跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 06:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王震宇
研究生(外文):Jenn-Yeu Wang
論文名稱:以機器學習斷層掃描影像紋理的電腦輔助診斷於低和高Fuhrman核等級腎細胞癌
論文名稱(外文):Computer-aided Diagnosis of Low and High Fuhrman Nuclear Grades of Renal Cell Carcinoma with Machine Learning CT Texture Analysis
指導教授:陳俊璋陳俊璋引用關係
指導教授(外文):Chun-Chang,Chen
口試委員:張詠淳羅崇銘
口試委員(外文):Chang, Yung-ChunChung-Ming Lo
口試日期:2019-05-23
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學資訊研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:69
中文關鍵詞:電腦斷層掃描紋理分腎細胞癌特徵選擇形態特徵灰階分布圖(histogram)灰階共生矩陣的紋理特徵Gabor紋理特徵
外文關鍵詞:computed tomography texture analysisrenal cell carcinomafeature selectionmorphology featuregray-level histogramgray-level co-occurrence texture featureGabor texture feature
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
Fuhrman核分級可以做為腫瘤患者的標準治療資訊。探討合併電腦斷層掃描紋理分析與機器學習電腦斷層掃描圖像區分低和高Fuhrman核等級腎細胞癌的準確性。回顧性病例對照設計中,腎細胞癌患者選自癌症影像圖譜資料庫,使用機器學習分析電腦斷層掃描灰階矩陣特徵預測低和高Fuhrman核等級腎細胞癌。由專家手動圈選電腦斷層掃描橫截面圖像。對手動圈選病變進行紋理分析,並使用交叉驗證檢查重現性。評估了關於灰階分布圖(histogram)、 形態特徵、灰階共生(co-occurrence) 矩陣的紋理特徵和紋理特徵 (Gabor),選擇最具有區別性的特徵來成功分類低和高Fuhrman核等級腎細胞癌。通過驗證(validation)來評估電腦斷層掃描紋理特徵的診斷準確性。向量支持分類器放入70個特徵比較來區分多偵測器電腦斷層掃描圖像上的兩種類型的腎細胞癌顯示接受者操作特徵曲線下面積的統計有最佳的面積(0.82)。產生的電腦輔助診斷系統可以提供泌尿科醫生腫瘤分級的建議,作為醫療決策輔助。
Fuhrman nuclear grading can add a piece of information to the standard care of patient with clear cell renal cell carcinoma. To explore the accuracy of texture analysis to distinguish between high-grade and low-grade Fuhrman nuclear grades of clear cell renal cell carcinoma on computed tomography images. In a retrospective case-control design, patients with RCC are selected from the “The Cancer Image Atlas” (TCIA) database. Cross-sectional computerized tomography (CT) images were contoured manually by experts. Texture analysis was done for each lesion, and reproducibility was examined by validation. Image features regarding morphology feature, the gray-level histogram, gray-level co-occurrence matrix and Gabor texture feature, were assessed. The most relevant features were chosen to generate classifiers. Diagnostic accuracy of texture features was evaluated by validation. Support Vector Machine (SVM) classifiers using 70 features demonstrated optimal area under receiver operating characteristic (AUROC) curve (0.82) statistics. When the morphology features, intensity features and texture features are combined in classifiers, a computer-aided diagnosis (CAD) system is generated. The developed CAD system may give suggestions of tumor grading to the urologists as an aid in decision making.
Table of Contents

Chapter I Introduction 1
1.1. BACKGROUND: 1
Chapter II Literature review 9
2.1 CONVENTIONAL IMAGE FINDINGS OF DIFFERENT TYPES OF RCC 9
2.2 TREATMENT OF RCC 9
2.3 PROGNOSIS OF RCC 10
2.4 ERA OF COMPUTER-AIDED DIAGNOSTIC SYSTEMS AND CT TEXTURE ANALYSIS OF MALIGNANCY 12
Chapter III Materials and Methods 14
3.1 PATIENT SELECTION 15
3.2 STANDARD CT TECHNIQUE 15
3.3 IMAGE PROCESSING 15
3.4 Tumor contour delineation 16
3.5 CT TEXTURE ANALYSIS 17
3.6 EXTRACTION OF QUANTITATIVE FEATURE 18
3.7 FEATURE SELECTION 31
3.8 ELEVEN TYPES OF CLASSIFIERS USED IN THIS STUDY(WITTEN, FRANK, HALL, & PAL, 2016) 31
3.9 VALIDATION METHODS OF MACHINE LEARNING(BOUCKAERT ET AL., 2016) 35
3.10 EVALUATION CRITERIA OF CLASSIFIERS(XU, GU, WANG, WANG, & QIN, 2019) 35
3.11 STATISTICAL ANALYSES 36
Chapter IV Results 38
4.1 MANUAL CONTOURING OF TUMORAL ROI 38
4.2 RESULTS OF EXTRACTION OF IMAGE FEATURES AND FEATURE SELECTION 38
4.3 PERFORMANCE OF CLASSIFIERS RESULTS VALUE FOR PREDICTION OF HIGH AND LOW NUCLEAR GROUPS 42
Chapter V Discussion 45
5.1 INTERPRETATION OF FINDINGS 45
5.2 LIMITATION OF THIS STUDY 46
Chapter VI Conclusion and Suggestion 47
Chapter VII English References 48
Chapter VIII Appendix 60

List of Tables
TABLE 1 Familial RCC 3
Table 2 Fuhrman’s grading system 7
TABLE 3 Comparison of AJCC TMN 7th edition and 8th edition of staging of RCC 11
TABLE 4 Summary of classifiers results value with feature selection methods 40
TABLE 5 Performance of classifiers results value by attributeselectedclassifier with selected features space for prediction of high and low nuclear groups 43

List of Figures
Figure 1 Biological functions of the von Hippel- Lindau protein 5
Figure 2. Mammalian target of rapamycin integration with hypoxia-inducible factors. 6
Figure 3 Patients with contrast-enhanced CT images of three common subtypes of RCC 8
Figure 4. Flow chart of medical image analysis 15
Figure 5. The circular black blocks depict perimeter, the sum of white blocks represent area 18
Figure 6. The smallest rectangle containing the contoured tumor is used as an example for morphology feature 19
Figure 7. Mean and standard deviation of gray level histogram. 20
Figure 8. Distribution curves with different variance 21
Figure 9. Kurtosis and skewness. 21
Figure 10. Original image matrix used to create GLCM. 29
Figure 11. Creation of grays level co-occurrence matrix from image matrix 29
Figure 12. Tumor contour delineation of tumor region of interest 38
Al Ajmi, E., Forghani, B., Reinhold, C., Bayat, M., & Forghani, R. (2018). Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm. European radiology, 28(6), 2604-2611.
Andersen, M. B., Harders, S. W., Ganeshan, B., Thygesen, J., Torp Madsen, H. H., & Rasmussen, F. (2016). CT texture analysis can help differentiate between malignant and benign lymph nodes in the mediastinum in patients suspected for lung cancer. Acta Radiologica, 57(6), 669-676.
Bayanati, H., Thornhill, R. E., Souza, C. A., Sethi-Virmani, V., Gupta, A., Maziak, D., . . . Dennie, C. (2015). Quantitative CT texture and shape analysis: Can it differentiate benign and malignant mediastinal lymph nodes in patients with primary lung cancer? European radiology, 25(2), 480-487.
Becker, M. (2017). CT Texture Analysis: Defining and Integrating New Biomarkers for Advanced Oncologic Imaging in Precision Medicine: A Comment on "CT Texture Analysis Potentially Predicts Local Failure in Head and Neck Squamous Cell Carcinoma Treated with Chemoradiotherapy". AJNR Am J Neuroradiol, 38(12), 2341-2343. doi:10.3174/ajnr.A5451
Beckers, R., Beets-Tan, R., Schnerr, R., Maas, M., da Costa Andrade, L., Beets, G., . . . Lambregts, D. (2017). Whole-volume vs. segmental CT texture analysis of the liver to assess metachronous colorectal liver metastases. Abdominal Radiology, 42(11), 2639-2645.
Bektas, C. T., Kocak, B., Yardimci, A. H., Turkcanoglu, M. H., Yucetas, U., Koca, S. B., . . . Kilickesmez, O. (2018). Clear Cell Renal Cell Carcinoma: Machine Learning-Based Quantitative Computed Tomography Texture Analysis for Prediction of Fuhrman Nuclear Grade. Eur Radiol. doi:10.1007/s00330-018-5698-2
Bouckaert, R. R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., & Scuse, D. (2016). WEKA manual for version 3-9-1. University of Waikato, Hamilton, New Zealand.
Bribiesca, E. (2008). An easy measure of compactness for 2D and 3D shapes. Pattern recognition, 41(2), 543-554.
Brugarolas, J. (2007). Renal-cell carcinoma--molecular pathways and therapies. N Engl J Med, 356(2), 185-187. doi:10.1056/NEJMe068263
Bruick, R. K., & McKnight, S. L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science, 294(5545), 1337-1340. doi:10.1126/science.1066373
Canellas, R., Burk, K. S., Parakh, A., & Sahani, D. V. (2018). Prediction of pancreatic neuroendocrine tumor grade based on CT features and texture analysis. American Journal of Roentgenology, 210(2), 341-346.
Cassinotto, C., Chong, J., Zogopoulos, G., Reinhold, C., Chiche, L., Lafourcade, J.-P., . . . Gallix, B. (2017). Resectable pancreatic adenocarcinoma: role of CT quantitative imaging biomarkers for predicting pathology and patient outcomes. European journal of radiology, 90, 152-158.
Champion, A., Lu, G., Walker, M., Kothari, S., Osunkoya, A. O., & Wang, M. D. (2014). Semantic interpretation of robust imaging features for Fuhrman grading of renal carcinoma. Conf Proc IEEE Eng Med Biol Soc, 2014, 6446-6449. doi:10.1109/embc.2014.6945104
Chee, C. G., Kim, Y. H., Lee, K. H., Lee, Y. J., Park, J. H., Lee, H. S., . . . Kim, B. (2017). CT texture analysis in patients with locally advanced rectal cancer treated with neoadjuvant chemoradiotherapy: A potential imaging biomarker for treatment response and prognosis. PloS one, 12(8), e0182883.
Craigie, M., Squires, J., & Miles, K. (2017). Can CT measures of tumour heterogeneity stratify risk for nodal metastasis in patients with non-small cell lung cancer? Clinical radiology, 72(10), 899. e891-899. e897.
Dabora, S. L., Jozwiak, S., Franz, D. N., Roberts, P. S., Nieto, A., Chung, J., . . . Kwiatkowski, D. J. (2001). Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet, 68(1), 64-80. doi:10.1086/316951
Dennie, C., Thornhill, R., Sethi-Virmani, V., Souza, C. A., Bayanati, H., Gupta, A., & Maziak, D. (2016). Role of quantitative computed tomography texture analysis in the differentiation of primary lung cancer and granulomatous nodules. Quantitative imaging in medicine and surgery, 6(1), 6.
Ding, J., Xing, Z., Jiang, Z., Chen, J., Pan, L., Qiu, J., & Xing, W. (2018). CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Eur J Radiol, 103, 51-56. doi:10.1016/j.ejrad.2018.04.013
Doi, K. (2004). Overview on research and development of computer-aided diagnostic schemes. Semin Ultrasound CT MR, 25(5), 404-410.
Doi, K. (2007). Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Computerized medical imaging and graphics, 31(4-5), 198-211.
Doi, K., MacMahon, H., Katsuragawa, S., Nishikawa, R. M., & Jiang, Y. (1999). Computer-aided diagnosis in radiology: potential and pitfalls. European journal of Radiology, 31(2), 97-109.
Fujita, H., Uchiyama, Y., Nakagawa, T., Fukuoka, D., Hatanaka, Y., Hara, T., . . . Gao, X. (2008). Computer-aided diagnosis: The emerging of three CAD systems induced by Japanese health care needs. Computer methods and programs in biomedicine, 92(3), 238-248.
Ginsberg, L. H., Larrison, C. R., Nackerud, L., Barner, J. R., & Ricciardelli, L. A. (2019). Social Work and Science in the 21st Century: Oxford University Press.
Goh, V., Ganeshan, B., Nathan, P., Juttla, J. K., Vinayan, A., & Miles, K. A. (2011). Assessment of response to tyrosine kinase inhibitors in metastatic renal cell cancer: CT texture as a predictive biomarker. Radiology, 261(1), 165-171.
Grigorescu, C., Petkov, N., & Westenberg, M. A. (2003). Contour detection based on nonclassical receptive field inhibition. IEEE Trans Image Process, 12(7), 729-739. doi:10.1109/tip.2003.814250
Haas, N. B., & Nathanson, K. L. (2014). Hereditary kidney cancer syndromes. Adv Chronic Kidney Dis, 21(1), 81-90. doi:10.1053/j.ackd.2013.10.001
Haider, M. A., Vosough, A., Khalvati, F., Kiss, A., Ganeshan, B., & Bjarnason, G. A. (2017). CT texture analysis: a potential tool for prediction of survival in patients with metastatic clear cell carcinoma treated with sunitinib. Cancer Imaging, 17(1), 4.
Hall-Beyer, M. (2017). GLCM Texture: A Tutorial v. 3.0 March 2017.
Hayano, K., Kulkarni, N. M., Duda, D. G., Heist, R. S., & Sahani, D. V. (2016). Exploration of imaging biomarkers for predicting survival of patients with advanced non–small cell lung cancer treated with antiangiogenic chemotherapy. American Journal of Roentgenology, 206(5), 987-993.
Hayano, K., Tian, F., Kambadakone, A. R., Yoon, S. S., Duda, D. G., Ganeshan, B., & Sahani, D. V. (2015). Texture analysis of non-contrast enhanced CT for assessing angiogenesis and survival of soft tissue sarcoma. Journal of computer assisted tomography, 39(4), 607.
Huhdanpaa, H., Hwang, D., Cen, S., Quinn, B., Nayyar, M., Zhang, X., . . . Gill, I. (2015). CT prediction of the Fuhrman grade of clear cell renal cell carcinoma (RCC): towards the development of computer-assisted diagnostic method. Abdominal imaging, 40(8), 3168-3174.
Jiang, Y., Nishikawa, R. M., Schmidt, R. A., Metz, C. E., Giger, M. L., & Doi, K. (1999). Improving breast cancer diagnosis with computer-aided diagnosis. Academic radiology, 6(1), 22-33.
Kim, S. H., Park, W. S., & Chung, J. (2019). SETD2, GIGYF2, FGFR3, BCR, KMT2C, and TSC2 as candidate genes for differentiating multilocular cystic renal neoplasm of low malignant potential from clear cell renal cell carcinoma with cystic change. Investig Clin Urol, 60(3), 148-155. doi:10.4111/icu.2019.60.3.148
Kloth, C., Blum, A. C., Thaiss, W. M., Preibsch, H., Ditt, H., Grimmer, R., . . . Horger, M. (2017). Differences in Texture Analysis Parameters Between Active Alveolitis and Lung Fibrosis in Chest CT of Patients with Systemic Sclerosis: A Feasibility Study. Academic radiology, 24(12), 1596-1603.
Kobayashi, T., Xu, X.-W., MacMahon, H., Metz, C. E., & Doi, K. (1996). Effect of a computer-aided diagnosis scheme on radiologists'' performance in detection of lung nodules on radiographs. Radiology, 199(3), 843-848.
Kuno, H., Qureshi, M., Chapman, M., Li, B., Andreu-Arasa, V., Onoue, K., . . . Sakai, O. (2017). CT texture analysis potentially predicts local failure in head and neck squamous cell carcinoma treated with chemoradiotherapy. American Journal of Neuroradiology, 38(12), 2334-2340.
Linehan, W. M., & Ricketts, C. J. (2013). The metabolic basis of kidney cancer. Semin Cancer Biol, 23(1), 46-55. doi:10.1016/j.semcancer.2012.06.002
Linehan, W. M., Walther, M. M., & Zbar, B. (2003). The genetic basis of cancer of the kidney. The Journal of urology, 170(6), 2163-2172.
Liu, G., Li, W., Li, L., & Jiang, X. (2017). The value of CT image-based texture analysis for differentiating renal primary undifferentiated pleomorphic sarcoma from three subtypes of renal cell carcinoma. Int J Clin Exp Med, 10(9), 13526-13533.
Liu, S., Liu, S., Ji, C., Zheng, H., Pan, X., Zhang, Y., . . . Li, W. (2017). Application of CT texture analysis in predicting histopathological characteristics of gastric cancers. European radiology, 27(12), 4951-4959.
Lodwick, G. S., Haun, C. L., Smith, W. E., Keller, R. F., & Robertson, E. D. (1963). Computer diagnosis of primary bone tumors: A preliminary report. Radiology, 80(2), 273-275.
Lubner, M. G., Stabo, N., Abel, E. J., del Rio, A. M., & Pickhardt, P. J. (2016). CT textural analysis of large primary renal cell carcinomas: pretreatment tumor heterogeneity correlates with histologic findings and clinical outcomes. American Journal of Roentgenology, 207(1), 96-105.
Mardia, K. V., & Jupp, P. E. (2009). Directional statistics (Vol. 494): John Wiley & Sons.
Mattonen, S. A., Tetar, S., Palma, D. A., Louie, A. V., Senan, S., & Ward, A. D. (2015). Imaging texture analysis for automated prediction of lung cancer recurrence after stereotactic radiotherapy. Journal of Medical Imaging, 2(4), 041010.
McQuaid, S., Scuffham, J., Alobaidli, S., Prakash, V., Ezhil, V., Nisbet, A., . . . Evans, P. (2017). Factors influencing the robustness of P-value measurements in CT texture prognosis studies. Physics in Medicine & Biology, 62(13), 5403.
Meyers, P. H., Nice Jr, C. M., Becker, H. C., Nettleton Jr, W. J., Sweeney, J. W., & Meckstroth, G. R. (1964). Automated computer analysis of radiographic images. Radiology, 83(6), 1029-1034.
Miles, K. A. (2016). How to use CT texture analysis for prognostication of non-small cell lung cancer. Cancer Imaging, 16(1), 10.
Miles, K. A., Ganeshan, B., & Hayball, M. P. (2013). CT texture analysis using the filtration-histogram method: what do the measurements mean? Cancer Imaging, 13(3), 400.
Mohanaiah, P., Sathyanarayana, P., & GuruKumar, L. (2013). Image texture feature extraction using GLCM approach. International Journal of Scientific and Research Publications, 3(5), 1.
Moon, W. K., Lo, C.-M., Cho, N., Chang, J. M., Huang, C.-S., Chen, J.-H., & Chang, R.-F. (2013). Computer-aided diagnosis of breast masses using quantified BI-RADS findings. Computer methods and programs in biomedicine, 111(1), 84-92.
Ni, Z., Zeng, H., Ma, L., Hou, J., Chen, J., & Ma, K. K. (2018). A Gabor Feature-Based Quality Assessment Model for the Screen Content Images. IEEE Trans Image Process, 27(9), 4516-4528. doi:10.1109/tip.2018.2839890
Nithya, R., & Santhi, B. (2011). Mammogram classification using maximum difference feature selection method. Journal of Theoretical and Applied Information Technology, 33(2), 197-204.
Oh, S., Sung, D. J., Yang, K. S., Sim, K. C., Han, N. Y., Park, B. J., . . . Cho, S. B. (2017). Correlation of CT imaging features and tumor size with Fuhrman grade of clear cell renal cell carcinoma. Acta Radiologica, 58(3), 376-384.
Park, H. J., Kim, J. H., Choi, S.-y., Lee, E. S., Park, S. J., Byun, J. Y., & Choi, B. I. (2017). Prediction of therapeutic response of hepatocellular carcinoma to transcatheter arterial chemoembolization based on pretherapeutic dynamic CT and textural findings. American Journal of Roentgenology, 209(4), W211-W220.
Raman, S. P., Chen, Y., Schroeder, J. L., Huang, P., & Fishman, E. K. (2014). CT texture analysis of renal masses: pilot study using random forest classification for prediction of pathology. Academic radiology, 21(12), 1587-1596.
Rao, S.-X., Lambregts, D. M., Schnerr, R. S., Beckers, R. C., Maas, M., Albarello, F., . . . Heijnen, L. A. (2016). CT texture analysis in colorectal liver metastases: a better way than size and volume measurements to assess response to chemotherapy? United European gastroenterology journal, 4(2), 257-263.
Rao, S.-X., Lambregts, D. M., Schnerr, R. S., van Ommen, W., van Nijnatten, T. J., Martens, M. H., . . . Zeng, M.-S. (2014). Whole-liver CT texture analysis in colorectal cancer: Does the presence of liver metastases affect the texture of the remaining liver? United European gastroenterology journal, 2(6), 530-538.
Rioux-Leclercq, N. (2006). The Fuhrman grading system for kidney cancer prognosis. Progres en urologie: journal de l''Association francaise d''urologie et de la Societe francaise d''urologie, 16(4 Suppl FMC), 5.
Santos, T. A., Maistro, C. E., Silva, C. B., Oliveira, M. S., Franca, M. C., Jr., & Castellano, G. (2015). MRI Texture Analysis Reveals Bulbar Abnormalities in Friedreich Ataxia. AJNR Am J Neuroradiol, 36(12), 2214-2218. doi:10.3174/ajnr.A4455
Schieda, N., Thornhill, R. E., Al-Subhi, M., McInnes, M. D., Shabana, W. M., van der Pol, C. B., & Flood, T. A. (2015). Diagnosis of sarcomatoid renal cell carcinoma with CT: evaluation by qualitative imaging features and texture analysis. American Journal of Roentgenology, 204(5), 1013-1023.
Schmidt, L., Junker, K., Nakaigawa, N., Kinjerski, T., Weirich, G., Miller, M., . . . Zbar, B. (1999). Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene, 18(14), 2343-2350. doi:10.1038/sj.onc.1202547
Semenza, G. L. (2000). HIF-1 and human disease: one highly involved factor. Genes Dev, 14(16), 1983-1991.
Shi, B., Sun, H., Jin, Z.-Y., & Xue, H.-D. (2017). Differentiating pheochromocytoma from lipid-poor adrenocortical adenoma by CT texture analysis: Feasibility study. Abdominal Radiology, 42(9), 2305-2313.
Siegel, C. (2016). Re: Can Quantitative CT Texture Analysis be Used to Differentiate Fat-Poor Renal Angiomyolipoma from Renal Cell Carcinoma on Unenhanced CT Images? The Journal of urology, 196(6), 1636-1637.
Smith, A. D., Gray, M. R., Del Campo, S. M., Shlapak, D., Ganeshan, B., Zhang, X., & Carson III, W. E. (2015). Predicting overall survival in patients with metastatic melanoma on antiangiogenic therapy and RECIST stable disease on initial posttherapy images using CT texture analysis. American Journal of Roentgenology, 205(3), W283-W293.
Sridhar, G. (2012). Color and texture based image retrieval. ARPN Journal of Systems and Software, 2(1), 1-6.
Summers, R. (2002). Challenges for computer-aided diagnosis for CT colonography. Abdominal imaging, 27(3), 268-274.
Sun, H., Shi, B., Jin, Z.-Y., & Xue, H.-D. (2017). Quantitative CT texture analysis for evaluating histologic grade of urothelial carcinoma. Abdominal Radiology, 42(2), 561-568.
Taal, M. W., Chertow, G. M., Marsden, P. A., Skorecki, K., Alan, S., & Brenner, B. M. (2011). Brenner and Rector''s The Kidney E-Book: Elsevier Health Sciences.
Tian, F., Hayano, K., Kambadakone, A. R., & Sahani, D. V. (2015). Response assessment to neoadjuvant therapy in soft tissue sarcomas: using CT texture analysis in comparison to tumor size, density, and perfusion. Abdominal imaging, 40(6), 1705-1712.
Toriwaki, J.-I., Suenaga, Y., Negoro, T., & Fukumura, T. (1973). Pattern recognition of chest X-ray images. Computer Graphics and Image Processing, 2(3-4), 252-271.
Villavicencio, C. P., Mc Carthy, R. J., & Miller, F. H. (2017). Can diffusion-weighted magnetic resonance imaging of clear cell renal carcinoma predict low from high nuclear grade tumors. Abdominal Radiology, 42(4), 1241-1249.
Wang, R., Yang, X., Wang, K., Wang, S., Li, Q., Wu, J., . . . Xu, K. (2017). Value of texture analysis in evaluating liver cancer recurrence after transarterial chemoembolization. Zhonghua gan zang bing za zhi= Zhonghua ganzangbing zazhi= Chinese journal of hepatology, 25(3), 200-204.
Wang, X., Ding, X., & Liu, C. (2005). Gabor filters-based feature extraction for character recognition. Pattern recognition, 38(3), 369-379.
Wein, A. J., Kavoussi, L. R., Novick, A. C., Partin, A. W., & Peters, C. A. (2011). Campbell-Walsh urology: expert consult premium edition: enhanced online features and print, 4-volume set: Elsevier Health Sciences.
Williamson, S. R., Taneja, K., & Cheng, L. (2019). Renal cell carcinoma staging: pitfalls, challenges, and updates. Histopathology, 74(1), 18-30.
Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical machine learning tools and techniques: Morgan Kaufmann.
Xu, X., Gu, H., Wang, Y., Wang, J., & Qin, P. (2019). Autoencoder Based Feature Selection Method for Classification of Anticancer Drug Response. Front Genet, 10, 233. doi:10.3389/fgene.2019.00233
Yang, X., Tridandapani, S., Beitler, J. J., Yu, D. S., Yoshida, E. J., Curran, W. J., & Liu, T. (2012). Ultrasound GLCM texture analysis of radiation‐induced parotid‐gland injury in head‐and‐neck cancer radiotherapy: An in vivo study of late toxicity. Medical physics, 39(9), 5732-5739.
Zimmerman, R. H., Lounibos, L. P., Nishimura, N., Galardo, A. K., Galardo, C. D., & Arruda, M. E. (2013). Nightly biting cycles of malaria vectors in a heterogeneous transmission area of eastern Amazonian Brazil. Malaria journal, 12(1), 262.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top