|
References [1]Mic.iii.org.tw (2009), “Impact on markets of the aging population in Taiwan, other Asian countries becoming increasingly evident,” [online]. https://mic.iii.org.tw/english/PressRelease_Detail.aspx?sqno=6742&type=Press&DataClass=Press%20Room, Accessed on May 30, 2017. [2]L. Yang, A. M. MacEachren, P. Mitra, and T. Onorati, “Visually-enabled active deep learning for (geo) text and image classification: a review,” Int. Journal of Geo-Information, vol. 7, no. 2, pp.1-38, Feb. 2018. [3]J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Mao, M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large-scale distributed deep networks,” in Proc. of 25th Int. Conf. of the Advance in Neural Information Processing Systems, Lake Tahoe, NV, USA, pp.1223-1231, Dec. 2012. [4]M. I. Razzak, S. Naz, and A. Zaib. “Deep learning for medical image processing: overview, challenges and the future. In: Dey N, Ashour AS, Borra S, editors. Classification in bioApps,” Switzerland: Springer, Cham, pp.323-350, Nov. 2017. [5]M. L. Giger, “Machine learning in medical imaging,” Journal of the American College of Radiology, vol. 15, no. 3, pp.512-520. Mar. 2018. [6]A. Z. Lotfi, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp.338-353, Jun. 1965. [7]F. Liu, Y. Peng, W. Zhang, and W. Pedrycz, “On consistency in AHP and Fuzzy AHP,” Journal of Systems Science and Information, vol. 5. no. 2. pp.127-148, Apr. 2017. [8]A.Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning for computer vision: A brief review,” Computational Intelligence and Neuroscience, vol. 2018, pp.1-13, Feb. 2018. [9]S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network training by reducing internal covariate shift,” in Proc. of the 32nd Int. Conf. on Machine Learning, vol. 37, pp.448-456, Mar. 2015. [10]X. Zhang, H. Xiong, W. Zhou, W. Lin, and Q. Tian, “Picking deep filter responses for fine-grained image recognition,” in Proc. of Int. Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp.1134-1142, Dec. 2016. [11]Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends in Machine Learning, vol. 2, vo. 1, pp.1-127, Jan. 2009. [12]G. Montufar and N. Ay, “Refinements of universal approximation results for deep belief networks and restricted Boltzmann machines,” Journal of Neural Computation, vol. 23, no. 5, pp.1306-1319, Jul. 2011. [13]G. E. Hinton, S. Osindero, and Y. W. The, “A fast learning algorithm for deep belief nets,” Neural Computation, vol. 18, no. 7, pp.1527-1554, Jul. 2006. [14]G. E. Hinton, “Deep belief networks,” Scholarpedia, 4(5947) [online] http://www.scholarpedia.org/article/Deep_belief_networks, Accessed on Jun. 15, 2017. [15]T. L. Saaty, “Decision making with the analytic hierarchy process,” Int. Journal Service Science, vol. 1, no. 1, pp.83-97, Mar. 2008. [16]S. Kanugantia, R. Agarwalab, B. Dutta, P. Bhanegaonkard, A. P. Singh, and A. K. Sakar, “Road safety analysis using multi criteria approach: A case study in India,” Transportation Research Procedia, vol. 25, pp.4649-4661, Jul. 2017. [17]C. Bahler, C. A. Huber, B. Brüngger, and O. Reich, “Multimorbidity, health care utilization and costs in an elderly community-dwelling population: A claims data based observational study,” BMC Health Services Research, vol. 15, no. 23, pp.15-23, Jan. 2015. [18]S. M. McPhail, “Multimorbidity in chronic disease: Impact on health care resources and costs,” Risk Management Healthcare Policy, vol. 9, pp.143-156, Jul. 2016. [19]Z. Tyack, K. A. Frakes, A. Barnett, P. Cornwell, S. Kuys, and S. McPhail, “Predictors of health-related quality of life in people with a complex chronic disease including multimorbidity: A longitudinal cohort study,” Quality of Life Research, vol. 25, no. 10, pp.2579-2592, Oct. 2016. [20]A. Afsordegan, M. Sanchez, N. Agell, S. Zahedi, and L. V. Cremades, “Decision making under uncertainty using a qualitative TOPSIS method for selecting sustainable energy alternatives,” Int. Journal Environmental Science Technology, vol. 13, no. 6, pp.1419-1432, Jun. 2016. [21]K. Burnuamkaew, How to do AHP analysis in excel. In Division of Spatial Information Science, Graduate School of Life and Environmental Sciences, University of Tsukuba: Tsukuba, Japan, Mar. 2012. [22]S. A. Khoubrouy and J. H. L. Hansen, “Microphone array processing strategies for distant-based automatic speech recognition,” IEEE Signal Processing Letters, vol. 23, no. 10, pp.1344-1348, Oct. 2016. [23]S. Schall, S. J. Kiebel, B. Maess and K. von Kriegstein, “Voice identity recognition: functional division of the right STS and its behavioral relevance,” Journal of Cognitive Neuroscience, vol. 27, no. 2, pp.280-291, Feb. 2014. [24]R. Xie, X. Sun, X. Xia and J. Cao, “Similarity matching-based extensible hand gesture recognition,” IEEE Sensors Journal, vol. 15, no. 6, pp.3475-3483, Jun. 2015. [25]S. Y. Kim, H. G. Han, J. W. Kim, S. Lee and T. W. Kim, “A hand gesture recognition sensor using reflected impulses,” IEEE Sensors Journal, vol. 17, no. 10, pp.2975-2976, May 2017. [26]C. Wang, Z. Liu, and S.-C. Chan, “Superpixel-based hand gesture recognition with Kinect depth camera,” IEEE Trans. on Multimedia, vol. 17, no. 1, pp.29-39, Jan. 2015. [27]H. P. Gupta, H. S. Chudgar, S. Mukherjee, T. Dutta and K. Sharma, “A continuous hand gestures recognition technique for human-machine interaction using accelerometer and gyroscope sensors,” IEEE Sensors Journal, vol. 16, no. 16, pp.6425-6432, Aug. 2016. [28]R. Chen and Y. Tong, “A two-stage method for solving multi-resident activity recognition in smart environments,” Journal of Entropy, vol. 16, no. 4, pp.2184-2203, Apr. 2014. [29]H. Rezaie, and M. Ghassemian, “An adaptive algorithm to improve energy efficiency in wearable activity recognition systems,” IEEE Sensors Journal, vol. 17, no. 16, pp.5315-5323, Jun. 2017. [30]A. Benmansour, A. Bouchachia, and M. Feham, “Multi-occupant activity recognition in pervasive smart home environments,” Journal of ACM Computing Surveys, vol. 48, no. 3, pp.34-36, Feb. 2016. [31]L. Wang, T. Gu, X. Tao, H. Chen, and J. Lu, “Recognizing multi-user activities using wearable sensors in a smart home,” Pervasive Mobile Computation, vol. 7, no. 3, pp.287-298, Jun. 2011. [32]O. D. Lara, and M. A. Labrador “A survey on human activity recognition using wearable sensors,” IEEE Communications Surveys and Tutorials, vol. 15, no. 3, pp.1192-1209, Jun. 2011. [33]L. Chen, C. D. Nugent, J. Biswas, and J. Hoey, “Activity recognition in pervasive intelligent environments,” Atlantis Ambient and Pervasive Intelligence, vol. 4, pp.165-186, May 2011. [34]H. Martín, A. M. Bernardos, J. Iglesias, and J. R. Casar, “Activity logging using lightweight classification techniques in mobile devices,” Journal of Personal and Ubiquitous Computing, vol. 17, no. 4, pp.675-695, Apr. 2013. [35]Deeplearning.net Deep belief networks. [online] http://deeplearning.net/tutorial/DBN.html. Accessed on Jun. 15, 2017. [36]WHO, “Diabetes,” [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/diabetes, Accessed on Oct. 20, 2018. [37]Healthline, “The effects of diabetes on your body,” [Online]. Available: https://www.healthline.com/health/diabetes/effects-on-body#1, Accessed on Oct. 22, 2018. [38]E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone, P. Gain, R. Ordonez, P. Massin, A. Erginay, B. Charton, and J.-C. Klein “Feedback on a publicly distributed image database: the messidor database,” Image Analysis and Stereology, vol. 33, no. 3, pp.123-234, Dec. 2014. [39]J. J. Huang, “A matrix method for the fuzzy analytic network process,” Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 16, no. 6, pp.863-878, May 2008. [40]S. N. Isfahani, A. A. Haddad, E. Roghanian, and M. Rezayi, “Customer relationship management performance measurement using balanced scorecard and fuzzy analytic network process,” Journal of Intelligent & Fuzzy Systems, vol. 27, no. 1, pp.377-389, 2014. [41]T. L. Saaty, “The Analytic Hierarchy Process,” McGraw-Hill, New York, USA, 1980. [42]R. E. Bellman and L. A. Zadeh, “Decision-making in a fuzzy environment,” Management Science, vol. 17, no. 4, pp.141-164, Dec. 1970. [43]O. U. Akaa, A. Abu, M. Spearpoint, and S. Giovinazzi “A group-AHP decision analysis for the selection of applied fire protection to steel structures,” Fire Safety Journal, vol. 86, pp.95-105, Nov. 2016. [44]U. Asan, A. Soyer, and S, Serdarasan, “A fuzzy analytic network process approach,” Computational Intelligence Systems in Industrial Engineering, vol. 6, no. 2, pp.155-179, Nov. 2012. [45]X. Q. Feng, C. Wei, and Q. Liu, “EDAS method for extended hesitant fuzzy linguistic multicriteria decision making,” Int. Journal of Fuzzy Systems, vol. 20, no. 6, pp.1-14, Jun. 2018. [46]R. Chutia, S. Mahanta, and D. Datta, “Arithmetic of triangular fuzzy variable from credibility theory,” Int. Journal of Energy, Information and Communications, vol. 2, no. 3, pp.73-80, Aug. 2011. [47]H. K. Sharma, “A fuzzy logic multi-criteria decision approach for vendor selection manufacturing system,” IEEE Trans. on Modern Engineering Research, vol. 2, no. 6, pp.4189-4194, Dec. 2012. [48]L. Abdullah and L. Najib, “A new preference scale MCDM method based on interval-valued intuitionistic fuzzy sets and the analytic hierarchy process,” Soft Computing, vol. 20, no. 2, pp.511-523, Feb. 2016. [49]K. Sehra, Y. S. Brar, and N. Kaur, “Multi criteria decision making approach for selecting effort estimation model,” Int. Journal of Computer Applications, vol. 39, no. 1, pp.10-17, Jan. 2012. [50]T. C. Chu and R. Varma, “Evaluating suppliers via a multiple levels multiple criteria decision making method under fuzzy environment,” IEEE Trans. on Computers and Industrial Engineering, vol. 62, no. 2, pp.653-660, Mar. 2012. [51]C.-M. Huang, Y. Ghafoor, Y.-P. Huang, and S.-I. Liu, “A dolphin herding inspired fuzzy data clustering model and its applications,” Int. Journal of Fuzzy Systems, vol. 18, no. 2, pp.299-311, Apr. 2016. [52]Y. Ma and X. Wu, “A new approach for deriving fuzzy global priorities in fuzzy analytic network process,” Journal of Intelligent & Fuzzy Systems, vol. 30, no. 2, pp.1249-1261, Feb. 2016. [53]J. A. Quinn, F. M. Munoz, B. Gonik B, L. Frau, C. Cutland, T. Mallett-Moore, A. Kissou, F. Wittke, M. Das, T. Nunes, S. Pye, W. Watson, A. A. Ramos, J. F. Cordero, W. T. Huang, S. Kochhar, and J. Buttery, “Preterm birth: Case definition & guidelines for data collection, analysis, and presentation of the immunisation safety data,” Vaccince. vol. 39, no. 49, pp.6047-6056, Dec. 2016. [54]H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. B. Moller, R. Narwal, A. Adler, C. V. Garcia, S. Rohde, L. Say, and J. E. Lawn, “National, regional and worldwide estimates of preterm birth,” Lancet. vol. 379, no. 9832, pp. 162-2172, Jun. 2012. [55]L. Liu, S. Oza, D. Hogan, Y. Chu, J. Perin, J. Zhu, J. E. Lawn, S. Cousens, Colin Mathers, and R. E. Black, “Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the sustainable development goals,” Lancet. vol. 388, no. 10063, pp.3027-3035, Dec. 2016. [56]C. Gilbert, A. Fielder, L. Gordillo, G. Quinn, R. Semiglia, P. Visintin, and A. Zin, “Characteristics of infants with severe retinopathy of prematurity in countries with low, moderate, and high levels of development: implications for screening programs,” Pediatrics. vol. 115, no.5, pp.e518-e525, May 2005. [57]J. S. Mora, C. Waite, C. E. Gilbert, B. Breidenstein, and J. J. Sloper, “A worldwide survey of retinopathy prematurity screening,” British Journal of Ophthalmology. vol.102, no. 1, pp.9-13, Jan. 2018. [58]S. H. L. Chang, Y. S. Lee, S. C. Wu, L. C. See, C. C. Chung, M. L. Yang, C. C. Lai, and W. C. Wu, “Anterior chamber angle and anterior segment structure of eyes in children with early stages of retinopathy of prematurity,” American Journal of Ophthalmology, vol. 179, pp.46-54, Jul. 2017. [59]The international classification of retinopathy of prematurity, “International Committee for the Classification of Retinopathy of Prematurity Revisited,” Archive Ophthalmology. vol. 123, no. 7, pp.991-999, Jul. 2005. [60]R. Richa, R. Linhares, E. Comunello, A. V. Wangenheim, J.-Y. Schnitzler, B. Wassmer, C. Guillemot, G. Thuret, P. Gain, G. Hager, and R. Taylor, “Fundus image mosaicking for information augmentation in computer-assisted slit-lamp imaging,” IEEE Trans. on Medical Imaging, vol. 33, no. 6, pp.1304-1312, Jun. 2014. [61]J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep neural networks,” in Proc. of Int. Conf. of the Advance in Neural Information Processing Systems, Montréal, Canada, pp.1-5, Dec. 2014. [62]K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition,” in Proc. of the Int. Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, pp.770-778, Dec. 2016. [63]H. Yao, D. Zhang, J. Li, J. Zhou, S. Zhang, and Y. Zhang, “DSP: discriminative spatial part modeling for fine-grained visual categorization,” Journal of Image and Vision Computing, vol. 63, pp.24-37, Jul. 2017. [64]Stanford, CS231n.2017: Convolutional Neural Networks for Visual Recognition. [Online]. Available: http://cs231n.github.io/convolutional-networks/, Accessed on Oct. 25, 2017. [65]N. Zhang, J. Donahue, R. Girshick, and T. Darrell, “Part-based R-CNN for fine-grained category detection,” in Proc. of the Int. Conf. of European Conference on Computer Vision, Cham, Switzerland, pp.834-849, Jul. 2014. [66]L. Xie, J. Wang, B. Zhang, and Q. Tian, “Fine-grained image search,” IEEE Trans. on Multimedia, vol. 17, no. 5, pp.636-647, May 2015. [67]C. Huang, Z. He, G. Cao, and W. Cao, “Task-driven progressive part localization for fine-grained object recognition,” IEEE Trans. on Multimedia, vol. 18, no. 12, pp.2372-2383, Dec. 2016. [68]D. Lin, X. Shen, C. Lu, and J. Jia, “Deep LAC: deep localization, alignment and classification for fine-grained recognition,” in Proc. of the Int. Conf. on Computer Vision and Pattern Recognition, Boston, MA, USA, pp.1666-1674, Oct. 2015. [69]Y.-P. Huang and T. Tsai, “A fuzzy semantic approach to retrieving bird information using handheld devices,” IEEE Intelligent Systems, vol. 20, no. 1, pp.16-23, Jan.-Feb. 2005. [70]TensorFlow, “Building TensorFlow on Android,” [Online], Available: https://www.tensorflow.org/mobile/android_build, Accessed on Sep. 20, 2017. [71]Keras, “Keras: The Python Deep Learning library,” [Online], Available: https://keras.io/, Accessed on Sep. 25, 2017. [72]J. R. Uijlings, K. E. V. D. Sande, T. Gevers, and A. W. Smeulders, “Selective search for object recognition,” Int. Journal of Computer Vision, vol. 104, no. 2, pp.154-171, Feb. 2013. [73]H. Zheng, Y. Huang, H. Ling, Q. Zou, and H. Yang, “Accurate segmentation for infrared flying bird tracking,” Chinese Journal of Electronics, vol. 25, no. 4, pp.625-631, Jul. 2016. [74]Y. Wei, W. Xia, M. Lin, J. Huang, B. Ni, J. Dong, Y. Zhao, and S. Yan, “HCP: a flexible CNN framework for multi-label image classification,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 38, no. 9, pp.1901-1907, Sep. 2016. [75]K.-J. Hsu, Y.-Y. Lin, and Y.-Y. Chuang, “Augmented multiple instance regression for inferring object contours in bounding boxes,” IEEE Trans. on Image Processing, vol. 23, no. 4, pp.1722-1736, Apr. 2014.
|