跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 16:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許志維
研究生(外文):HSU, CHIH-WEI
論文名稱:摻入銀和鍶之生物活性玻璃添加於聚電解質多層膜鍍層應用於血管生成、骨整合和抗菌
論文名稱(外文):Angiogenesis, Osseointegration and Antibacterial Applications of Polyelectrolyte Multilayers Coating Added with Silver and Strontium Incorporated Bioactive Glass
指導教授:鍾仁傑鍾仁傑引用關係
指導教授(外文):CHUNG, REN-JEI
口試委員:施劭儒侯劭毅曾靖孋游佳欣
口試委員(外文):SHIH, SHAO-JUHOU, SHAO-YITSENG, CHING-LIYU, JIA-SHING
口試日期:2019-07-16
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:化學工程與生物科技系生化與生醫工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:103
中文關鍵詞:抗菌血管生成骨整合多孔性生物活性玻璃聚電解質多層膜316L不鏽鋼膠原蛋白γ-聚麩胺酸含銀和鍶生物活性玻璃
外文關鍵詞:AntibacterialOsseointegrationAngiogenesisMesoporous Bioactive GlassesPolyelectrolyte Multilayers Coating316L Stainless SteelCollagenγ-Poly Glutamic AcidSilver and Strontium Contained Bioactive Glass
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
外科手術經常因植入物造成傷口過大或長時間暴露導致組織缺血而手術失敗,此外因周遭醫療環境及設備造成的細菌感染亦為植入物手術失敗的主要原因之一,如果能於植入物表面製備一引導組織生長並能抗菌的塗層,將可大幅降低其醫療風險。
生物活性玻璃為一種矽酸鹽類,具有良好的骨誘導性,過去幾十年裡常被運用於醫療牙科及骨科中; 鍶離子為人體骨頭中微量的元素,先前研究並提出可以促進骨整合以及血管生成; 銀離子可藉由與細胞膜表面鍵結,經由表面電荷不平衡,而造成細菌凋亡達到抗菌,同時含鍶離子及銀離子之生物活性玻璃將可結合其優點達到雙重的效果。
本研究透過旋轉塗佈法製備聚電解質多層膜塗層,於316L不鏽鋼金屬植入物表面進行表面改質修飾,多層膜的主體使用具良好生物相容性的膠原蛋白為正電荷層、生物可降解的γ-聚麩胺酸做為負電荷層及幾丁聚醣作為正電荷層屏障,於負電荷層中摻入以噴霧熱裂解製備含有銀和鍶的生物活性玻璃,藉由體外及體內試驗銀和鍶的釋放,達到抗菌、促進血管生成和骨整合的效果。
實驗結果顯示,摻入含銀和鍶生物玻璃之20層多層膜,膜厚為55.8 ± 1.52μm;利用接觸角測試,得知其接觸角為37.09 o具有良好的親水性; 以奈米壓痕及白光干涉儀測試得知楊氏係數及硬度為5.35 ± 1.55 GPa及0.29 ± 0.09 GPa,粗糙度為374.78 ± 22.27 nm;降解測試顯示膜層能維持長達89天之久;抑菌圈測試顯示本多層膜有長達1個月之久的的抗菌效果;經人工模擬體液浸泡,藉由掃描式電子顯微鏡及X射線衍射分析得知多層膜表面有明顯的磷灰石沉積;MTT 與螢光染色測試顯示多層膜對大鼠骨隨間質幹細胞及人類靜脈內皮細胞有良好的細胞活性,且有高表現的分化和礦化效果。統整以上結果,得知本研究所製備之聚電解質多層膜塗層能有效促進血管生成、骨整合及抗菌效果。

The main causes for failure of implants surgery are long exposure of implants or wounds and tissue ischemia. Besides, the bacterial infection caused by surrounding medical environment and equipment is also one of major risk for failure of surgery. It will greatly reduce the medical risk if we could creat a coating on implants surface for guide tissue growth and antibacteria.
Mesoporous bioactive glasses are mainly silicate and with good osteoinductivity. The mesoporous bioactive glasses have been used in medical dentistry and orthopedics for the past several decades. Strontium ion is a trace element in human bone, and previous studies have proposed it would promote osseointegration and angiogenesis. Silver ions can lead to bacterial apoptosis by bonding to the surface of cell membranes through surface charge imbalance. The bioactive glass containing strontium ions and silver ions will combine their advantages to achieve the multiple functions at the same time.
In this study, the polyelectrolyte multilayers (PEMs) coatings were prepared on 316L stainless steel to functionize the surface by spin-coating. The compostition of the multilayer films was made of biocompatible collagen as positively charged layer and biodegradable γ-poly glutamic acid as negatively charged layer; chitosan with a positively charged layer as the natural barrier; the bioactive glass incorporated with silver and strontium prepared by spray pyrolysis was added into the negatively charged layer. Though in vitro and in vivo tests, the PEMs coating would promote angiogenesis, osseointegration and antibacteria with the release of silver and strontium ions.
Herein, it is comfirmed that bioactive glass was successfully incorporated into the twenty layers polyelectrolyte multilayers. The PEMs coating had good hydrophilicity with a contact angle of 37.09 o; and hardness of 0.29 ± 0.09 GPa, Young’s modulus of 5.35 ± 1.55 GPa and roughness of 374.78±22.27 nm, as observed through nano-indention and white light interferometry. The PEMs coating was not only well antibacterial for one months, as seen in the inhibition zone test, but also biocompatible for rat bone marrow mesenchymal stem cells (rBMSCs) and human umbilical vein endothelial cells (HUVECs), as studied in the MTT assay. There were more hydroxyapatite depostitions on PEMs surface after being soaked by SBF, as invesgated by scanning electron microscope (SEM) and X-ray diffraction (XRD). Therefore, we believe that this technology will have great potential in surface modification of implants due to its antibacterial, angiogenesis, and osseointegration properties.

目錄

摘要 i
ABSTRACT iii
致謝 v
目錄 vi
表目錄 xi
圖目錄 xiii
第一章 序論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 3
2.1骨骼 3
2.1.1骨組織工程 4
2.1.2骨骼組織修復 6
2.2骨科醫療植入物 7
2.2.1金屬植入物 8
2.2.2非金屬植入物 10
2.3骨整合與感染防治之重要性 11
2.3.1血管生成 12
2.3.2鍶(Strontium) 13
2.4抗菌塗層 14
2.5聚電解質多層膜 16
2.6本研究之製膜材料簡介 18
2.6.1膠原蛋白 20
2.6.2 γ-聚麩胺酸 21
2.6.3幾丁聚醣 22
2.6.4生物活性玻璃 23
第三章 實驗設備材料與方法 25
3.1 實驗材料 25
3.1.1 細胞株及動物來源 25
3.1.2 實驗基材 25
3.1.3 實驗藥品 25
3.1.4生物活性玻璃製備 27
3.1.5聚電解質多層膜溶液配置 28
3.1.6 抗菌實驗溶液配置 30
3.1.7 體外試驗溶液配置 31
3.1.8 細胞分化與礦化反應溶液配置 33
3.2實驗設備 36
3.2.1儀器設備 36
3.2.2 實驗耗材 37
3.3實驗方法 39
3.3.1實驗設計 39
3.3.2實驗代號 39
3.3.3試片製備 40
3.4 材料與性質分析 41
3.4.1 X光繞射儀 41
3.4.2 高解析熱場發射掃描式電子顯微鏡 42
3.4.3 接觸角分析儀 43
3.4.4 奈米壓痕量測儀 44
3.4.5 白光干涉儀 46
3.4.6 全波長吸收光暨螢光複合分析系統 47
3.4.7 降解測試 48
3.4.8 離子釋放 49
3.4.9 抑菌圈 50
3.5體外測試 52
3.5.1 人工模擬體液測試 52
3.5.2 細胞毒性測試 53
3.5.3 鹼性磷酸酶含量檢測 54
3.5.4 鈣含量測試 56
3.5.5 螢光染色 58
3.6體內測試(頭蓋骨植入) 59
3.7統計分析 60
第四章 結果與討論 61
4.1 生物活性玻璃體外與抗菌分析 61
4.1.1 生物活性玻璃添加比例分析 61
4.1.2 生物活性玻璃細胞毒性測試 62
4.1.3 生物活性玻璃抗菌測試 63
4.2 生物活性玻璃體內測試(頭蓋骨植入) 64
4.3 聚電解質多層膜材料與性質分析 65
4.3.1 含鍶生物活性玻璃濃度條件最佳化 65
4.3.2 含銀和鍶生物活性玻璃濃度條件最佳化 66
4.3.3聚電解質多層膜接觸角分析 67
4.3.4聚電解質多層膜表面與厚度分析 68
4.3.5聚電解質多層膜硬度與楊式係數分析 69
4.3.6聚電解質多層膜表面粗糙度分析 71
4.3.7聚電解質多層膜降解測試 73
4.4 聚電解質多層膜抗菌測試 75
4.4.1抑菌圈 75
4.5聚電解質多層膜體外測試 77
4.5.1 人工模擬體液測試 77
4.5.2細胞毒性測試 79
4.5.3鹼性磷酸酶含量測試 81
4.5.4鈣含量測試 82
4.5.5離子釋放 83
4.5.6螢光染色 85
4.6聚電解質多層膜體內測試(頭蓋骨植入) 90
第五章 結論 92
附錄 94
參考文獻 95


參考文獻
1.張志涵, et al., 生物力學於股骨頭缺血性壞死之臨床分析(第3 年). 行政院國家科學委員會專題研究計畫, 中華民國101年.
2.Clarke, B., Normal bone anatomy and physiology. Clin J Am Soc Nephrol, 2008. 3 Suppl 3: p. S131-9.
3.Lian, J.B. and G.S. Stein, CONCEPTS OF OSTEOBLAST GROWTH AND DIFFERENTIATION - BASIS FOR MODULATION OF BONE CELL-DEVELOPMENT AND TISSUE FORMATION. Critical Reviews in Oral Biology & Medicine, 1992. 3(3): p. 269-305.
4.Erlebacher, A., et al., TOWARD A MOLECULAR UNDERSTANDING OF SKELETAL DEVELOPMENT. Cell, 1995. 80(3): p. 371-378.
5.Karsenty, G., The complexities of skeletal biology. Nature, 2003. 423(6937): p. 316-318.
6.Fernandez-Yague, M.A., et al., Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv Drug Deliv Rev, 2015. 84: p. 1-29.
7.Salgado, A.J., O.P. Coutinho, and R.L. Reis, Bone tissue engineering: state of the art and future trends. Macromol Biosci, 2004. 4(8): p. 743-65.
8.Almubarak, S., et al., Tissue engineering strategies for promoting vascularized bone regeneration. Bone, 2016. 83: p. 197-209.
9.Farokhi, M., et al., Importance of dual delivery systems for bone tissue engineering. J Control Release, 2016. 225: p. 152-69.
10.Shrivats, A.R., M.C. McDermott, and J.O. Hollinger, Bone tissue engineering: state of the union. Drug Discov Today, 2014. 19(6): p. 781-6.
11.Stegen, S., N. van Gastel, and G. Carmeliet, Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone, 2015. 70: p. 19-27.
12.Rosset, P., F. Deschaseaux, and P. Layrolle, Cell therapy for bone repair. Orthop Traumatol Surg Res, 2014. 100(1 Suppl): p. S107-12.
13.Davies, J.E., Bone bonding at natural and biomaterial surfaces. Biomaterials, 2007. 28(34): p. 5058-67.
14.Manolagas, S.C., Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocrine Reviews, 2000. 21(2): p. 115-137.
15.Puleo, D.A. and A. Nanci, Understanding and controlling the bone-implant interface. Biomaterials, 1999. 20(23-24): p. 2311-2321.
16.Navarro, M., et al., Biomaterials in orthopaedics. J R Soc Interface, 2008. 5(27): p. 1137-58.
17.Pearce, A.I., et al., Animal models for implant biomaterial research in bone: A review. European Cells and Materials, 2007. 13: p. 1-10.
18.Chen, Q. and G.A. Thouas, Metallic implant biomaterials. Materials Science and Engineering: R: Reports, 2015. 87: p. 1-57.
19.Zreiqat, H., et al., Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. Journal of Biomedical Materials Research, 2002. 62(2): p. 175-184.
20.Katti, K.S., Biomaterials in total joint replacement. Colloids Surf B Biointerfaces, 2004. 39(3): p. 133-42.
21.Liu, H., et al., Deformation-induced changeable Young's modulus with high strength in beta-type Ti-Cr-O alloys for spinal fixture. J Mech Behav Biomed Mater, 2014. 30: p. 205-13.
22.Liu, H., et al., beta-Type titanium alloys for spinal fixation surgery with high Young's modulus variability and good mechanical properties. Acta Biomater, 2015. 24: p. 361-9.
23.Niinomi, M., Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2002. 33(3): p. 477-486.
24.Hanawa, T., In vivo metallic biomaterials and surface modification. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1999. 267(2): p. 260-266.
25.Campoli, G., et al., Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Materials & Design, 2013. 49: p. 957-965.
26.Staiger, M.P., et al., Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006. 27(9): p. 1728-34.
27.Zheng, Y.F., X.N. Gu, and F. Witte, Biodegradable metals. Materials Science and Engineering: R: Reports, 2014. 77: p. 1-34.
28.Vallet-Regí, M., Ceramics for medical applications. Journal of the Chemical Society, Dalton Transactions, 2001(2): p. 97-108.
29.Ahn, E.S., et al., Nanostructure processing of hydroxyapatite-based bioceramics. Nano Letters, 2001. 1(3): p. 149-153.
30.Habibovic, P., et al., Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials, 2008. 29(7): p. 944-53.
31.Lu, J., et al., The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res, 2002. 63(4): p. 408-12.
32.Ge, Z., Hydroxyapatite–chitin materials as potential tissue engineered bone substitutes. Biomaterials, 2004. 25(6): p. 1049-1058.
33.Gibon, E., et al., The biological response to orthopedic implants for joint replacement. II: Polyethylene, ceramics, PMMA, and the foreign body reaction. J Biomed Mater Res B Appl Biomater, 2017. 105(6): p. 1685-1691.
34.Chia, H.N. and B.M. Wu, Recent advances in 3D printing of biomaterials. J Biol Eng, 2015. 9: p. 4.
35.Kim, M.S., et al., An in vivo study of the host tissue response to subcutaneous implantation of PLGA- and/or porcine small intestinal submucosa-based scaffolds. Biomaterials, 2007. 28(34): p. 5137-43.
36.Ignjatovic, N., et al., A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy. Biomaterials, 2001. 22(6): p. 571-575.
37.Reis, R.L., et al., Relationship between processing and mechanical properties of injection molded high molecular mass polyethylene plus hydroxyapatite composites. Materials Research Innovations, 2001. 4(5-6): p. 263-272.
38.Hetrick, E.M. and M.H. Schoenfisch, Reducing implant-related infections: active release strategies. Chem Soc Rev, 2006. 35(9): p. 780-9.
39.Esposito, M., et al., Biological factors contributing to failures of osseointegrated oral implants - (II). Etiopathogenesis. European Journal of Oral Sciences, 1998. 106(3): p. 721-764.
40.Fujimoto, S., et al., Clinical application of wave intensity for the treatment of essential hypertension. Heart Vessels, 2004. 19(1): p. 19-22.
41.Le Guehennec, L., et al., Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater, 2007. 23(7): p. 844-54.
42.Hanawa, T., Biofunctionalization of titanium for dental implant. Japanese Dental Science Review, 2010. 46(2): p. 93-101.
43.Goriainov, V., et al., Bone and metal: an orthopaedic perspective on osseointegration of metals. Acta Biomater, 2014. 10(10): p. 4043-57.
44.Murr, L.E., Strategies for creating living, additively manufactured, open-cellular metal and alloy implants by promoting osseointegration, osteoinduction and vascularization: An overview. Journal of Materials Science & Technology, 2019. 35(2): p. 231-241.
45.Arciola, C.R., et al., Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials, 2012. 33(26): p. 5967-82.
46.Oliveira, W.F., et al., Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect, 2018. 98(2): p. 111-117.
47.Douglas, L.J., Candida biofilms and their role in infection. Trends in Microbiology, 2003. 11(1): p. 30-36.
48.Carmeliet, P. and R.K. Jain, Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011. 473(7347): p. 298-307.
49.Nelson, K.S. and G.J. Beitel, More Than a Pipe Dream: Uncovering Mechanisms of Vascular Lumen Formation. Developmental Cell, 2009. 17(4): p. 435-437.
50.Ribatti, D. and E. Crivellato, "Sprouting angiogenesis", a reappraisal. Dev Biol, 2012. 372(2): p. 157-65.
51.Xu, K. and O. Cleaver, Tubulogenesis during blood vessel formation. Semin Cell Dev Biol, 2011. 22(9): p. 993-1004.
52.Koh, G.Y., Orchestral actions of angiopoietin-1 in vascular regeneration. Trends in Molecular Medicine, 2013. 19(1): p. 31-39.
53.Suri, C., et al., Requisite role of Angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell, 1996. 87(7): p. 1171-1180.
54.Fagiani, E. and G. Christofori, Angiopoietins in angiogenesis. Cancer Letters, 2013. 328(1): p. 18-26.
55.Dahl, S.G., et al., Incorporation and distribution of strontium in bone. Bone, 2001. 28(4): p. 446-453.
56.Marie, P.J., et al., Mechanisms of action and therapeutic potential of strontium in bone. Calcified Tissue International, 2001. 69(3): p. 121-129.
57.Pilmane, M., et al., Strontium and strontium ranelate: Historical review of some of their functions. Mater Sci Eng C Mater Biol Appl, 2017. 78: p. 1222-1230.
58.Mao, L., et al., The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomater, 2017. 61: p. 217-232.
59.Shi, M., et al., Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres. Acta Biomater, 2015. 21: p. 178-89.
60.2017年區域級以上醫院醫療照護相關感染監視年報. 衛生福利部疾病管制署, 2018年4月19日.
61.Yu-lin Li1, Chun-eng Liu1, and M.-l. Hung2, Biofilms: Clinical Implications and Applications. 感染控制雜誌, 中華民國100 年2 月. 第二十一卷第一期.
62.Busscher, H.J., et al., Biofilm Formation on Dental Restorative and Implant Materials. Journal of Dental Research, 2010. 89(7): p. 657-665.
63.Tripathy, A., et al., Natural and bioinspired nanostructured bactericidal surfaces. Adv Colloid Interface Sci, 2017. 248: p. 85-104.
64.Campoccia, D., L. Montanaro, and C.R. Arciola, A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 2013. 34(34): p. 8533-54.
65.Hasan, J., R.J. Crawford, and E.P. Ivanova, Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol, 2013. 31(5): p. 295-304.
66.Agarwal, S., A. Greiner, and J.H. Wendorff, Electrospinning of Manmade and Biopolymer Nanofibers-Progress in Techniques, Materials, and Applications. Advanced Functional Materials, 2009. 19(18): p. 2863-2879.
67.Elbourne, A., R.J. Crawford, and E.P. Ivanova, Nano-structured antimicrobial surfaces: From nature to synthetic analogues. J Colloid Interface Sci, 2017. 508: p. 603-616.
68.Gulati, K., et al., Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater, 2012. 8(1): p. 449-56.
69.Privett, B.J., et al., Antibacterial fluorinated silica colloid superhydrophobic surfaces. Langmuir, 2011. 27(15): p. 9597-601.
70.Watson, G.S., et al., A gecko skin micro/nano structure - A low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface. Acta Biomater, 2015. 21: p. 109-22.
71.Trapalis, C.C., et al., TiO2(Fe3+) nanostructured thin films with antibacterial properties. Thin Solid Films, 2003. 433(1-2): p. 186-190.
72.Chen, X. and H.J. Schluesener, Nanosilver: a nanoproduct in medical application. Toxicol Lett, 2008. 176(1): p. 1-12.
73.McShan, D., P.C. Ray, and H. Yu, Molecular toxicity mechanism of nanosilver. J Food Drug Anal, 2014. 22(1): p. 116-127.
74.AshaRani, P.V., M.P. Hande, and S. Valiyaveettil, Anti-proliferative activity of silver nanoparticles. Bmc Cell Biology, 2009. 10: p. 14.
75.Chaloupka, K., Y. Malam, and A.M. Seifalian, Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol, 2010. 28(11): p. 580-8.
76.Iler, R.K., Multilayers of colloidal particles. Journal of Colloid and Interface Science, 1966. 21(6): p. 569-594.
77.Sato, K., S. Takahashi, and J. Anzai, Layer-by-layer Thin Films and Microcapsules for Biosensors and Controlled Release. Analytical Sciences, 2012. 28(10): p. 929-938.
78.Schneider, A., et al., Polyelectrolyte multilayers with a tunable Young's modulus: Influence of film stiffness on cell adhesion. Langmuir, 2006. 22(3): p. 1193-1200.
79.Li, Y., X. Wang, and J.Q. Sun, Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chemical Society Reviews, 2012. 41(18): p. 5998-6009.
80.de Paiva, R.G., et al., Multilayer biopolymer membranes containing copper for antibacterial applications. Journal of Applied Polymer Science, 2012. 126: p. E17-E24.
81.Stanton, B.W., et al., Ultrathin, multilayered polyelectrolyte films as nanofiltration membranes. Langmuir, 2003. 19(17): p. 7038-7042.
82.Lee, S.S., et al., Layer-by-layer deposited multilayer assemblies of ionene-type polyelectrolytes based on the spin-coating method. Macromolecules, 2001. 34(16): p. 5358-5360.
83.Cho, J., et al., Fabrication of highly ordered multilayer films using a spin self-assembly method. Advanced Materials, 2001. 13(14): p. 1076-+.
84.Mahapatro, A., Bio-functional nano-coatings on metallic biomaterials. Mater Sci Eng C Mater Biol Appl, 2015. 55: p. 227-51.
85.Ivanova, E.P., K. Bazaka, and R.J. Crawford, Bioinert ceramic biomaterials: advanced applications, in New Functional Biomaterials for Medicine and Healthcare. 2014. p. 173-186.
86.Banoriya, D., R. Purohit, and R.K. Dwivedi, Advanced Application of Polymer based Biomaterials. Materials Today: Proceedings, 2017. 4(2): p. 3534-3541.
87.Bhat, S. and A. Kumar, Biomaterials and bioengineering tomorrow's healthcare. Biomatter, 2013. 3(3).
88.Scholz, M.S., et al., The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review. Composites Science and Technology, 2011. 71(16): p. 1791-1803.
89.Di Lullo, G.A., et al., Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem, 2002. 277(6): p. 4223-31.
90.Orgel, J., et al., Microfibrillar structure of type I collagen in situ. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(24): p. 9001-9005.
91.Bhattacharjee, A. and M. Bansal, Collagen Structure: The Madras Triple Helix and the Current Scenario. IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), 2005. 57(3): p. 161-172.
92.Ricard-Blum, S. and F. Ruggiero, The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol Biol (Paris), 2005. 53(7): p. 430-42.
93.Leikina, E., et al., Type I collagen is thermally unstable at body temperature. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(3): p. 1314-1318.
94.Lee, C.H., A. Singla, and Y. Lee, Biomedical applications of collagen. International Journal of Pharmaceutics, 2001. 221(1): p. 1-22.
95.Fratzl, P., et al., Structure and mechanical quality of the collagen–mineral nano-composite in bone. J. Mater. Chem., 2004. 14(14): p. 2115-2123.
96.Friess, W., Collagen - biomaterial for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 1998. 45(2): p. 113-136.
97.Buma, P., et al., Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects - A study in rabbits. Biomaterials, 2003. 24(19): p. 3255-3263.
98.Nehrer, S., et al., Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials, 1998. 19(24): p. 2313-2328.
99.Shoulders, M.D. and R.T. Raines, Collagen structure and stability. Annu Rev Biochem, 2009. 78: p. 929-58.
100.Bajaj, I. and R. Singhal, Poly (glutamic acid)--an emerging biopolymer of commercial interest. Bioresour Technol, 2011. 102(10): p. 5551-61.
101.Sung, M.H., et al., Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications. Chem Rec, 2005. 5(6): p. 352-66.
102.Kurosaki, T., et al., Ternary complexes of pDNA, polyethylenimine, and gamma-polyglutamic acid for gene delivery systems. Biomaterials, 2009. 30(14): p. 2846-53.
103.Manocha, B. and A. Margaritis, Controlled Release of Doxorubicin from Doxorubicin/γ-Polyglutamic Acid Ionic Complex. Journal of Nanomaterials, 2010. 2010: p. 1-9.
104.Biagiotti, M., et al., Esterification of poly(γ-glutamic acid) (γ-PGA) mediated by its tetrabutylammonium salt. RSC Advances, 2016. 6(50): p. 43954-43958.
105.Kumar, M., et al., Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews, 2004. 104(12): p. 6017-6084.
106.Khor, E. and L.Y. Lim, Implantable applications of chitin and chitosan. Biomaterials, 2003. 24(13): p. 2339-2349.
107.Denuziere, A., et al., Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes: biological properties. Biomaterials, 1998. 19(14): p. 1275-1285.
108.MacLaughlin, F.C., et al., Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. Journal of Controlled Release, 1998. 56(1-3): p. 259-272.
109.Suh, J.K.F. and H.W.T. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 2000. 21(24): p. 2589-2598.
110.Muzzarelli, R.A.A., Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers, 2009. 76(2): p. 167-182.
111.Muzzarelli, R.A.A., et al., OSTEOCONDUCTIVE PROPERTIES OF METHYLPYRROLIDINONE CHITOSAN IN AN ANIMAL-MODEL. Biomaterials, 1993. 14(12): p. 925-929.
112.Lee, K.Y., W.S. Ha, and W.H. Park, BLOOD COMPATIBILITY AND BIODEGRADABILITY OF PARTIALLY N-ACYLATED CHITOSAN DERIVATIVES. Biomaterials, 1995. 16(16): p. 1211-1216.
113.Jones, J.R., Review of bioactive glass: from Hench to hybrids. Acta Biomater, 2013. 9(1): p. 4457-86.
114.Saranti, A., I. Koutselas, and M.A. Karakassides, Bioactive glasses in the system CaO–B2O3–P2O5: Preparation, structural study and in vitro evaluation. Journal of Non-Crystalline Solids, 2006. 352(5): p. 390-398.
115.Vallet-Regi, M., F. Balas, and D. Arcos, Mesoporous materials for drug delivery. Angew Chem Int Ed Engl, 2007. 46(40): p. 7548-58.
116.Hoppe, A., N.S. Guldal, and A.R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 2011. 32(11): p. 2757-74.
117.Rahaman, M.N., et al., Bioactive glass in tissue engineering. Acta Biomater, 2011. 7(6): p. 2355-73.
118.Xia, W. and J. Chang, Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release, 2006. 110(3): p. 522-30.
119.Vallet-Regi, M., C.V. Ragel, and A.J. Salinas, Glasses with medical applications. European Journal of Inorganic Chemistry, 2003(6): p. 1029-1042.
120.Kaur, G., et al., A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J Biomed Mater Res A, 2014. 102(1): p. 254-74.
121.Lopez-Esteban, S., et al., Bioactive glass coatings for orthopedic metallic implants. Journal of the European Ceramic Society, 2003. 23(15): p. 2921-2930.
122.Yan, X., et al., The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials, 2006. 27(18): p. 3396-403.
123.Fernandes, J.S., et al., Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomater, 2017. 59: p. 2-11.
124.Rezwan, K., et al., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006. 27(18): p. 3413-31.
125.吳奇峻,雙生長因子制放於聚電解質多層膜披覆於316L不鏽鋼之研究,碩士,國立台北科技大學,臺北,2016。
126.Lee, K.L., et al., The effects of loading conditions and specimen environment on the nanomechanical response of canine cortical bone. Mater Sci Eng C Mater Biol Appl, 2013. 33(8): p. 4582-6.
127.Donnelly, E., et al., Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. Journal of Biomedical Materials Research Part A, 2006. 77A(2): p. 426-435.
128.Deligianni, D.D., et al., Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials, 2001. 22(11): p. 1241-1251.
129.Wong, S.S.Y., et al., Susceptibility testing of Clostridium difficile against metronidazole and vancomycin by disk diffusion and Etest. Diagnostic Microbiology and Infectious Disease, 1999. 34(1): p. 1-6.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊