跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/10 19:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹景勛
研究生(外文):Jing-Shiun Jan
論文名稱:新穎性化合物WK2-16及Hirsutanol A調節內毒素血症誘導第九型基質金屬蛋白酶及促發炎細胞因子生成之機制
論文名稱(外文):The mechanism of novel compounds, WK2-16 and Hirsutanol A, on regulating the production of matrix metalloproteinase-9/pro-inflammatory cytokines induced by endotoxemia
指導教授:蕭哲志蕭哲志引用關係
指導教授(外文):George Hsiao
口試委員:黃聰龍楊家榮潘秀玲陳彥州
口試委員(外文):Tsong-Long HwangChia-Ron YangShiow-Lin PanYen‐Chou Chen
口試日期:2019-07-04
學位類別:博士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:114
中文關鍵詞:脂多醣;基質金屬蛋白酶;白細胞介素;組蛋白去乙醯酶;Yin Yang 1;signal transducer and activator of transcription 3 ;內毒血症;急性疾病行為;急性肺損傷
外文關鍵詞:Lipopolysaccharide (LPS)matrix metalloproteinases (MMPs)Interleukin (IL)histone deacetylase (HDAC)Yin Yang 1 (YY1)signal transducer and activator of transcription 3 (STAT3)endotoxemiaacute sickness behavioracute lung injury (ALI)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
活化之單核細胞/巨噬細胞,其增加基質金屬蛋白酶(MMPs)和促炎(pro-inflammatory)細胞因子之生成,是敗血症進展的重要機制。本研究的重點是 探討兩種新穎性化合物(E)-N-hydroxy-4-methoxy-2-(biphenyl-4-yl)cinnamide (WK2-16)和hirsutanol A (HA),抑制脂多醣(LPS)誘導單核細胞產生MMP-9和促炎細胞因子的機轉及評估在內毒血症動物模式中之療效。首先,WK2-16,一種第八型組蛋白去乙醯酶(HDAC8)抑制劑,能顯著上調structural maintenance of chromosomes 3 (SMC3)的乙醯化水平而對THP-1細胞中組蛋白H3的乙醯化沒有顯著影響。除此之外,WK2-16濃度梯度地抑制由腫瘤壞死因子-α (TNF-α)或LPS誘導的MMP-9 gelatinolysis。同樣的,WK2-16能顯著抑制MMP-9之蛋白和mRNA表達而沒有細胞毒性。另一方面,WK2-16能降低LPS誘導THP-1細胞產生白細胞介素(IL)-6。訊息傳遞方面,WK2-16對LPS / TLR4下游訊息傳遞路徑沒有影響,例如NF-κB和ERK / JNK / P38 MAPK路徑。另一方面,WK2-16能增加乙醯化Yin Yang 1 (YY)與HDAC1的募集。除此之外,活體實驗亦顯示WK2-16能降低內毒素血症小鼠之血清中TNF-α和IL-6水平。其次,萃取自紅藻衍生的海洋真菌Chondrostereum sp. NTOU4196的HA,其能以濃度梯度的方式抑制LPS誘導的MMP-9 gelatinolysis及MMP-9白質與mRNA的表現,而不影響TIMP-1活性。除此之外,HA顯著降低來自LPS誘導THP-1細胞產生TNF-α,IL-6和IL-1β,而沒有細胞毒性。另一方面,HA能顯著抑制THP-1細胞中LPS介導的STAT3 (Tyr705)磷酸化,IκBα降解和ERK1/2活化。在LPS誘導的小鼠內毒素血症(endotoxemia)動物模式中,預先投與HA能夠有效改善內毒素血症引起的急性疾病行為,包括急性運動功能障礙和類焦慮行為。除此之外,HA能降低LPS誘導海馬迴中磷酸化STAT3和MMP-9的蛋白表現。值得注意的是,HA能減少病理性肺損傷的特徵,包括肺間質組織水腫,發炎細胞的浸潤和肺泡塌陷。同樣的,HA能抑制肺組織中磷酸化STAT3和MMP-9之蛋白水平的增加。總合結論,本研究顯示WK2-16與HA都有潛力發展為治療發炎疾病(括內毒素血症)的藥劑。
Activated monocytes/macrophages, which increase the production of matrix metalloproteinases (MMPs) and pro-inflammatory cytokines, are the essential mechanisms for the progression of sepsis. This study is focused on the mechanisms and the therapeutic effect of two novel compounds, (E)-N-hydroxy-4-methoxy-2-(biphenyl-4-yl)cinnamide (WK2-16) and hirsutanol A (HA), that inhibit lipopolysaccharide (LPS)-induced production of MMP-9 and pro-inflammatory cytokines in monocyte and in endotoxemia mouse model. Firstly, WK2-16, a histone deacetylase (HDAC8) inhibitor, significantly upregulated the acetylation levels of structural maintenance of chromosomes 3 (SMC3) without any effect on acetylation of global histone H3 in THP-1 cells. Moreover, WK2-16 concentration dependently suppressed MMP-9-mediated gelatinolysis induced by tumor necrosis factor-α (TNF-α) or LPS. Similarly, WK2-16 significantly inhibited both MMP-9 protein and mRNA expression without cellular toxicity. Nevertheless, WK2-16 attenuated the LPS-induced increasing extracellular levels of interleukin (IL)-6 from THP-1 cells. For the signaling studies, WK2-16 had no effect on LPS/TLR4 downstream signaling pathways, such as the NF-κB and ERK/JNK/P38 MAPK pathways. On the other hand, WK2-16 enhanced the recruitment of acetylated Yin Yang 1 (YY1) with HDAC1. In addition, in vivo study indicated that WK2-16 attenuated the serum levels of TNF-α and IL-6 in endotoxemic mice. Secondly, HA, which is isolated from the red alga-derived marine fungus Chondrostereum sp. NTOU4196, suppressed LPS-triggered MMP-9-mediated gelatinolysis and expression of protein and mRNA in a concentration-dependent manner without effect on TIMP-1 activity. Also, HA significantly attenuated LPS-induced the production of TNF-α, IL-6, and IL-1β in THP-1 cells without cellular toxicity. In the other hand, HA significantly inhibited LPS-mediated STAT3 (Tyr705) phosphorylation, IκBα degradation and ERK1/2 activation in THP-1 cells. In an LPS-induced endotoxemia mouse model, HA pretreatment improved endotoxemia-induced acute sickness behaviors, including acute motor deficits and anxiety-like behavior. HA also attenuated LPS-induced the expression of phospho-STAT3 and MMP-9 in the hippocampus. Notably, HA reduced pathologic lung injury features, including interstitial tissue edema, infiltration of inflammatory cells and alveolar collapse. Likewise, HA suppressed the induction of phospho-STAT3 and MMP-9 levels in lung tissues. In conclusion, the present study demonstrated that both WK2-16 and HA could be a potential agent for treating inflammatory diseases, including endotoxemia.
目錄
中文摘要(Abstract in Chinese) ……………………… 6
英文摘要(Abstract in English) ……………………… 7
縮寫對照(Abbreviations) ……………………………… 8
壹、 緒論(Introduction) ……………………………… 10
1.1. Sepsis ……………………………………………………………… 10
1.2. Leukocytes and Innate immunity …………………………………… 14
1.3. Pathogen recognition, endotoxemia and
Toll-like receptors signaling cascades………………………………… 15
1.4. Matrix Metalloproteinases ………………………………………… 16
1.5. Histone deacetylases ……………………………………………… 19
貳、 研究目標 (Aims) …...............................…......… 23
參、 實驗材料與方法(Materials and Methods) ……… 24
3.1. Materials ………………………………………………………… 24
3.2. Cell Culture ………………………………………………………… 26
3.3. Gelatin zymography and reverse zymography …………………… 26
3.4. Cellular viability assay ……………………………………………… 27
3.5. Co-immunoprecipitation and Western Blot analyses ……………… 27
3.6. Reverse transcription polymerase chain reaction (RT-PCR) analysis …………………………………………………………………… 28
3.7. Transfection and luciferase assay ……………………………… 29
3.8. Cytokine levels measurement by the enzyme-linked immunosorbent
assay (ELISA) …………………………………………………… 29
3.9. LPS-induced endotoxemia in vivo ……………………………… 30
3.10. Behavioral testing
Behavioral testing: The Open Field Test (OFT) …………………… 31
Behavioral testing: The Elevated Zero Maze test (EZM test) …… 32
3.11. Bronchoalveolar lavage fluid (BALF)
and lung tissues collection ………………………………………… 32
3.12. Hippocampus tissues collection …………………………………… 33
3.13. Immunohistochemistry ……………………………………………… 34
3.14. Statistical analyses ………………………………………………… 35
肆、 結果(Results) ……………………………………………… 36
4.1. WK2-16 induces the acetylation of SMC3 but not the
global histone H3 and α-tubulin in THP-1 Cells …………………… 36
4.2. WK2-16 suppresses both MMP-9 mediated gelatinolysis induced
by LPS, TNF-α or PMA, and MMP-2 mediated gelectinolysis induced
by TGF-β ………………………………………………………… 37
4.3. WK2-16 inhibits the LPS-induced expression of intracellular MMP-9
protein and mRNA in THP-1 cells without cytotoxicity ………… 38
4.4. WK2-6 down-regulates IL-6 secretion but enhances COX-2
expression induced by LPS ………………………………………… 39
4.5. WK2-16 does not influence IκBα degradation and NF-κB-dependent
reporter gene expression induced by LPS in THP-1 cells ………… 39
4.6. WK2-16 has no effect on the LPS-induced activation of
p38, ERK1/2 and JNK MAPK pathway in THP-1 cells ………… 40
4.7. WK2-16 enhances the recruitment of YY1/HDAC1 in
LPS-stimulated THP-1 ……………………………………………… 40
4.8. WK2-16 attenuates both the levels of IL-6 and TNF-α
in septic mice ……………………………………………………… 41
4.9. HA inhibits MMP-9-mediated gelatinolysis induced by LPS ……… 42
4.10. HA attenuates the production of pro-inflammatory cytokines
induced by LPS …………………………………………………… 44
4.11. HA suppresses IκB-α degradation and the phosphorylation levels of
STAT3 and ERK1/2 induced by LPS ……………………………… 45
4.12. The activation of JAK2-STAT3 cascade is associated with
LPS-mediated MMP-9 production ……………………………… 47
4.13. HA decreases LPS-mediated acute sickness behavior ……………… 48
4.14. HA improves pulmonary histological changes
during endotoxemia ……………………………………………… 50
伍、 討論(Discussion) ……………………………… 52
陸、 結論(Conclusion) ……………………………… 63
柒、 圖表(Figures) ……………………………………………… 64
捌、 參考文獻(References) …………………………………… 91

圖目錄
Figure 1.WK2-16 induces the hyperacetylation of SMC3, but did not have a significant effect on acetyl-histone-H3, acetyl-α-tubulin and HSP70 expression ……P64
Figure 2.WK2-16 suppresses MMP-9- and MMP-2-mediated gelatinolysis induced by different stimulants……P65
Figure 3.WK2-16 inhibits MMP-9 protein and mRNA expression induced by LPS in THP-1 cells without cellular toxicity……P66
Figure 4.Effect of WK2-16 on LPS-induced cytokine production and COX-2 expression in THP-1 cells……P67
Figure 5.WK2-16 does not influence NF-κB activation induced by LPS in THP-1 cells……P68
Figure 6.WK2-16 has no effect on the activation of the MAPK pathway induced by LPS in THP-1 cells……P69
Figure 7.WK2-16 induces the recruitment of YY1 and HDAC1 in LPS-stimulated THP-1 cells……P70
Figure 8.WK2-16 reduces cytokines production during endotoxemia in vivo……P71
Figure 9.Effect of HA on MMP-9-mediated gelatinolysis and expression induced by LPS……P72
Figure 10.Effect of HA on pro-inflammatory cytokines production induced by LPS in THP-1 cells without cellular toxicity……P73
Figure 11.Effect of HA on STAT3, MAPK and NF-κB activation induced by LPS in THP-1 cells……P74
Figure 12.Effect of JAK2-STAT3 cascade inhibition on LPS-mediated MMP-9 expression……P75
Figure 13.Effect of HA on sickness behavior in the open field test following a systemic LPS challenge……P76
Figure 14.Effect of HA on anxiety-like behavior in the elevated zero maze test, and the expression of phospho-STAT3 and MMP-9 in the hippocampus following systemic LPS challenge……P77
Figure 15.Effect of HA on LPS-mediated histopathological changes and the production of phospho-STAT3 and MMP-9 in lung tissues and BALF……P78
Figure S1.Chemical structure of (E)-N-hydroxy-4-methoxy-2-
(biphenyl-4-yl)cinnamide (WK2-16)……P79
Figure S2.Chemical structure of Hirsutanol A (HA)……P80
Figure S3.WK2-16 reduces pro-MMP-9 levels of liver and lung tissue during endotoxemia……P81
Figure S4.Effect of HA on monocytic MMP-9-mediated gelatinolysis……P82
Figure S5.Effect of HA on the pro-inflammatory cytokines production of THP-1 cells……P83
Figure S6.Effect of the combination of LPS and HA on the cell viability of THP-1 cells……P84
Figure S7.Effect of HA on LPS-mediated phosphorylation of IKKα in THP-1 cells……P85
Figure S8.Effect of HA on the STAT3 and NF-κB cascade in THP-1 cells……P86
Figure S9.Effect of HA on LPS-induced body weight loss and hypothermia……P87
Figure S10.Effect of HA the numbers of CD68+ inflammatory cells in the hippocampus following systemic LPS challenge……P88
Figure S11.Effect and possible mechanisms of (E)-N-hydroxy-4-
methoxy-2-(biphenyl-4-yl)cinnamide (WK2-16)……P89
Figure S12.Effect and possible mechanisms of hirsutanol A (HA)……P90
References
Akira, S. and Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 2004; 4: 499-511.
Alqahtani, M. F., Smith, C. M., Weiss, S. L., Dawson, S., Ralay Ranaivo, H. and Wainwright, M. S. Evaluation of New Diagnostic Biomarkers in Pediatric Sepsis: Matrix Metalloproteinase-9, Tissue Inhibitor of Metalloproteinase-1, Mid-Regional Pro-Atrial Natriuretic Peptide, and Adipocyte Fatty-Acid Binding Protein. PloS One 2016; 11: e0153645.
Andreasen, A. S., Krabbe, K. S., Krogh-Madsen, R., Taudorf, S., Pedersen, B. K. and Moller, K. Human Endotoxemia as a model of systemic inflammation. Curr. Med. Chem. 2008; 15: 1697-1705.
Angus, D. C. and van der Poll, T. Severe sepsis and septic shock. New Engl. J. Med. 2013; 369: 840-851.
Annane, D. and Sharshar, T. Cognitive decline after sepsis. The Lancet. Respiratory medicine 2015; 3: 61-69.
Balasubramanian, S., Ramos, J., Luo, W., Sirisawad, M., Verner, E. and Buggy, J. J. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 2008; 22: 1026-1034.
Barkhausen, T., Tschernig, T., Rosenstiel, P., van Griensven, M., Vonberg, R. P., Dorsch, M., Mueller-Heine, A., Chalaris, A., Scheller, J., Rose-John, S., Seegert, D., Krettek, C. and Waetzig, G. H. Selective blockade of interleukin-6 trans-signaling improves survival in a murine polymicrobial sepsis model. Crit. Care Med. 2011; 39: 1407-1413.
Bone, R. C., Balk, R. A., Cerra, F. B., Dellinger, R. P., Fein, A. M., Knaus, W. A., Schein, R. M. and Sibbald, W. J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101: 1644-1655.
Boomer, J. S., To, K., Chang, K. C., Takasu, O., Osborne, D. F., Walton, A. H., Bricker, T. L., Jarman, S. D., 2nd, Kreisel, D., Krupnick, A. S., Srivastava, A., Swanson, P. E., Green, J. M. and Hotchkiss, R. S. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011; 306: 2594-2605.
Borges, R. C., Carvalho, C. R., Colombo, A. S., da Silva Borges, M. P. and Soriano, F. G. Physical activity, muscle strength, and exercise capacity 3 months after severe sepsis and septic shock. Intensive Care Med. 2015; 41: 1433-1444.
Braude, A. I., Jones, J. L. and Douglas, H. The behavior of Escherichia coli endotoxin (somatic antigen) during infectious arthritis. J. Immunol. 1963; 90: 297-311.
Brittan, M., Barr, L. C., Anderson, N., Morris, A. C., Duffin, R., Marwick, J. A., Rossi, F., Johnson, S., Dhaliwal, K., Hirani, N., Rossi, A. G. and Simpson, A. J. Functional characterisation of human pulmonary monocyte-like cells in lipopolysaccharide-mediated acute lung inflammation. J. Inflamm. (Lond) 2014; 11: 9.
Calebrant, H., Sandh, M. and Jansson, I. How the Nurse Anesthetist Decides to Manage Perioperative Fluid Status. J. Perianesth. Nurs. 2016; 31: 406-414.
Calsavara, A. J. C., Costa, P. A., Nobre, V. and Teixeira, A. L. Factors Associated With Short and Long Term Cognitive Changes in Patients With Sepsis. Sci. Rep. 2018; 8: 4509.
Chakrabarti, A., Oehme, I., Witt, O., Oliveira, G., Sippl, W., Romier, C., Pierce, R. J. and Jung, M. HDAC8: a multifaceted target for therapeutic interventions. Trends Pharmacol Sci. 2015; 36: 481-492.
Chaturvedi, M. and Kaczmarek, L. Mmp-9 inhibition: a therapeutic strategy in ischemic stroke. Mol. Neurobiol. 2014; 49: 563-573.
Chen, X., Margolis, K. J., Gershon, M. D., Schwartz, G. J. and Sze, J. Y. Reduced serotonin reuptake transporter (SERT) function causes insulin resistance and hepatic steatosis independent of food intake. PloS One 2012; 7: e32511.
Choo, Q. Y., Ho, P. C., Tanaka, Y. and Lin, H. S. Histone deacetylase inhibitors MS-275 and SAHA induced growth arrest and suppressed lipopolysaccharide-stimulated NF-kappaB p65 nuclear accumulation in human rheumatoid arthritis synovial fibroblastic E11 cells. Rheumatology 2010; 49: 1447-1460.
Chou, Y. C., Sheu, J. R., Chung, C. L., Chen, C. Y., Lin, F. L., Hsu, M. J., Kuo, Y. H. and Hsiao, G. Nuclear-targeted inhibition of NF-kappaB on MMP-9 production by N-2-(4-bromophenyl) ethyl caffeamide in human monocytic cells. Chem. Biol. Interact. 2010; 184: 403-412.
Chypre, M., Zaidi, N. and Smans, K. ATP-citrate lyase: a mini-review. Biochem. Biophys. Res. Commun. 2012; 422: 1-4.
Cohen, J., Vincent, J. L., Adhikari, N. K., Machado, F. R., Angus, D. C., Calandra, T., Jaton, K., Giulieri, S., Delaloye, J., Opal, S., Tracey, K., van der Poll, T. and Pelfrene, E. Sepsis: a roadmap for future research. Lancet. Infect. Dis. 2015; 15: 581-614.
Dal-Pizzol, F., Rojas, H. A., dos Santos, E. M., Vuolo, F., Constantino, L., Feier, G., Pasquali, M., Comim, C. M., Petronilho, F., Gelain, D. P., Quevedo, J., Moreira, J. C. and Ritter, C. Matrix metalloproteinase-2 and metalloproteinase-9 activities are associated with blood-brain barrier dysfunction in an animal model of severe sepsis. Mol. Neurobiol. 2013; 48: 62-70.
Deardorff, M. A., Bando, M., Nakato, R., Watrin, E., Itoh, T., Minamino, M., Saitoh, K., Komata, M., Katou, Y., Clark, D., Cole, K. E., De Baere, E., Decroos, C., Di Donato, N., Ernst, S., Francey, L. J., Gyftodimou, Y., Hirashima, K., Hullings, M., Ishikawa, Y., Jaulin, C., Kaur, M., Kiyono, T., Lombardi, P. M., Magnaghi-Jaulin, L., Mortier, G. R., Nozaki, N., Petersen, M. B., Seimiya, H., Siu, V. M., Suzuki, Y., Takagaki, K., Wilde, J. J., Willems, P. J., Prigent, C., Gillessen-Kaesbach, G., Christianson, D. W., Kaiser, F. J., Jackson, L. G., Hirota, T., Krantz, I. D. and Shirahige, K. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 2012; 489: 313-317.
Dellinger, R. P., Levy, M. M., Rhodes, A., Annane, D., Gerlach, H., Opal, S. M., Sevransky, J. E., Sprung, C. L., Douglas, I. S., Jaeschke, R., Osborn, T. M., Nunnally, M. E., Townsend, S. R., Reinhart, K., Kleinpell, R. M., Angus, D. C., Deutschman, C. S., Machado, F. R., Rubenfeld, G. D., Webb, S. A., Beale, R. J., Vincent, J. L. and Moreno, R. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit. Care Med. 2013; 41: 580-637.
Digicaylioglu, M. and Lipton, S. A. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature 2001; 412: 641-647.
Dubois, B., Starckx, S., Pagenstecher, A., Oord, J., Arnold, B. and Opdenakker, G. Gelatinase B deficiency protects against endotoxin shock. Eur. J. Immunol. 2002; 32: 2163-2171.
Eyre, H. and Baune, B. T. Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology 2012; 37: 1397-1416.
Feng, M., Sun, T., Zhao, Y. and Zhang, H. Detection of Serum Interleukin-6/10/18 Levels in Sepsis and Its Clinical Significance. J. Clin. Lab. Anal. 2016; 30: 1037-1043.
Gandhirajan, R. K., Meng, S., Chandramoorthy, H. C., Mallilankaraman, K., Mancarella, S., Gao, H., Razmpour, R., Yang, X. F., Houser, S. R., Chen, J., Koch, W. J., Wang, H., Soboloff, J., Gill, D. L. and Madesh, M. Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation. J. Clin. Invest. 2013; 123: 887-902.
Gofton, T. E. and Young, G. B. Sepsis-associated encephalopathy. Nature reviews. Neurology 2012; 8: 557-566.
Gonzalez, H., Elgueta, D., Montoya, A. and Pacheco, R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J. Neuroimmunol. 2014; 274: 1-13.
Grimaldi, D. and Vincent, J. L. Clinical trial research in focus: rethinking trials in sepsis. Lancet Respir. Med. 2017; 5: 610-611.
Guangchao, S. The Regulation of YY1 in Tumorigenesis and its Targeting Potential in Cancer Therapy. Mol. Cell. Pharmacol. 2009; 1(3): 157-176.
Guru, S. R., Kothiwale, S. V., Saroch, N. and Guru, R. C. Comparative evaluation of inhibitory effect of curcumin and doxycycline on matrix metalloproteinase-9 activity in chronic periodontitis. Indian J. Dent. Res. 2017; 28: 560-565.
Ha, S. D., Han, C. Y., Reid, C. and Kim, S. O. HDAC8-mediated epigenetic reprogramming plays a key role in resistance to anthrax lethal toxin-induced pyroptosis in macrophages. J. Immunol. 2014; 193: 1333-1343.
Ha, S. D., Reid, C., Meshkibaf, S. and Kim, S. O. Inhibition of Interleukin 1beta (IL-1beta) Expression by Anthrax Lethal Toxin (LeTx) Is Reversed by Histone Deacetylase 8 (HDAC8) Inhibition in Murine Macrophages. J. Biol. Chem. 2016; 291: 8745-8755.
Haberland, M., Montgomery, R. L. and Olson, E. N. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat. Rev. Genet. 2009; 10: 32-42.
Han, C. K., Tien, Y. C., Jine-Yuan Hsieh, D., Ho, T. J., Lai, C. H., Yeh, Y. L., Hsuan Day, C., Shen, C. Y., Hsu, H. H., Lin, J. Y. and Huang, C. Y. Attenuation of the LPS-induced, ERK-mediated upregulation of fibrosis-related factors FGF-2, uPA, MMP-2, and MMP-9 by Carthamus tinctorius L in cardiomyoblasts. Environmental toxicology 2016.
Harrois, A., Huet, O. and Duranteau, J. Alterations of mitochondrial function in sepsis and critical illness. Curr. Opin. Anesthesio. 2009; 22: 143-149.
Hennessy, E., Gormley, S., Lopez-Rodriguez, A. B., Murray, C. and Cunningham, C. Systemic TNF-alpha produces acute cognitive dysfunction and exaggerated sickness behavior when superimposed upon progressive neurodegeneration. Brain, Behav., Immun. 2017; 59: 233-244.
Hotchkiss, R. S., Moldawer, L. L., Opal, S. M., Reinhart, K., Turnbull, I. R. and Vincent, J. L. Sepsis and septic shock. Nat. Rev. Dis. Primers 2016; 2: 16045.
Hsiao, G., Chi, W. C., Pang, K. L., Chen, J. J., Kuo, Y. H., Wang, Y. K., Cha, H. J., Chou, S. C. and Lee, T. H. Hirsutane-Type Sesquiterpenes with Inhibitory Activity of Microglial Nitric Oxide Production from the Red Alga-Derived Fungus Chondrostereum sp. NTOU4196. J. Nat. Prod. 2017; 80: 1615-1622.
Hu, J., Van den Steen, P. E., Dillen, C. and Opdenakker, G. Targeting neutrophil collagenase/matrix metalloproteinase-8 and gelatinase B/matrix metalloproteinase-9 with a peptidomimetic inhibitor protects against endotoxin shock. Biochem. Pharmaco. 2005; 70: 535-544.
Huang, S. L., Chen, P. Y., Wu, M. J., Tai, M. H., Ho, C. T. and Yen, J. H. Curcuminoids Modulate the PKCdelta/NADPH Oxidase/Reactive Oxygen Species Signaling Pathway and Suppress Matrix Invasion during Monocyte-Macrophage Differentiation. J. Agric. Food Chem. 2015; 63: 8838-8848.
Huang, W. J., Wang, Y. C., Chao, S. W., Yang, C. Y., Chen, L. C., Lin, M. H., Hou, W. C., Chen, M. Y., Lee, T. L., Yang, P. and Chang, C. I. Synthesis and biological evaluation of ortho-aryl N-hydroxycinnamides as potent histone deacetylase (HDAC) 8 isoform-selective inhibitors. ChemMedChem 2012; 7: 1815-1824.
Iwashyna, T. J., Ely, E. W., Smith, D. M. and Langa, K. M. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 2010; 304: 1787-1794.
Jablonska-Trypuc, A., Matejczyk, M. and Rosochacki, S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme Inhib. Med. Chem. 2016; 31: 177-183.
Jain, A. and Bahuguna, R. Role of matrix metalloproteinases in dental caries, pulp and periapical inflammation: An overview. J. Oral Biol. Craniofac. Res. 2015; 5: 212-218.
Jan, J. S., Chou, Y. C., Cheng, Y. W., Chen, C. K., Huang, W. J. and Hsiao, G. The Novel HDAC8 Inhibitor WK2-16 Attenuates Lipopolysaccharide-Activated Matrix Metalloproteinase-9 Expression in Human Monocytic Cells and Improves Hypercytokinemia In Vivo. Int. J. Mol. Sci. 2017; 18.
Jeong, Y., Du, R., Zhu, X., Yin, S., Wang, J., Cui, H., Cao, W. and Lowenstein, C. J. Histone deacetylase isoforms regulate innate immune responses by deacetylating mitogen-activated protein kinase phosphatase-1. J. Leukoc. Biol. 2014; 95: 651-659.
Jin, L. Y., Li, C. F., Zhu, G. F., Wu, C. T., Wang, J. and Yan, S. F. Effect of siRNA against NF-kappaB on sepsisinduced acute lung injury in a mouse model. Mol. Med. Rep. 2014; 10: 631-637.
Joo, M., Wright, J. G., Hu, N. N., Sadikot, R. T., Park, G. Y., Blackwell, T. S. and Christman, J. W. Yin Yang 1 enhances cyclooxygenase-2 gene expression in macrophages. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007; 292: L1219-1226.
Kaiser, F. J., Ansari, M., Braunholz, D., Concepcion Gil-Rodriguez, M., Decroos, C., Wilde, J. J., Fincher, C. T., Kaur, M., Bando, M., Amor, D. J., Atwal, P. S., Bahlo, M., Bowman, C. M., Bradley, J. J., Brunner, H. G., Clark, D., Del Campo, M., Di Donato, N., Diakumis, P., Dubbs, H., Dyment, D. A., Eckhold, J., Ernst, S., Ferreira, J. C., Francey, L. J., Gehlken, U., Guillen-Navarro, E., Gyftodimou, Y., Hall, B. D., Hennekam, R., Hudgins, L., Hullings, M., Hunter, J. M., Yntema, H., Innes, A. M., Kline, A. D., Krumina, Z., Lee, H., Leppig, K., Lynch, S. A., Mallozzi, M. B., Mannini, L., McKee, S., Mehta, S. G., Micule, I., Mohammed, S., Moran, E., Mortier, G. R., Moser, J. A., Noon, S. E., Nozaki, N., Nunes, L., Pappas, J. G., Penney, L. S., Perez-Aytes, A., Petersen, M. B., Puisac, B., Revencu, N., Roeder, E., Saitta, S., Scheuerle, A. E., Schindeler, K. L., Siu, V. M., Stark, Z., Strom, S. P., Thiese, H., Vater, I., Willems, P., Williamson, K., Wilson, L. C., Hakonarson, H., Quintero-Rivera, F., Wierzba, J., Musio, A., Gillessen-Kaesbach, G., Ramos, F. J., Jackson, L. G., Shirahige, K., Pie, J., Christianson, D. W., Krantz, I. D., Fitzpatrick, D. R. and Deardorff, M. A. Loss-of-function HDAC8 mutations cause a phenotypic spectrum of Cornelia de Lange syndrome-like features, ocular hypertelorism, large fontanelle and X-linked inheritance. Hum. Mol. Genet. 2014; 23: 2888-2900.
Kantari, C., Pederzoli-Ribeil, M. and Witko-Sarsat, V. The role of neutrophils and monocytes in innate immunity. Contributions to microbiology 2008; 15: 118-146.
Kapoor, C., Vaidya, S., Wadhwan, V., Kaur, G. and Pathak, A. Seesaw of matrix metalloproteinases (MMPs). J. Cancer Res. Ther. 2016; 12: 28-35.
Kaukonen, K. M., Bailey, M., Suzuki, S., Pilcher, D. and Bellomo, R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. JAMA 2014; 311: 1308-1316.
Kirkby, N. S., Zaiss, A. K., Wright, W. R., Jiao, J., Chan, M. V., Warner, T. D., Herschman, H. R. and Mitchell, J. A. Differential COX-2 induction by viral and bacterial PAMPs: Consequences for cytokine and interferon responses and implications for anti-viral COX-2 directed therapies. Biochem. Biophys. Res. Commun. 2013; 438: 249-256.
Kong, E., Sucic, S., Monje, F. J., Savalli, G., Diao, W., Khan, D., Ronovsky, M., Cabatic, M., Koban, F., Freissmuth, M. and Pollak, D. D. STAT3 controls IL6-dependent regulation of serotonin transporter function and depression-like behavior. Sci. Rep. 2015; 5: 9009.
Kress, J. P. and Hall, J. B. ICU-acquired weakness and recovery from critical illness. New Engl. J. Med. 2014; 371: 287-288.
Lauhio, A., Hastbacka, J., Pettila, V., Tervahartiala, T., Karlsson, S., Varpula, T., Varpula, M., Ruokonen, E., Sorsa, T. and Kolho, E. Serum MMP-8, -9 and TIMP-1 in sepsis: high serum levels of MMP-8 and TIMP-1 are associated with fatal outcome in a multicentre, prospective cohort study. Hypothetical impact of tetracyclines. Pharmacol. Res. 2011; 64: 590-594.
Lee, E. O., Kang, J. L. and Chong, Y. H. The amyloid-beta peptide suppresses transforming growth factor-beta1-induced matrix metalloproteinase-2 production via Smad7 expression in human monocytic THP-1 cells. J. Biol. Chem. 2005; 280: 7845-7853.
Lee, H. S., Kang, P., Kim, K. Y. and Seol, G. H. Foeniculum vulgare Mill. Protects against Lipopolysaccharide-induced Acute Lung Injury in Mice through ERK-dependent NF-kappaB Activation. Korean J Physiol Pharmacol. 2015; 19: 183-189.
Lee, W. R., Chung, C. L., Hsiao, C. J., Chou, Y. C., Hsueh, P. J., Yang, P. C., Jan, J. S., Cheng, Y. W. and Hsiao, G. Suppression of matrix metalloproteinase-9 expression by andrographolide in human monocytic THP-1 cells via inhibition of NF-kappaB activation. Phytomedicine 2012; 19: 270-277.
Leng, Y., Marinova, Z., Reis-Fernandes, M. A., Nau, H. and Chuang, D. M. Potent neuroprotective effects of novel structural derivatives of valproic acid: potential roles of HDAC inhibition and HSP70 induction. Neurosci. Lett. 2010; 476: 127-132.
Leon, L. R., White, A. A. and Kluger, M. J. Role of IL-6 and TNF in thermoregulation and survival during sepsis in mice. Am. J. Physiol. 1998; 275: R269-277.
Lepper, P. M., Held, T. K., Schneider, E. M., Bolke, E., Gerlach, H. and Trautmann, M. Clinical implications of antibiotic-induced endotoxin release in septic shock. Intensive Care Med. 2002; 28: 824-833.
Li, S., Fossati, G., Marchetti, C., Modena, D., Pozzi, P., Reznikov, L. L., Moras, M. L., Azam, T., Abbate, A., Mascagni, P. and Dinarello, C. A. Specific inhibition of histone deacetylase 8 reduces gene expression and production of proinflammatory cytokines in vitro and in vivo. J. Biol. Chem. 2015; 290: 2368-2378.
Li, Y., Liu, Z., Liu, B., Zhao, T., Chong, W., Wang, Y. and Alam, H. B. Citrullinated histone H3: a novel target for the treatment of sepsis. Surgery 2014; 156: 229-234.
Liu, Q., Merkler, K. A., Zhang, X. and McLean, M. P. Prostaglandin F2alpha suppresses rat steroidogenic acute regulatory protein expression via induction of Yin Yang 1 protein and recruitment of histone deacetylase 1 protein. Endocrinology 2007; 148: 5209-5219.
Lorente, L., Martin, M. M., Perez-Cejas, A., Barrios, Y., Sole-Violan, J., Ferreres, J., Labarta, L., Diaz, C. and Jimenez, A. Association between Interleukin-6 Promoter Polymorphism (-174 G/C), Serum Interleukin-6 Levels and Mortality in Severe Septic Patients. Int. J. Mol. Sci. 2016; 17.
Lorente, L., Martin, M. M., Sole-Violan, J., Blanquer, J., Labarta, L., Diaz, C., Borreguero-Leon, J. M., Orbe, J., Rodriguez, J. A., Jimenez, A. and Paramo, J. A. Association of sepsis-related mortality with early increase of TIMP-1/MMP-9 ratio. PloS One 2014; 9: e94318.
Lowry, S. F. Cytokine mediators of immunity and inflammation. Arch. Surg. 1993; 128: 1235-1241.
Lv, S., Han, M., Yi, R., Kwon, S., Dai, C. and Wang, R. Anti-TNF-alpha therapy for patients with sepsis: a systematic meta-analysis. Int. J. Clin. Pract. 2014; 68: 520-528.
Ma, L., Zhang, H., Yin, Y. L., Guo, W. Z., Ma, Y. Q., Wang, Y. B., Shu, C. and Dong, L. Q. Role of interleukin-6 to differentiate sepsis from non-infectious systemic inflammatory response syndrome. Cytokine 2016; 88: 126-135.
Mani, S. K., Kern, C. B., Kimbrough, D., Addy, B., Kasiganesan, H., Rivers, W. T., Patel, R. K., Chou, J. C., Spinale, F. G., Mukherjee, R. and Menick, D. R. Inhibition of class I histone deacetylase activity represses matrix metalloproteinase-2 and -9 expression and preserves LV function postmyocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2015; 308: H1391-1401.
Marik, P. E. Surviving sepsis: going beyond the guidelines. Ann. Intensive Care 2011; 1: 17.
Marinova, Z., Ren, M., Wendland, J. R., Leng, Y., Liang, M. H., Yasuda, S., Leeds, P. and Chuang, D. M. Valproic acid induces functional heat-shock protein 70 via Class I histone deacetylase inhibition in cortical neurons: a potential role of Sp1 acetylation. J. Neurochem. 2009; 111: 976-987.
Marshall, J. C., Foster, D., Vincent, J. L., Cook, D. J., Cohen, J., Dellinger, R. P., Opal, S., Abraham, E., Brett, S. J., Smith, T., Mehta, S., Derzko, A. and Romaschin, A. Diagnostic and prognostic implications of endotoxemia in critical illness: results of the MEDIC study. J. Infect. Dis. 2004; 190: 527-534.
Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008; 454: 428-435.
Mello, B. S., Monte, A. S., McIntyre, R. S., Soczynska, J. K., Custodio, C. S., Cordeiro, R. C., Chaves, J. H., Vasconcelos, S. M., Nobre, H. V., Jr., Florenco de Sousa, F. C., Hyphantis, T. N., Carvalho, A. F. and Macedo, D. S. Effects of doxycycline on depressive-like behavior in mice after lipopolysaccharide (LPS) administration. J. Psychiatr. Res. 2013; 47: 1521-1529.
Minogue, A. M., Barrett, J. P. and Lynch, M. A. LPS-induced release of IL-6 from glia modulates production of IL-1beta in a JAK2-dependent manner. J. Neuroinflammation 2012; 9: 126.
Mishra, M. K., Wang, J., Silva, C., Mack, M. and Yong, V. W. Kinetics of proinflammatory monocytes in a model of multiple sclerosis and its perturbation by laquinimod. Am. J. Pathol. 2012; 181: 642-651.
Munford, R. S. Endotoxemia-menace, marker, or mistake? Journal of leukocyte biology 2016; 100: 687-698.
Nagase, H., Visse, R. and Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 2006; 69: 562-573.
Nahra, R. and Dellinger, R. P. Targeting the lipopolysaccharides: still a matter of debate? Curr Opin Anesthesio 2008; 21: 98-104.
Nissinen, L. and Kahari, V. M. Matrix metalloproteinases in inflammation. Biochim. Biophys. Acta 2014; 1840: 2571-2580.
O''Dea, K. P., Young, A. J., Yamamoto, H., Robotham, J. L., Brennan, F. M. and Takata, M. Lung-marginated monocytes modulate pulmonary microvascular injury during early endotoxemia. Am. J. Respir. Crit. Care Med. 2005; 172: 1119-1127.
Olivieri, R., Michels, M., Pescador, B., Avila, P., Abatti, M., Cucker, L., Burge, H., Dominguini, D., Quevedo, J. and Dal-Pizzol, F. The additive effect of aging on sepsis-induced cognitive impairment and neuroinflammation. J. Neuroimmunol. 2018; 314: 1-7.
Opal, S. M. The host response to endotoxin, antilipopolysaccharide strategies, and the management of severe sepsis. Int. J. Med. Microbiol. 2007; 297: 365-377.
Palsson-McDermott, E. M. and O''Neill, L. A. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 2004; 113: 153-162.
Parks, W. C., Wilson, C. L. and Lopez-Boado, Y. S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol. 2004; 4: 617-629.
Pena, G., Cai, B., Deitch, E. A. and Ulloa, L. JAK2 inhibition prevents innate immune responses and rescues animals from sepsis. J. Mol. Med. 2010; 88: 851-859.
Poli-De-Figueiredo, L. F., Garrido, A. G., Nakagawa, N. K. and Sannomiya, P. Experimental models of sepsis and their clinical relevance. Shock 2008; 30: 53-59.
Prescott, H. C. and Angus, D. C. Enhancing Recovery From Sepsis: A Review. JAMA 2018; 319: 62-75.
Prescott, H. C., Langa, K. M. and Iwashyna, T. J. Readmission diagnoses after hospitalization for severe sepsis and other acute medical conditions. JAMA 2015; 313: 1055-1057.
Pueschel, R., Coraggio, F. and Meister, P. From single genes to entire genomes: the search for a function of nuclear organization. Development 2016; 143: 910-923.
Pugin, J., Widmer, M. C., Kossodo, S., Liang, C. M., Preas, H. L. n. and Suffredini, A. F. Human neutrophils secrete gelatinase B in vitro and in vivo in response to endotoxin and proinflammatory mediators. Am. J. Respir. Cell Mol. Biol. 1999; 20: 458-464.
Qi, J., Singh, S., Hua, W. K., Cai, Q., Chao, S. W., Li, L., Liu, H., Ho, Y., McDonald, T., Lin, A., Marcucci, G., Bhatia, R., Huang, W. J., Chang, C. I. and Kuo, Y. H. HDAC8 Inhibition Specifically Targets Inv(16) Acute Myeloid Leukemic Stem Cells by Restoring p53 Acetylation. Cell stem cell 2015; 17: 597-610.
Renckens, R., Roelofs, J. J., Florquin, S., de Vos, A. F., Lijnen, H. R., van''t Veer, C. and van der Poll, T. Matrix metalloproteinase-9 deficiency impairs host defense against abdominal sepsis. J. Immunol. 2006; 176: 3735-3741.
Rettig, I., Koeneke, E., Trippel, F., Mueller, W. C., Burhenne, J., Kopp-Schneider, A., Fabian, J., Schober, A., Fernekorn, U., von Deimling, A., Deubzer, H. E., Milde, T., Witt, O. and Oehme, I. Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation. Cell death Dis. 2015; 6: e1657.
Rhodes, A., Evans, L. E., Alhazzani, W., Levy, M. M., Antonelli, M., Ferrer, R., Kumar, A., Sevransky, J. E., Sprung, C. L., Nunnally, M. E., Rochwerg, B., Rubenfeld, G. D., Angus, D. C., Annane, D., Beale, R. J., Bellinghan, G. J., Bernard, G. R., Chiche, J. D., Coopersmith, C., De Backer, D. P., French, C. J., Fujishima, S., Gerlach, H., Hidalgo, J. L., Hollenberg, S. M., Jones, A. E., Karnad, D. R., Kleinpell, R. M., Koh, Y., Lisboa, T. C., Machado, F. R., Marini, J. J., Marshall, J. C., Mazuski, J. E., McIntyre, L. A., McLean, A. S., Mehta, S., Moreno, R. P., Myburgh, J., Navalesi, P., Nishida, O., Osborn, T. M., Perner, A., Plunkett, C. M., Ranieri, M., Schorr, C. A., Seckel, M. A., Seymour, C. W., Shieh, L., Shukri, K. A., Simpson, S. Q., Singer, M., Thompson, B. T., Townsend, S. R., Van der Poll, T., Vincent, J. L., Wiersinga, W. J., Zimmerman, J. L. and Dellinger, R. P. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017; 43: 304-377.
Roderburg, C., Benz, F., Schuller, F., Pombeiro, I., Hippe, H. J., Frey, N., Trautwein, C., Luedde, T., Koch, A., Tacke, F. and Luedde, M. Serum Levels of TNF Receptor Ligands Are Dysregulated in Sepsis and Predict Mortality in Critically Ill Patients. PloS One 2016; 11: e0153765.
Rodriguez-Gonzalez, R., Ramos-Nuez, A., Martin-Barrasa, J. L., Lopez-Aguilar, J., Baluja, A., Alvarez, J., Rocco, P. R., Pelosi, P. and Villar, J. Endotoxin-induced lung alveolar cell injury causes brain cell damage. Exp. Biol. Med. 2015; 240: 135-142.
Roger, T., Lugrin, J., Le Roy, D., Goy, G., Mombelli, M., Koessler, T., Ding, X. C., Chanson, A. L., Reymond, M. K., Miconnet, I., Schrenzel, J., Francois, P. and Calandra, T. Histone deacetylase inhibitors impair innate immune responses to Toll-like receptor agonists and to infection. Blood 2011; 117: 1205-1217.
Rylski, M., Amborska, R., Zybura, K., Mioduszewska, B., Michaluk, P., Jaworski, J. and Kaczmarek, L. Yin Yang 1 is a critical repressor of matrix metalloproteinase-9 expression in brain neurons. J. Biol. Chem. 2008; 283: 35140-35153.
Sachwani, G. R., Jaehne, A. K., Jayaprakash, N., Kuzich, M., Onkoba, V., Blyden, D. and Rivers, E. P. The association between blood glucose levels and matrix-metalloproteinase-9 in early severe sepsis and septic shock. J. Inflamm. 2016; 13: 13.
Salazar, A., Gonzalez-Rivera, B. L., Redus, L., Parrott, J. M. and O''Connor, J. C. Indoleamine 2,3-dioxygenase mediates anhedonia and anxiety-like behaviors caused by peripheral lipopolysaccharide immune challenge. Horm. Behav. 2012; 62: 202-209.
Salomao, R., Ferreira, B. L., Salomao, M. C., Santos, S. S., Azevedo, L. C. P. and Brunialti, M. K. C. Sepsis: evolving concepts and challenges. Braz. J. Med. Biol. Res. 2019; 52: e8595.
Sato, H. and Seiki, M. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene 1993; 8: 395-405.
Schulte, W., Bernhagen, J. and Bucala, R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets--an updated view. Mediators Inflamm. 2013; 2013: 165974.
Sellebjerg, F., Bornsen, L., Ammitzboll, C., Nielsen, J. E., Vinther-Jensen, T., Hjermind, L. E., von Essen, M., Ratzer, R. L., Soelberg Sorensen, P. and Romme Christensen, J. Defining active progressive multiple sclerosis. Mult. Scler. 2017; 23: 1727-1735.
Seto, E. and Yoshida, M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 2014; 6: a018713.
Severgnini, M., Takahashi, S., Rozo, L. M., Homer, R. J., Kuhn, C., Jhung, J. W., Perides, G., Steer, M., Hassoun, P. M., Fanburg, B. L., Cochran, B. H. and Simon, A. R. Activation of the STAT pathway in acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004; 286: L1282-1292.
Shen, H. N., Lu, C. L. and Yang, H. H. Epidemiologic trend of severe sepsis in Taiwan from 1997 through 2006. Chest 2010; 138: 298-304.
Shen, Y., Wei, W. and Zhou, D. X. Histone Acetylation Enzymes Coordinate Metabolism and Gene Expression. Trends Plant Sci. 2015; 20: 614-621.
Shim, S., Kim, S., Choi, D. S., Kwon, Y. B. and Kwon, J. Anti-inflammatory effects of [6]-shogaol: potential roles of HDAC inhibition and HSP70 induction. Food Chem. Toxicol. 2011; 49: 2734-2740.
Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G. R., Chiche, J. D., Coopersmith, C. M., Hotchkiss, R. S., Levy, M. M., Marshall, J. C., Martin, G. S., Opal, S. M., Rubenfeld, G. D., van der Poll, T., Vincent, J. L. and Angus, D. C. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315: 801-810.
Skelly, D. T., Hennessy, E., Dansereau, M. A. and Cunningham, C. A systematic analysis of the peripheral and CNS effects of systemic LPS, IL-1beta, [corrected] TNF-alpha and IL-6 challenges in C57BL/6 mice. PloS One 2013; 8: e69123.
Su, X., Matthay, M. A. and Malik, A. B. Requisite role of the cholinergic alpha7 nicotinic acetylcholine receptor pathway in suppressing Gram-negative sepsis-induced acute lung inflammatory injury. J. Immunol. 2010; 184: 401-410.
Sulakhiya, K., Keshavlal, G. P., Bezbaruah, B. B., Dwivedi, S., Gurjar, S. S., Munde, N., Jangra, A., Lahkar, M. and Gogoi, R. Lipopolysaccharide induced anxiety- and depressive-like behaviour in mice are prevented by chronic pre-treatment of esculetin. Neurosci. Lett. 2016; 611: 106-111.
Swiergiel, A. H. and Dunn, A. J. The roles of IL-1, IL-6, and TNFalpha in the feeding responses to endotoxin and influenza virus infection in mice. Brain Behav. Immun. 1999; 13: 252-265.
Szentirmai, E. and Krueger, J. M. Sickness behaviour after lipopolysaccharide treatment in ghrelin deficient mice. Brain Behav. Immun. 2014; 36: 200-206.
Tang, J., Yan, H. and Zhuang, S. Histone deacetylases as targets for treatment of multiple diseases. Clin Sci (Lond) 2013; 124: 651-662.
Vandenbroucke, R. E. and Libert, C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat. Rev. Drug Discov. 2014; 13: 904-927.
Vandooren, J., Swinnen, W., Ugarte-Berzal, E., Boon, L., Dorst, D., Martens, E. and Opdenakker, G. Endotoxemia shifts neutrophils with TIMP-free gelatinase B/MMP-9 from bone marrow to the periphery and induces systematic upregulation of TIMP-1. Haematologica 2017; 102: 1671-1682.
Vincent, J. L., Bihari, D. J., Suter, P. M., Bruining, H. A., White, J., Nicolas-Chanoin, M. H., Wolff, M., Spencer, R. C. and Hemmer, M. The prevalence of nosocomial infection in intensive care units in Europe. Results of the European Prevalence of Infection in Intensive Care (EPIC) Study. EPIC International Advisory Committee. JAMA 1995; 274: 639-644.
Vogelzangs, N., de Jonge, P., Smit, J. H., Bahn, S. and Penninx, B. W. Cytokine production capacity in depression and anxiety. Transl. psychiatry 2016; 6: e825.
von Knethen, A. and Brune, B. Histone Deacetylation Inhibitors as Therapy Concept in Sepsis. Int. J. Mol. Sci. 2019; 20.
Voss, A. K. and Thomas, T. Histone Lysine and Genomic Targets of Histone Acetyltransferases in Mammals. Bioessays 2018; 40: e1800078.
Waltregny, D., Glenisson, W., Tran, S. L., North, B. J., Verdin, E., Colige, A. and Castronovo, V. Histone deacetylase HDAC8 associates with smooth muscle alpha-actin and is essential for smooth muscle cell contractility. FASEB J. 2005; 19: 966-968.
Wang, H. D., Lu, D. X. and Qi, R. B. Therapeutic strategies targeting the LPS signaling and cytokines. Pathophysiology 2009; 16: 291-296.
Wang, M., Zhang, Q., Zhao, X., Dong, G. and Li, C. Diagnostic and prognostic value of neutrophil gelatinase-associated lipocalin, matrix metalloproteinase-9, and tissue inhibitor of matrix metalloproteinases-1 for sepsis in the Emergency Department: an observational study. Crit. care 2014; 18: 634.
Wang, Z. T., Chen, Z. J., Jiang, G. M., Wu, Y. M., Liu, T., Yi, Y. M., Zeng, J., Du, J. and Wang, H. S. Histone deacetylase inhibitors suppress mutant p53 transcription via HDAC8/YY1 signals in triple negative breast cancer cells. Cellular signalling 2016; 28: 506-515.
Wiig, H. Pathophysiology of tissue fluid accumulation in inflammation. J. Physiol-London 2011; 589: 2945-2953.
Wongchana, W. and Palaga, T. Direct regulation of interleukin-6 expression by Notch signaling in macrophages. Cell. Mol. Immunol. 2012; 9: 155-162.
Xue, M., McKelvey, K., Shen, K., Minhas, N., March, L., Park, S. Y. and Jackson, C. J. Endogenous MMP-9 and not MMP-2 promotes rheumatoid synovial fibroblast survival, inflammation and cartilage degradation. Rheumatology 2014; 53: 2270-2279.
Yamauchi, Y., Boukari, H., Banerjee, I., Sbalzarini, I. F., Horvath, P. and Helenius, A. Histone deacetylase 8 is required for centrosome cohesion and influenza A virus entry. PLoS Pathog. 2011; 7: e1002316.
Yamawaki, Y., Kimura, H., Hosoi, T. and Ozawa, K. MyD88 plays a key role in LPS-induced Stat3 activation in the hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010; 298: R403-410.
Yan, X., Pan, J., Xiong, W., Cheng, M., Sun, Y., Zhang, S. and Chen, Y. Yin Yang 1 (YY1) synergizes with Smad7 to inhibit TGF-beta signaling in the nucleus. Sci. China Life Sci. 2014; 57: 128-136.
Yang, F., Chen, W. D., Deng, R., Zhang, H., Tang, J., Wu, K. W., Li, D. D., Feng, G. K., Lan, W. J., Li, H. J. and Zhu, X. F. Hirsutanol A, a novel sesquiterpene compound from fungus Chondrostereum sp., induces apoptosis and inhibits tumor growth through mitochondrial-independent ROS production: hirsutanol A inhibits tumor growth through ROS production. J. Transl. Med. 2013; 11: 32.
Yang, L., Guo, H., Li, Y., Meng, X., Yan, L., Dan, Z., Wu, S., Zhou, H., Peng, L., Xie, Q. and Jin, X. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARalpha signaling and inhibiting the NF-kappaB and ERK1/2/AP-1/STAT3 pathways. Sci. Rep. 2016; 6: 34611.
Yang, Y. L., Cheng, X., Li, W. H., Liu, M., Wang, Y. H. and Du, G. H. Kaempferol Attenuates LPS-Induced Striatum Injury in Mice Involving Anti-Neuroinflammation, Maintaining BBB Integrity, and Down-Regulating the HMGB1/TLR4 Pathway. Int. J. Mol. Sci. 2019; 20.
Yao, Y. L., Yang, W. M. and Seto, E. Regulation of transcription factor YY1 by acetylation and deacetylation. Mol. Cell. Biol. 2001; 21: 5979-5991.
Zhang, K., Lu, Y., Jiang, C., Liu, W., Shu, J., Chen, X., Shi, Y., Wang, E., Wang, L., Hu, Q., Dai, Y. and Xiong, B. HDAC8 functions in spindle assembly during mouse oocyte meiosis. Oncotarget 2017; 8: 20092-20102.
Zhao, J., Yu, H., Liu, Y., Gibson, S. A., Yan, Z., Xu, X., Gaggar, A., Li, P. K., Li, C., Wei, S., Benveniste, E. N. and Qin, H. Protective effect of suppressing STAT3 activity in LPS-induced acute lung injury. Am. J. Physiol Lung Cell. Mol. Physiol. 2016; 311: L868-L880.
Zybura-Broda, K., Amborska, R., Ambrozek-Latecka, M., Wilemska, J., Bogusz, A., Bucko, J., Konopka, A., Grajkowska, W., Roszkowski, M., Marchel, A., Rysz, A., Koperski, L., Wilczynski, G. M., Kaczmarek, L. and Rylski, M. Epigenetics of Epileptogenesis-Evoked Upregulation of Matrix Metalloproteinase-9 in Hippocampus. PloS One 2016; 11: e0159745.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top