bérengère Lebental, "Utility Detection and Positioning on the Urban Site Sense-City Using Ground Penetrating Radar Systems", Measurement, Vol.88, 2016, pp. 318-330.
26. Sandmeier K.J., "Reflexw Manual", ver.8.5, 2018, pp.12-618.
27. Stolt R.H., "Migration by Fourier Transform", Geophysics, Vol.43, 1978, pp. 23-48.
28. Yilmaz Oz, Seismic Data Analysis-Processing, Inversion, and Interpretation of Seismic Data, United States of America: Society of Exploration Geophysicists, 2001, pp. 463-626.
29. 于景蘭、王春和,「探地雷達探測地下目標時的波速估計」,地球物理學進展,第18卷,第3期,2003,第477-480頁。
30. 王長青,電磁場計算中的時域有限差分法,北京:北京大學出版社,1994,第18-39頁。
31. 林茂盛、何文吉、張育誠、游中榮、黃建忠,「新北市公共設施管線資料庫圖資更新及工務整合經驗」,國土資訊系統通訊,第99期,2016,第42-57頁。
32. 陳文翊,GPRMAX模擬地下水位之研究,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2013。
33. 陳鐘誠,電磁學基礎(2)-向量微積分,(https://programmermagazine.github.io/201311/htm/science1.html)
34. 許程翔,透地雷達對地下管線探查之應用研究,碩士論文,國立成功大學土木工程研究所,台南,2003。
35. 張安學、蔣延生、汪文秉,「探地雷達頻率波數域速度估計和成像方法的實驗研究」,電子學報,第29卷,第3期,2001,第315-317頁。
36. 張春城、周正歐,「基於Stolt偏移的探地雷達合成孔徑成像研究」,電波科學學報,第19卷,第3期,2004,第316-320頁。
37. 黃韋華,透地雷達應用於地下管線探勘之研究,碩士論文,國立臺北科技大學土木與防災研究所,臺北,2005。
38. 黃復為,透地雷達探測道路下孔洞之研究,碩士論文,國立臺北科技大學土木與防災碩士班,臺北,2016。
39. 勞動部,管道工程施工安全參考手冊,臺灣,2019,第53-57頁。
40. 彭弘遠,透地雷達應用於立木檢測,碩士論文,國立臺北科技大學土木與防災碩士班,臺北,2018。
41. 楊威、朱自強、魯光銀、密士文,「Kirchhoff成像技術在路面無損檢測中的應用」,公路工程,第37卷,第5期,2012,第79-82頁。
42. 趙永輝、吳健生、萬明浩、譚春,「有限差分法探地雷達波動方程偏移成像」,物探化探計算技術,第23卷,第1期,2001,第47-51頁。
43. 劉家安,二維度LOD-FDTD方法加上Split-Field PML的穩定性分析,碩士論文,國立交通大學電信工程研究所碩士班,新竹,2010。
44. 賴俊呈,希伯特轉換於透地雷達信號之應用分析,碩士論文,國立成功大學土木工程研究所,台南,2008。
45. 謝承志,以最小相位轉換法進行透地雷達反捲積於淺層孔洞之應用研究,碩士論文,國立臺北科技大學土木與防災碩士班,臺北,2017。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊