參考文獻
1.張志涵, et al., 生物力學於股骨頭缺血性壞死之臨床分析(第3 年). 行政院國家科學委員會專題研究計畫, 中華民國101年.
2.Clarke, B., Normal bone anatomy and physiology. Clin J Am Soc Nephrol, 2008. 3 Suppl 3: p. S131-9.
3.Lian, J.B. and G.S. Stein, CONCEPTS OF OSTEOBLAST GROWTH AND DIFFERENTIATION - BASIS FOR MODULATION OF BONE CELL-DEVELOPMENT AND TISSUE FORMATION. Critical Reviews in Oral Biology & Medicine, 1992. 3(3): p. 269-305.
4.Erlebacher, A., et al., TOWARD A MOLECULAR UNDERSTANDING OF SKELETAL DEVELOPMENT. Cell, 1995. 80(3): p. 371-378.
5.Karsenty, G., The complexities of skeletal biology. Nature, 2003. 423(6937): p. 316-318.
6.Fernandez-Yague, M.A., et al., Biomimetic approaches in bone tissue engineering: Integrating biological and physicomechanical strategies. Adv Drug Deliv Rev, 2015. 84: p. 1-29.
7.Salgado, A.J., O.P. Coutinho, and R.L. Reis, Bone tissue engineering: state of the art and future trends. Macromol Biosci, 2004. 4(8): p. 743-65.
8.Almubarak, S., et al., Tissue engineering strategies for promoting vascularized bone regeneration. Bone, 2016. 83: p. 197-209.
9.Farokhi, M., et al., Importance of dual delivery systems for bone tissue engineering. J Control Release, 2016. 225: p. 152-69.
10.Shrivats, A.R., M.C. McDermott, and J.O. Hollinger, Bone tissue engineering: state of the union. Drug Discov Today, 2014. 19(6): p. 781-6.
11.Stegen, S., N. van Gastel, and G. Carmeliet, Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration. Bone, 2015. 70: p. 19-27.
12.Rosset, P., F. Deschaseaux, and P. Layrolle, Cell therapy for bone repair. Orthop Traumatol Surg Res, 2014. 100(1 Suppl): p. S107-12.
13.Davies, J.E., Bone bonding at natural and biomaterial surfaces. Biomaterials, 2007. 28(34): p. 5058-67.
14.Manolagas, S.C., Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocrine Reviews, 2000. 21(2): p. 115-137.
15.Puleo, D.A. and A. Nanci, Understanding and controlling the bone-implant interface. Biomaterials, 1999. 20(23-24): p. 2311-2321.
16.Navarro, M., et al., Biomaterials in orthopaedics. J R Soc Interface, 2008. 5(27): p. 1137-58.
17.Pearce, A.I., et al., Animal models for implant biomaterial research in bone: A review. European Cells and Materials, 2007. 13: p. 1-10.
18.Chen, Q. and G.A. Thouas, Metallic implant biomaterials. Materials Science and Engineering: R: Reports, 2015. 87: p. 1-57.
19.Zreiqat, H., et al., Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. Journal of Biomedical Materials Research, 2002. 62(2): p. 175-184.
20.Katti, K.S., Biomaterials in total joint replacement. Colloids Surf B Biointerfaces, 2004. 39(3): p. 133-42.
21.Liu, H., et al., Deformation-induced changeable Young's modulus with high strength in beta-type Ti-Cr-O alloys for spinal fixture. J Mech Behav Biomed Mater, 2014. 30: p. 205-13.
22.Liu, H., et al., beta-Type titanium alloys for spinal fixation surgery with high Young's modulus variability and good mechanical properties. Acta Biomater, 2015. 24: p. 361-9.
23.Niinomi, M., Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2002. 33(3): p. 477-486.
24.Hanawa, T., In vivo metallic biomaterials and surface modification. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 1999. 267(2): p. 260-266.
25.Campoli, G., et al., Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Materials & Design, 2013. 49: p. 957-965.
26.Staiger, M.P., et al., Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006. 27(9): p. 1728-34.
27.Zheng, Y.F., X.N. Gu, and F. Witte, Biodegradable metals. Materials Science and Engineering: R: Reports, 2014. 77: p. 1-34.
28.Vallet-Regí, M., Ceramics for medical applications. Journal of the Chemical Society, Dalton Transactions, 2001(2): p. 97-108.
29.Ahn, E.S., et al., Nanostructure processing of hydroxyapatite-based bioceramics. Nano Letters, 2001. 1(3): p. 149-153.
30.Habibovic, P., et al., Osteoconduction and osteoinduction of low-temperature 3D printed bioceramic implants. Biomaterials, 2008. 29(7): p. 944-53.
31.Lu, J., et al., The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res, 2002. 63(4): p. 408-12.
32.Ge, Z., Hydroxyapatite–chitin materials as potential tissue engineered bone substitutes. Biomaterials, 2004. 25(6): p. 1049-1058.
33.Gibon, E., et al., The biological response to orthopedic implants for joint replacement. II: Polyethylene, ceramics, PMMA, and the foreign body reaction. J Biomed Mater Res B Appl Biomater, 2017. 105(6): p. 1685-1691.
34.Chia, H.N. and B.M. Wu, Recent advances in 3D printing of biomaterials. J Biol Eng, 2015. 9: p. 4.
35.Kim, M.S., et al., An in vivo study of the host tissue response to subcutaneous implantation of PLGA- and/or porcine small intestinal submucosa-based scaffolds. Biomaterials, 2007. 28(34): p. 5137-43.
36.Ignjatovic, N., et al., A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy. Biomaterials, 2001. 22(6): p. 571-575.
37.Reis, R.L., et al., Relationship between processing and mechanical properties of injection molded high molecular mass polyethylene plus hydroxyapatite composites. Materials Research Innovations, 2001. 4(5-6): p. 263-272.
38.Hetrick, E.M. and M.H. Schoenfisch, Reducing implant-related infections: active release strategies. Chem Soc Rev, 2006. 35(9): p. 780-9.
39.Esposito, M., et al., Biological factors contributing to failures of osseointegrated oral implants - (II). Etiopathogenesis. European Journal of Oral Sciences, 1998. 106(3): p. 721-764.
40.Fujimoto, S., et al., Clinical application of wave intensity for the treatment of essential hypertension. Heart Vessels, 2004. 19(1): p. 19-22.
41.Le Guehennec, L., et al., Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater, 2007. 23(7): p. 844-54.
42.Hanawa, T., Biofunctionalization of titanium for dental implant. Japanese Dental Science Review, 2010. 46(2): p. 93-101.
43.Goriainov, V., et al., Bone and metal: an orthopaedic perspective on osseointegration of metals. Acta Biomater, 2014. 10(10): p. 4043-57.
44.Murr, L.E., Strategies for creating living, additively manufactured, open-cellular metal and alloy implants by promoting osseointegration, osteoinduction and vascularization: An overview. Journal of Materials Science & Technology, 2019. 35(2): p. 231-241.
45.Arciola, C.R., et al., Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials, 2012. 33(26): p. 5967-82.
46.Oliveira, W.F., et al., Staphylococcus aureus and Staphylococcus epidermidis infections on implants. J Hosp Infect, 2018. 98(2): p. 111-117.
47.Douglas, L.J., Candida biofilms and their role in infection. Trends in Microbiology, 2003. 11(1): p. 30-36.
48.Carmeliet, P. and R.K. Jain, Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011. 473(7347): p. 298-307.
49.Nelson, K.S. and G.J. Beitel, More Than a Pipe Dream: Uncovering Mechanisms of Vascular Lumen Formation. Developmental Cell, 2009. 17(4): p. 435-437.
50.Ribatti, D. and E. Crivellato, "Sprouting angiogenesis", a reappraisal. Dev Biol, 2012. 372(2): p. 157-65.
51.Xu, K. and O. Cleaver, Tubulogenesis during blood vessel formation. Semin Cell Dev Biol, 2011. 22(9): p. 993-1004.
52.Koh, G.Y., Orchestral actions of angiopoietin-1 in vascular regeneration. Trends in Molecular Medicine, 2013. 19(1): p. 31-39.
53.Suri, C., et al., Requisite role of Angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell, 1996. 87(7): p. 1171-1180.
54.Fagiani, E. and G. Christofori, Angiopoietins in angiogenesis. Cancer Letters, 2013. 328(1): p. 18-26.
55.Dahl, S.G., et al., Incorporation and distribution of strontium in bone. Bone, 2001. 28(4): p. 446-453.
56.Marie, P.J., et al., Mechanisms of action and therapeutic potential of strontium in bone. Calcified Tissue International, 2001. 69(3): p. 121-129.
57.Pilmane, M., et al., Strontium and strontium ranelate: Historical review of some of their functions. Mater Sci Eng C Mater Biol Appl, 2017. 78: p. 1222-1230.
58.Mao, L., et al., The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration. Acta Biomater, 2017. 61: p. 217-232.
59.Shi, M., et al., Stimulation of osteogenesis and angiogenesis of hBMSCs by delivering Si ions and functional drug from mesoporous silica nanospheres. Acta Biomater, 2015. 21: p. 178-89.
60.2017年區域級以上醫院醫療照護相關感染監視年報. 衛生福利部疾病管制署, 2018年4月19日.
61.Yu-lin Li1, Chun-eng Liu1, and M.-l. Hung2, Biofilms: Clinical Implications and Applications. 感染控制雜誌, 中華民國100 年2 月. 第二十一卷第一期.
62.Busscher, H.J., et al., Biofilm Formation on Dental Restorative and Implant Materials. Journal of Dental Research, 2010. 89(7): p. 657-665.
63.Tripathy, A., et al., Natural and bioinspired nanostructured bactericidal surfaces. Adv Colloid Interface Sci, 2017. 248: p. 85-104.
64.Campoccia, D., L. Montanaro, and C.R. Arciola, A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 2013. 34(34): p. 8533-54.
65.Hasan, J., R.J. Crawford, and E.P. Ivanova, Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol, 2013. 31(5): p. 295-304.
66.Agarwal, S., A. Greiner, and J.H. Wendorff, Electrospinning of Manmade and Biopolymer Nanofibers-Progress in Techniques, Materials, and Applications. Advanced Functional Materials, 2009. 19(18): p. 2863-2879.
67.Elbourne, A., R.J. Crawford, and E.P. Ivanova, Nano-structured antimicrobial surfaces: From nature to synthetic analogues. J Colloid Interface Sci, 2017. 508: p. 603-616.
68.Gulati, K., et al., Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater, 2012. 8(1): p. 449-56.
69.Privett, B.J., et al., Antibacterial fluorinated silica colloid superhydrophobic surfaces. Langmuir, 2011. 27(15): p. 9597-601.
70.Watson, G.S., et al., A gecko skin micro/nano structure - A low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface. Acta Biomater, 2015. 21: p. 109-22.
71.Trapalis, C.C., et al., TiO2(Fe3+) nanostructured thin films with antibacterial properties. Thin Solid Films, 2003. 433(1-2): p. 186-190.
72.Chen, X. and H.J. Schluesener, Nanosilver: a nanoproduct in medical application. Toxicol Lett, 2008. 176(1): p. 1-12.
73.McShan, D., P.C. Ray, and H. Yu, Molecular toxicity mechanism of nanosilver. J Food Drug Anal, 2014. 22(1): p. 116-127.
74.AshaRani, P.V., M.P. Hande, and S. Valiyaveettil, Anti-proliferative activity of silver nanoparticles. Bmc Cell Biology, 2009. 10: p. 14.
75.Chaloupka, K., Y. Malam, and A.M. Seifalian, Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol, 2010. 28(11): p. 580-8.
76.Iler, R.K., Multilayers of colloidal particles. Journal of Colloid and Interface Science, 1966. 21(6): p. 569-594.
77.Sato, K., S. Takahashi, and J. Anzai, Layer-by-layer Thin Films and Microcapsules for Biosensors and Controlled Release. Analytical Sciences, 2012. 28(10): p. 929-938.
78.Schneider, A., et al., Polyelectrolyte multilayers with a tunable Young's modulus: Influence of film stiffness on cell adhesion. Langmuir, 2006. 22(3): p. 1193-1200.
79.Li, Y., X. Wang, and J.Q. Sun, Layer-by-layer assembly for rapid fabrication of thick polymeric films. Chemical Society Reviews, 2012. 41(18): p. 5998-6009.
80.de Paiva, R.G., et al., Multilayer biopolymer membranes containing copper for antibacterial applications. Journal of Applied Polymer Science, 2012. 126: p. E17-E24.
81.Stanton, B.W., et al., Ultrathin, multilayered polyelectrolyte films as nanofiltration membranes. Langmuir, 2003. 19(17): p. 7038-7042.
82.Lee, S.S., et al., Layer-by-layer deposited multilayer assemblies of ionene-type polyelectrolytes based on the spin-coating method. Macromolecules, 2001. 34(16): p. 5358-5360.
83.Cho, J., et al., Fabrication of highly ordered multilayer films using a spin self-assembly method. Advanced Materials, 2001. 13(14): p. 1076-+.
84.Mahapatro, A., Bio-functional nano-coatings on metallic biomaterials. Mater Sci Eng C Mater Biol Appl, 2015. 55: p. 227-51.
85.Ivanova, E.P., K. Bazaka, and R.J. Crawford, Bioinert ceramic biomaterials: advanced applications, in New Functional Biomaterials for Medicine and Healthcare. 2014. p. 173-186.
86.Banoriya, D., R. Purohit, and R.K. Dwivedi, Advanced Application of Polymer based Biomaterials. Materials Today: Proceedings, 2017. 4(2): p. 3534-3541.
87.Bhat, S. and A. Kumar, Biomaterials and bioengineering tomorrow's healthcare. Biomatter, 2013. 3(3).
88.Scholz, M.S., et al., The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review. Composites Science and Technology, 2011. 71(16): p. 1791-1803.
89.Di Lullo, G.A., et al., Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem, 2002. 277(6): p. 4223-31.
90.Orgel, J., et al., Microfibrillar structure of type I collagen in situ. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(24): p. 9001-9005.
91.Bhattacharjee, A. and M. Bansal, Collagen Structure: The Madras Triple Helix and the Current Scenario. IUBMB Life (International Union of Biochemistry and Molecular Biology: Life), 2005. 57(3): p. 161-172.
92.Ricard-Blum, S. and F. Ruggiero, The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol Biol (Paris), 2005. 53(7): p. 430-42.
93.Leikina, E., et al., Type I collagen is thermally unstable at body temperature. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(3): p. 1314-1318.
94.Lee, C.H., A. Singla, and Y. Lee, Biomedical applications of collagen. International Journal of Pharmaceutics, 2001. 221(1): p. 1-22.
95.Fratzl, P., et al., Structure and mechanical quality of the collagen–mineral nano-composite in bone. J. Mater. Chem., 2004. 14(14): p. 2115-2123.
96.Friess, W., Collagen - biomaterial for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 1998. 45(2): p. 113-136.
97.Buma, P., et al., Cross-linked type I and type II collagenous matrices for the repair of full-thickness articular cartilage defects - A study in rabbits. Biomaterials, 2003. 24(19): p. 3255-3263.
98.Nehrer, S., et al., Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials, 1998. 19(24): p. 2313-2328.
99.Shoulders, M.D. and R.T. Raines, Collagen structure and stability. Annu Rev Biochem, 2009. 78: p. 929-58.
100.Bajaj, I. and R. Singhal, Poly (glutamic acid)--an emerging biopolymer of commercial interest. Bioresour Technol, 2011. 102(10): p. 5551-61.
101.Sung, M.H., et al., Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications. Chem Rec, 2005. 5(6): p. 352-66.
102.Kurosaki, T., et al., Ternary complexes of pDNA, polyethylenimine, and gamma-polyglutamic acid for gene delivery systems. Biomaterials, 2009. 30(14): p. 2846-53.
103.Manocha, B. and A. Margaritis, Controlled Release of Doxorubicin from Doxorubicin/γ-Polyglutamic Acid Ionic Complex. Journal of Nanomaterials, 2010. 2010: p. 1-9.
104.Biagiotti, M., et al., Esterification of poly(γ-glutamic acid) (γ-PGA) mediated by its tetrabutylammonium salt. RSC Advances, 2016. 6(50): p. 43954-43958.
105.Kumar, M., et al., Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews, 2004. 104(12): p. 6017-6084.
106.Khor, E. and L.Y. Lim, Implantable applications of chitin and chitosan. Biomaterials, 2003. 24(13): p. 2339-2349.
107.Denuziere, A., et al., Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes: biological properties. Biomaterials, 1998. 19(14): p. 1275-1285.
108.MacLaughlin, F.C., et al., Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. Journal of Controlled Release, 1998. 56(1-3): p. 259-272.
109.Suh, J.K.F. and H.W.T. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 2000. 21(24): p. 2589-2598.
110.Muzzarelli, R.A.A., Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers, 2009. 76(2): p. 167-182.
111.Muzzarelli, R.A.A., et al., OSTEOCONDUCTIVE PROPERTIES OF METHYLPYRROLIDINONE CHITOSAN IN AN ANIMAL-MODEL. Biomaterials, 1993. 14(12): p. 925-929.
112.Lee, K.Y., W.S. Ha, and W.H. Park, BLOOD COMPATIBILITY AND BIODEGRADABILITY OF PARTIALLY N-ACYLATED CHITOSAN DERIVATIVES. Biomaterials, 1995. 16(16): p. 1211-1216.
113.Jones, J.R., Review of bioactive glass: from Hench to hybrids. Acta Biomater, 2013. 9(1): p. 4457-86.
114.Saranti, A., I. Koutselas, and M.A. Karakassides, Bioactive glasses in the system CaO–B2O3–P2O5: Preparation, structural study and in vitro evaluation. Journal of Non-Crystalline Solids, 2006. 352(5): p. 390-398.
115.Vallet-Regi, M., F. Balas, and D. Arcos, Mesoporous materials for drug delivery. Angew Chem Int Ed Engl, 2007. 46(40): p. 7548-58.
116.Hoppe, A., N.S. Guldal, and A.R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 2011. 32(11): p. 2757-74.
117.Rahaman, M.N., et al., Bioactive glass in tissue engineering. Acta Biomater, 2011. 7(6): p. 2355-73.
118.Xia, W. and J. Chang, Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release, 2006. 110(3): p. 522-30.
119.Vallet-Regi, M., C.V. Ragel, and A.J. Salinas, Glasses with medical applications. European Journal of Inorganic Chemistry, 2003(6): p. 1029-1042.
120.Kaur, G., et al., A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. J Biomed Mater Res A, 2014. 102(1): p. 254-74.
121.Lopez-Esteban, S., et al., Bioactive glass coatings for orthopedic metallic implants. Journal of the European Ceramic Society, 2003. 23(15): p. 2921-2930.
122.Yan, X., et al., The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials, 2006. 27(18): p. 3396-403.
123.Fernandes, J.S., et al., Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomater, 2017. 59: p. 2-11.
124.Rezwan, K., et al., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006. 27(18): p. 3413-31.
125.吳奇峻,雙生長因子制放於聚電解質多層膜披覆於316L不鏽鋼之研究,碩士,國立台北科技大學,臺北,2016。126.Lee, K.L., et al., The effects of loading conditions and specimen environment on the nanomechanical response of canine cortical bone. Mater Sci Eng C Mater Biol Appl, 2013. 33(8): p. 4582-6.
127.Donnelly, E., et al., Effects of surface roughness and maximum load on the mechanical properties of cancellous bone measured by nanoindentation. Journal of Biomedical Materials Research Part A, 2006. 77A(2): p. 426-435.
128.Deligianni, D.D., et al., Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials, 2001. 22(11): p. 1241-1251.
129.Wong, S.S.Y., et al., Susceptibility testing of Clostridium difficile against metronidazole and vancomycin by disk diffusion and Etest. Diagnostic Microbiology and Infectious Disease, 1999. 34(1): p. 1-6.