跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/23 17:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳巧虹
研究生(外文):WU, CHIAO-HUNG
論文名稱:平板式交叉流全熱交換器薄膜參數設計之研究
論文名稱(外文):A Membrane Parametric Study on the Air-to-Air Fixed Plate Membrane Heat Exchanger
指導教授:施陽正
指導教授(外文):SHIH, YANG-CHENG
口試委員:簡良翰江旭政
口試委員(外文):CHIEN, LIANG-HANCHIANG, HSU-CHENG
口試日期:2019-06-05
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:72
中文關鍵詞:全熱交換器薄膜計算流體力學田口法熱質傳
外文關鍵詞:Energy Recovery Ventilator (ERV)MembraneComputational Fluid Dynamics (CFD)Taguchi MethodHeat and moisture exchange
相關次數:
  • 被引用被引用:1
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了達到節能目的,在台灣有越來越多的建築被要求達到淨零耗能建築或綠色建築的標準,透過建築的用電量分析,發現空調設備的能量消耗占比最多,因此若能採用節能的空調設備,將大幅減少能源消耗。在建築設計過程中最重要的兩個因素,莫過於良好的室內熱舒適度及空氣品質,良好的通風可以有效控制室內濕度,同時也能避免室內空氣的污染,因此,在建築空調通風系統中加裝全熱交換器,亦稱作能量通風回收系統,能使室外新鮮空氣與室內排風作熱與濕度的交換,並能有效降低溫差、相對濕度差以及空調負荷,有利於達成節能之目的。本研究目的是為探討薄膜參數對平板式交叉流全熱交換器效率的影響,以改善空調系統中平板式交叉流全熱交換器的性能,並採用計算流體力學模擬軟體ANSYS Fluent來預測冷、熱氣流通過多孔性薄膜之熱質傳性能,根據模擬結果與文獻的比對,發現整體趨勢一致,後續再利用田口法尋求最佳設計參數組合。本研究選用四個因子,其中包含薄膜厚度、供風與排風風量、吸附曲線常數和最大吸附性來決定最佳化設計組合,本研究採用十六組CFD模擬案例,每個因子皆有四個水準。由模擬結果可發現薄膜參數對潛熱效率影響較大,唯獨操作條件對顯熱效率較有影響,總熱效率則完全被潛熱效率主導,平板式交叉流全熱交換器最佳化參數配置為:薄膜厚度5μm、排風風量175CMH與供風風量200CMH、吸附曲線常數1、最大吸附性2.5。
For energy-saving purpose, more and more buildings in Taiwan are requested to meet the standard of Net Zero Energy Building (NET ZEB) or green building. By analyzing the power consumption in buildings, it is found that the energy consumed by the air-conditioning facility plays the most important role. Therefore, it is necessary to adopt the air-conditioning facility with high energy efficiency in buildings.
In residence, both thermal comfort and indoor air quality (IAQ) are two important factors for the air-conditioning design. In order to maintain good thermal comfort and IAQ, suitable indoor ventilation is necessary because it can effectively control the indoor humidity and airborne contamination. To meet the requirement of good thermal comfort and IAQ, and saving energy, the energy recovery ventilator (ERV), a kind of total heat exchanger, is usually used in buildings, coupling with the air-conditioning and ventilation systems. ERV has the function to make the outdoor fresh air to exchange heat and moisture with the indoor exhaust air, resulting in the reduction of both temperature difference and air-conditioning load. Therefore, it is beneficial to reach the target of saving energy when the buildings install the ERV.
The objective of this study is to investigate the optimal design to improve the performance of the air to air fixed plate membrane heat exchanger, a popular ERV (Energy Recovery Ventilator) used in HVAC systems. The CFD software, ANSYS FLUENT, was used to predict the performance for cold and hot air streams with the cross-flow type proceeding heat and moisture exchanges through the middle porous membrane between them. According to the numerical results, it is found that the trend of the numerical results was the same as that of the available literature. The Taguchi method was adopted to search the best design parameters. Four factors, including the membrane thickness, supply and exhaust air volume, constant in sorption curve, and maximum sorption uptake, were employed to find the optimal design combination. With four levels in each factor, 16 cases, including the effects of factor interaction on the ERV performance, were conducted in this study. According to the factor response graph in the orthogonal arrays, it is found that the most important factor affecting the latent heat effectiveness of the parallel-plates enthalpy exchanger is the parameter of membrane. The operating conditions only affect the sensible heat effectiveness. The total heat effectiveness is primarily determined by the sensible heat. The optimized combination is a membrane thickness of 5μm, exhaust air volume of 175CMH and supply air volume of 200CMH, a constant in sorption curve of 1, and a maximum sorption uptake of 2.5.
摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.2.1 薄膜吸附類型 3
1.2.2 流道與薄膜設計 4
1.2.3 操作條件影響 9
1.3 研究目的 10
第二章 數值模式 11
2.1 理論模型 11
2.1.1 統御方程式 11
2.2 數值方法 12
2.2.2 對流-擴散方程式的差分形式 13
2.2.3 壓力-速度耦合關係處理 14
2.3 多孔性介質 17
2.3.2 多孔性介質之動量方程式 18
2.3.3 多孔性介質之熱平衡模式 18
2.3.4 多孔性介質之質傳方程式 19
2.3.5 薄膜表面質傳通量方程式 19
2.3.6 UDF自定義函數 21
2.4 效能分析 22
第三章 全熱交換器之熱質傳模擬 23
3.1 幾何模型 23
3.2 網格設置 24
3.3 模擬條件 26
3.3.2 流體與薄膜性質 27
3.3.3 邊界條件設置 28
3.4 格點獨立分析 29
3.5 文獻實驗結果與模擬比對 32
第四章 田口法概論 35
4.1 田口法簡介 35
4.2 田口法研究步驟 36
4.2.1 田口法設計流程 36
4.2.2 品質特性 36

4.2.3 理想機制 37
4.3 因子與水準選擇 37
4.3.1 因子選擇 37
4.3.2 水準選擇 38
4.3.3 直交表選用 39
4.4 變異分析 40
第五章 結果與討論 41
5.1 全熱交換器流道分析 41
5.1.2 薄膜表面溫度分佈 42
5.1.3 水汽質量分率分佈 43
5.2 模擬結果與討論 44
5.3 吸附參數特性分析 45
5.4 田口法應用 52
5.5 田口法模擬結果 53
5.6 田口法之案例比較 54
5.7 田口法分析結果 58
5.8 最佳化參數 63
第六章 結論 65
參考文獻 67
符號彙編 69

1.L.Z. Zhang, Total Heat Recovery: Heat and Moisture Recovery from Ventilation Air, New York, Nova Science Publishers, Inc.,2008.
2.PrabalTalukdar, Olalekan F.Osanyintola, Stephen O.Olutimayin, Carey J.Simonson, An experimental data set for benchmarking 1-D, transient heat and moisture transfer models of hygroscopic building materials. Part I: Experimental facility and material property data, International Journal of Heat and Mass Transfer, 50, 2007, pp. 4527-4539.
3.Li-Zhi Zhang, Cai-Hang Liang, Li-Xia Pei, Heat and moisture transfer in application scale parallel-plates enthalpy exchangers with novel membrane materials, Journal of Membrane Science, 325, 2008, pp. 672-682.
4.Rafat Al-Waked, Mohammad Shakir Nasif, Graham Morrison, Masud Behnia, CFD simulation of air to air enthalpy heat exchanger: Variable membrane moisture resistance, Applied Thermal Engineering, 84, 2015, pp. 301-309.
5.L.Z. Zhang, J. L. Niu, Effectiveness Correlations for Heat and Moisture Transfer Processes in an Enthalpy Exchanger With Membrane Cores, Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 2002.
6.Mohammad Shakir Nasif, Ra’fat Al-Waked, Masud Behnia, Graham Morrison, Modeling of Air to Air Enthalpy Heat Exchanger, Heat Transfer Engineering, 2012, 33:12, pp.1010-1023.
7.Ting-Shu Zhong, Zhen-Xing Li, Li-Zhi Zhang, Investigation of Membrane-Based Total Heat Exchangers with Different Structures and Materials, Journal of Membrane and Separation Technology, 2014, 3, pp. 1-10.
8.J.L. Niu, L.Z. Zhang, Membrane-based Enthalpy Exchanger: material considerations and clarification of moisture resistance, Journal of Membrane Science, 189, 2001, pp. 179-191.
9.Jing-chun Min, Ming Su, Performance analysis of a membrane-based energy recovery ventilator: Effects of membrane spacing and thickness on the ventilator performance, Applied Thermal Engineering, 30, 2010, pp. 991-997.
10.Jing-chun Min, Ming Su, Performance analysis of a membrane-based enthalpy exchanger: Effects of the membrane properties on the exchanger performance, Journal of Membrane Science, 2010, 348, pp.376-382.
11.Jing-chun Min, Ming Su, Performance analysis of a membrane-based energy recovery ventilator: Effects of outdoor air state, Applied Thermal Engineering, 31, 2011, pp. 4036-4043.
12.Wahiba Yaïci, Mohamed Ghorab, Evgueniy Entchev, Numerical analysis of heat and energy recovery ventilators performance based on CFD for detailed design, Applied Thermal Engineering, 51, 2013, pp. 770-780.
13.C.H. Liang, Experiments Investigation of the Parallel-plates Enthalpy Exchangers, Energy Procedia, 61, 2014, pp. 2699-2703.
14.翁堃展,平板式交叉流全熱交換器熱質傳性能最佳化設計之研究,碩士論文,國立台北科技大學能源與冷凍空調工程系所,台北,2018。
15.ANSYS, Inc., ANSYS Fluent User’s Guide, Version 19.0, 2017.
16.ANSYS, Inc., ANSYS Fluent Theory Guide, Version 19.0, 2017.
17.Minitab Inc., Minitab 17 Getting started with Minitab 17, 2016.
18.G. Taguchi, System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs, UNIPUB/Kraus International Publications, 1987.
19.G. Taguchi, S. Chowdhury and Y. Wu, Taguchi’s Quality Engineering Handbook, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2004.
20.李輝煌,田口方法:品質設計的原理與實務,新北:高立圖書有限公司出版,2011。
21.盧昆宏,應用灰關聯分析、田口法與反應曲面法於多重品質特性最佳化製程參數設計,品質學會高雄分會 2009 年度年會論文,92-103頁。
22.L.Z. Zhang, Y. Jiang, Y.P. Zhang, Membrane-based humidity pump: performance and limitations, Journal of Membrane Science, 2000, 171, pp.207-216.
23.Li-Zhi Zhang, A reliability-based optimization of membrane-type total heat exchangers under uncertain design parameters, Energy, 2016, 101, pp.390-401.
24.Li-Zhi Zhang, A fractal model for gas permeation through porous membranes, International Journal of Heat and Mass Transfer, 2008, 51, pp.5288-5295.
電子全文 電子全文(網際網路公開日期:20240616)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊