|
Al Ajmi, E., Forghani, B., Reinhold, C., Bayat, M., & Forghani, R. (2018). Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm. European radiology, 28(6), 2604-2611. Andersen, M. B., Harders, S. W., Ganeshan, B., Thygesen, J., Torp Madsen, H. H., & Rasmussen, F. (2016). CT texture analysis can help differentiate between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer. Acta Radiologica, 57(6), 669-676. Bayanati, H., Thornhill, R. E., Souza, C. A., Sethi-Virmani, V., Gupta, A., Maziak, D., . . . Dennie, C. (2015). Quantitative CT texture and shape analysis: Can it differentiate benign and malignant mediastinal lymph nodes in patients with primary lung cancer? European radiology, 25(2), 480-487. Becker, M. (2017). CT Texture Analysis: Defining and Integrating New Biomarkers for Advanced Oncologic Imaging in Precision Medicine: A Comment on "CT Texture Analysis Potentially Predicts Local Failure in Head and Neck Squamous Cell Carcinoma Treated with Chemoradiotherapy". AJNR Am J Neuroradiol, 38(12), 2341-2343. doi:10.3174/ajnr.A5451 Beckers, R., Beets-Tan, R., Schnerr, R., Maas, M., da Costa Andrade, L., Beets, G., . . . Lambregts, D. (2017). Whole-volume vs. segmental CT texture analysis of the liver to assess metachronous colorectal liver metastases. Abdominal Radiology, 42(11), 2639-2645. Bektas, C. T., Kocak, B., Yardimci, A. H., Turkcanoglu, M. H., Yucetas, U., Koca, S. B., . . . Kilickesmez, O. (2018). Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade. Eur Radiol. doi:10.1007/s00330-018-5698-2 Bouckaert, R. R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., & Scuse, D. (2016). WEKA manual for version 3-9-1. University of Waikato, Hamilton, New Zealand. Bribiesca, E. (2008). An easy measure of compactness for 2D and 3D shapes. Pattern recognition, 41(2), 543-554. Brugarolas, J. (2007). Renal-cell carcinoma--molecular pathways and therapies. N Engl J Med, 356(2), 185-187. doi:10.1056/NEJMe068263 Bruick, R. K., & McKnight, S. L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 294(5545), 1337-1340. doi:10.1126/science.1066373 Canellas, R., Burk, K. S., Parakh, A., & Sahani, D. V. (2018). Prediction of pancreatic neuroendocrine tumor grade based on CT features and texture analysis. American Journal of Roentgenology, 210(2), 341-346. Cassinotto, C., Chong, J., Zogopoulos, G., Reinhold, C., Chiche, L., Lafourcade, J.-P., . . . Gallix, B. (2017). Resectable pancreatic adenocarcinoma: role of CT quantitative imaging biomarkers for predicting pathology and patient outcomes. European journal of radiology, 90, 152-158. Champion, A., Lu, G., Walker, M., Kothari, S., Osunkoya, A. O., & Wang, M. D. (2014). Semantic interpretation of robust imaging features for Fuhrman grading of renal carcinoma. Conf Proc IEEE Eng Med Biol Soc, 2014, 6446-6449. doi:10.1109/embc.2014.6945104 Chee, C. G., Kim, Y. H., Lee, K. H., Lee, Y. J., Park, J. H., Lee, H. S., . . . Kim, B. (2017). CT texture analysis in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy: A potential imaging biomarker for treatment response and prognosis. PloS one, 12(8), e0182883. Craigie, M., Squires, J., & Miles, K. (2017). Can CT measures of tumour heterogeneity stratify risk for nodal metastasis in patients with non-small cell lung cancer? Clinical radiology, 72(10), 899. e891-899. e897. Dabora, S. L., Jozwiak, S., Franz, D. N., Roberts, P. S., Nieto, A., Chung, J., . . . Kwiatkowski, D. J. (2001). Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet, 68(1), 64-80. doi:10.1086/316951 Dennie, C., Thornhill, R., Sethi-Virmani, V., Souza, C. A., Bayanati, H., Gupta, A., & Maziak, D. (2016). Role of quantitative computed tomography texture analysis in the differentiation of primary lung cancer and granulomatous nodules. Quantitative imaging in medicine and surgery, 6(1), 6. Ding, J., Xing, Z., Jiang, Z., Chen, J., Pan, L., Qiu, J., & Xing, W. (2018). CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Eur J Radiol, 103, 51-56. doi:10.1016/j.ejrad.2018.04.013 Doi, K. (2004). Overview on research and development of computer-aided diagnostic schemes. Semin Ultrasound CT MR, 25(5), 404-410. Doi, K. (2007). Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Computerized medical imaging and graphics, 31(4-5), 198-211. Doi, K., MacMahon, H., Katsuragawa, S., Nishikawa, R. M., & Jiang, Y. (1999). Computer-aided diagnosis in radiology: potential and pitfalls. European journal of Radiology, 31(2), 97-109. Fujita, H., Uchiyama, Y., Nakagawa, T., Fukuoka, D., Hatanaka, Y., Hara, T., . . . Gao, X. (2008). Computer-aided diagnosis: The emerging of three CAD systems induced by Japanese health care needs. Computer methods and programs in biomedicine, 92(3), 238-248. Ginsberg, L. H., Larrison, C. R., Nackerud, L., Barner, J. R., & Ricciardelli, L. A. (2019). Social Work and Science in the 21st Century: Oxford University Press. Goh, V., Ganeshan, B., Nathan, P., Juttla, J. K., Vinayan, A., & Miles, K. A. (2011). Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology, 261(1), 165-171. Grigorescu, C., Petkov, N., & Westenberg, M. A. (2003). Contour detection based on nonclassical receptive field inhibition. IEEE Trans Image Process, 12(7), 729-739. doi:10.1109/tip.2003.814250 Haas, N. B., & Nathanson, K. L. (2014). Hereditary kidney cancer syndromes. Adv Chronic Kidney Dis, 21(1), 81-90. doi:10.1053/j.ackd.2013.10.001 Haider, M. A., Vosough, A., Khalvati, F., Kiss, A., Ganeshan, B., & Bjarnason, G. A. (2017). CT texture analysis: a potential tool for prediction of survival in patients with metastatic clear cell carcinoma treated with sunitinib. Cancer Imaging, 17(1), 4. Hall-Beyer, M. (2017). GLCM Texture: A Tutorial v. 3.0 March 2017. Hayano, K., Kulkarni, N. M., Duda, D. G., Heist, R. S., & Sahani, D. V. (2016). Exploration of imaging biomarkers for predicting survival of patients with advanced non–small cell lung cancer treated with antiangiogenic chemotherapy. American Journal of Roentgenology, 206(5), 987-993. Hayano, K., Tian, F., Kambadakone, A. R., Yoon, S. S., Duda, D. G., Ganeshan, B., & Sahani, D. V. (2015). Texture analysis of non-contrast enhanced CT for assessing angiogenesis and survival of soft tissue sarcoma. Journal of computer assisted tomography, 39(4), 607. Huhdanpaa, H., Hwang, D., Cen, S., Quinn, B., Nayyar, M., Zhang, X., . . . Gill, I. (2015). CT prediction of the Fuhrman grade of clear cell renal cell carcinoma (RCC): towards the development of computer-assisted diagnostic method. Abdominal imaging, 40(8), 3168-3174. Jiang, Y., Nishikawa, R. M., Schmidt, R. A., Metz, C. E., Giger, M. L., & Doi, K. (1999). Improving breast cancer diagnosis with computer-aided diagnosis. Academic radiology, 6(1), 22-33. Kim, S. H., Park, W. S., & Chung, J. (2019). SETD2, GIGYF2, FGFR3, BCR, KMT2C, and TSC2 as candidate genes for differentiating multilocular cystic renal neoplasm of low malignant potential from clear cell renal cell carcinoma with cystic change. Investig Clin Urol, 60(3), 148-155. doi:10.4111/icu.2019.60.3.148 Kloth, C., Blum, A. C., Thaiss, W. M., Preibsch, H., Ditt, H., Grimmer, R., . . . Horger, M. (2017). Differences in Texture Analysis Parameters Between Active Alveolitis and Lung Fibrosis in Chest CT of Patients with Systemic Sclerosis: A Feasibility Study. Academic radiology, 24(12), 1596-1603. Kobayashi, T., Xu, X.-W., MacMahon, H., Metz, C. E., & Doi, K. (1996). Effect of a computer-aided diagnosis scheme on radiologists'' performance in detection of lung nodules on radiographs. Radiology, 199(3), 843-848. Kuno, H., Qureshi, M., Chapman, M., Li, B., Andreu-Arasa, V., Onoue, K., . . . Sakai, O. (2017). CT texture analysis potentially predicts local failure in head and neck squamous cell carcinoma treated with chemoradiotherapy. American Journal of Neuroradiology, 38(12), 2334-2340. Linehan, W. M., & Ricketts, C. J. (2013). The metabolic basis of kidney cancer. Semin Cancer Biol, 23(1), 46-55. doi:10.1016/j.semcancer.2012.06.002 Linehan, W. M., Walther, M. M., & Zbar, B. (2003). The genetic basis of cancer of the kidney. The Journal of urology, 170(6), 2163-2172. Liu, G., Li, W., Li, L., & Jiang, X. (2017). The value of CT image-based texture analysis for differentiating renal primary undifferentiated pleomorphic sarcoma from three subtypes of renal cell carcinoma. Int J Clin Exp Med, 10(9), 13526-13533. Liu, S., Liu, S., Ji, C., Zheng, H., Pan, X., Zhang, Y., . . . Li, W. (2017). Application of CT texture analysis in predicting histopathological characteristics of gastric cancers. European radiology, 27(12), 4951-4959. Lodwick, G. S., Haun, C. L., Smith, W. E., Keller, R. F., & Robertson, E. D. (1963). Computer diagnosis of primary bone tumors: A preliminary report. Radiology, 80(2), 273-275. Lubner, M. G., Stabo, N., Abel, E. J., del Rio, A. M., & Pickhardt, P. J. (2016). CT textural analysis of large primary renal cell carcinomas: pretreatment tumor heterogeneity correlates with histologic findings and clinical outcomes. American Journal of Roentgenology, 207(1), 96-105. Mardia, K. V., & Jupp, P. E. (2009). Directional statistics (Vol. 494): John Wiley & Sons. Mattonen, S. A., Tetar, S., Palma, D. A., Louie, A. V., Senan, S., & Ward, A. D. (2015). Imaging texture analysis for automated prediction of lung cancer recurrence after stereotactic radiotherapy. Journal of Medical Imaging, 2(4), 041010. McQuaid, S., Scuffham, J., Alobaidli, S., Prakash, V., Ezhil, V., Nisbet, A., . . . Evans, P. (2017). Factors influencing the robustness of P-value measurements in CT texture prognosis studies. Physics in Medicine & Biology, 62(13), 5403. Meyers, P. H., Nice Jr, C. M., Becker, H. C., Nettleton Jr, W. J., Sweeney, J. W., & Meckstroth, G. R. (1964). Automated computer analysis of radiographic images. Radiology, 83(6), 1029-1034. Miles, K. A. (2016). How to use CT texture analysis for prognostication of non-small cell lung cancer. Cancer Imaging, 16(1), 10. Miles, K. A., Ganeshan, B., & Hayball, M. P. (2013). CT texture analysis using the filtration-histogram method: what do the measurements mean? Cancer Imaging, 13(3), 400. Mohanaiah, P., Sathyanarayana, P., & GuruKumar, L. (2013). Image texture feature extraction using GLCM approach. International Journal of Scientific and Research Publications, 3(5), 1. Moon, W. K., Lo, C.-M., Cho, N., Chang, J. M., Huang, C.-S., Chen, J.-H., & Chang, R.-F. (2013). Computer-aided diagnosis of breast masses using quantified BI-RADS findings. Computer methods and programs in biomedicine, 111(1), 84-92. Ni, Z., Zeng, H., Ma, L., Hou, J., Chen, J., & Ma, K. K. (2018). A Gabor Feature-Based Quality Assessment Model for the Screen Content Images. IEEE Trans Image Process, 27(9), 4516-4528. doi:10.1109/tip.2018.2839890 Nithya, R., & Santhi, B. (2011). Mammogram classification using maximum difference feature selection method. Journal of Theoretical and Applied Information Technology, 33(2), 197-204. Oh, S., Sung, D. J., Yang, K. S., Sim, K. C., Han, N. Y., Park, B. J., . . . Cho, S. B. (2017). Correlation of CT imaging features and tumor size with Fuhrman grade of clear cell renal cell carcinoma. Acta Radiologica, 58(3), 376-384. Park, H. J., Kim, J. H., Choi, S.-y., Lee, E. S., Park, S. J., Byun, J. Y., & Choi, B. I. (2017). Prediction of therapeutic response of hepatocellular carcinoma to transcatheter arterial chemoembolization based on pretherapeutic dynamic CT and textural findings. American Journal of Roentgenology, 209(4), W211-W220. Raman, S. P., Chen, Y., Schroeder, J. L., Huang, P., & Fishman, E. K. (2014). CT texture analysis of renal masses: pilot study using random forest classification for prediction of pathology. Academic radiology, 21(12), 1587-1596. Rao, S.-X., Lambregts, D. M., Schnerr, R. S., Beckers, R. C., Maas, M., Albarello, F., . . . Heijnen, L. A. (2016). CT texture analysis in colorectal liver metastases: a better way than size and volume measurements to assess response to chemotherapy? United European gastroenterology journal, 4(2), 257-263. Rao, S.-X., Lambregts, D. M., Schnerr, R. S., van Ommen, W., van Nijnatten, T. J., Martens, M. H., . . . Zeng, M.-S. (2014). Whole-liver CT texture analysis in colorectal cancer: Does the presence of liver metastases affect the texture of the remaining liver? United European gastroenterology journal, 2(6), 530-538. Rioux-Leclercq, N. (2006). The Fuhrman grading system for kidney cancer prognosis. Progres en urologie: journal de l''Association francaise d''urologie et de la Societe francaise d''urologie, 16(4 Suppl FMC), 5. Santos, T. A., Maistro, C. E., Silva, C. B., Oliveira, M. S., Franca, M. C., Jr., & Castellano, G. (2015). MRI Texture Analysis Reveals Bulbar Abnormalities in Friedreich Ataxia. AJNR Am J Neuroradiol, 36(12), 2214-2218. doi:10.3174/ajnr.A4455 Schieda, N., Thornhill, R. E., Al-Subhi, M., McInnes, M. D., Shabana, W. M., van der Pol, C. B., & Flood, T. A. (2015). Diagnosis of sarcomatoid renal cell carcinoma with CT: evaluation by qualitative imaging features and texture analysis. American Journal of Roentgenology, 204(5), 1013-1023. Schmidt, L., Junker, K., Nakaigawa, N., Kinjerski, T., Weirich, G., Miller, M., . . . Zbar, B. (1999). Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene, 18(14), 2343-2350. doi:10.1038/sj.onc.1202547 Semenza, G. L. (2000). HIF-1 and human disease: one highly involved factor. Genes Dev, 14(16), 1983-1991. Shi, B., Sun, H., Jin, Z.-Y., & Xue, H.-D. (2017). Differentiating pheochromocytoma from lipid-poor adrenocortical adenoma by CT texture analysis: Feasibility study. Abdominal Radiology, 42(9), 2305-2313. Siegel, C. (2016). Re: Can Quantitative CT Texture Analysis be Used to Differentiate Fat-Poor Renal Angiomyolipoma from Renal Cell Carcinoma on Unenhanced CT Images? The Journal of urology, 196(6), 1636-1637. Smith, A. D., Gray, M. R., Del Campo, S. M., Shlapak, D., Ganeshan, B., Zhang, X., & Carson III, W. E. (2015). Predicting overall survival in patients with metastatic melanoma on antiangiogenic therapy and RECIST stable disease on initial posttherapy images using CT texture analysis. American Journal of Roentgenology, 205(3), W283-W293. Sridhar, G. (2012). Color and texture based image retrieval. ARPN Journal of Systems and Software, 2(1), 1-6. Summers, R. (2002). Challenges for computer-aided diagnosis for CT colonography. Abdominal imaging, 27(3), 268-274. Sun, H., Shi, B., Jin, Z.-Y., & Xue, H.-D. (2017). Quantitative CT texture analysis for evaluating histologic grade of urothelial carcinoma. Abdominal Radiology, 42(2), 561-568. Taal, M. W., Chertow, G. M., Marsden, P. A., Skorecki, K., Alan, S., & Brenner, B. M. (2011). Brenner and Rector''s The Kidney E-Book: Elsevier Health Sciences. Tian, F., Hayano, K., Kambadakone, A. R., & Sahani, D. V. (2015). Response assessment to neoadjuvant therapy in soft tissue sarcomas: using CT texture analysis in comparison to tumor size, density, and perfusion. Abdominal imaging, 40(6), 1705-1712. Toriwaki, J.-I., Suenaga, Y., Negoro, T., & Fukumura, T. (1973). Pattern recognition of chest X-ray images. Computer Graphics and Image Processing, 2(3-4), 252-271. Villavicencio, C. P., Mc Carthy, R. J., & Miller, F. H. (2017). Can diffusion-weighted magnetic resonance imaging of clear cell renal carcinoma predict low from high nuclear grade tumors. Abdominal Radiology, 42(4), 1241-1249. Wang, R., Yang, X., Wang, K., Wang, S., Li, Q., Wu, J., . . . Xu, K. (2017). Value of texture analysis in evaluating liver cancer recurrence after transarterial chemoembolization. Zhonghua gan zang bing za zhi= Zhonghua ganzangbing zazhi= Chinese journal of hepatology, 25(3), 200-204. Wang, X., Ding, X., & Liu, C. (2005). Gabor filters-based feature extraction for character recognition. Pattern recognition, 38(3), 369-379. Wein, A. J., Kavoussi, L. R., Novick, A. C., Partin, A. W., & Peters, C. A. (2011). Campbell-Walsh urology: expert consult premium edition: enhanced online features and print, 4-volume set: Elsevier Health Sciences. Williamson, S. R., Taneja, K., & Cheng, L. (2019). Renal cell carcinoma staging: pitfalls, challenges, and updates. Histopathology, 74(1), 18-30. Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques: Morgan Kaufmann. Xu, X., Gu, H., Wang, Y., Wang, J., & Qin, P. (2019). Autoencoder Based Feature Selection Method for Classification of Anticancer Drug Response. Front Genet, 10, 233. doi:10.3389/fgene.2019.00233 Yang, X., Tridandapani, S., Beitler, J. J., Yu, D. S., Yoshida, E. J., Curran, W. J., & Liu, T. (2012). Ultrasound GLCM texture analysis of radiation‐induced parotid‐gland injury in head‐and‐neck cancer radiotherapy: An in vivo study of late toxicity. Medical physics, 39(9), 5732-5739. Zimmerman, R. H., Lounibos, L. P., Nishimura, N., Galardo, A. K., Galardo, C. D., & Arruda, M. E. (2013). Nightly biting cycles of malaria vectors in a heterogeneous transmission area of eastern Amazonian Brazil. Malaria journal, 12(1), 262.
|