跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 16:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:薛隆晟
研究生(外文):Long-Cheng Shaue
論文名稱:碳量子點的製備與性質及其在水凝膠材料之應用研究
論文名稱(外文):Studies on Preparation and Properties of Carbon Quantum Dots and Their Application in Hydrogels
指導教授:李文福李文福引用關係
指導教授(外文):Wen-Fu Lee
口試委員:李文福
口試委員(外文):Wen-Fu Lee
口試日期:2019-07-29
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:45
中文關鍵詞:水凝膠光致發光碳量子點
外文關鍵詞:photoluminescenceCarbon quantum dotsHydrogel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
本研究以檸檬酸為碳源藉由微波消化法,功率800 W條件下製備出具有良好水溶性且粒徑分佈為6~8 nm之碳量子點,經由FT-IR光譜得知碳量子點表面官能基以羧基為主,在激發波長為342nm時有最高的螢光強度而放射波長為414 nm,且與各種金屬離子與碳量子點溶液混合後,得到碳量子點對於鐵離子有明顯的螢光淬滅現象。在表面改質方面,碳量子點分別與乙二胺、乙二醇及乙醇胺以偶合劑N,N'-Dicyclohexylcarbodiimide (DCC)搭配催化劑4-Dimethylamino-pyridine (DMAP)或N-Hydroxysuccinimide (NHS)進行反應,結果顯示乙二胺與乙醇胺的反應性比較良好,而乙二醇及CDs-MEA接Acryloyl chloride因官能基的訊號分離不明顯,所以無法判定反應是否成功。在應用方面,以AAm與APTMA加入與陽離子等當量鹼化的碳量子點(CD-COONa)共聚合製備成水凝膠,檢測其螢光強度及並用於對鐵離子的檢測,經實驗結果證明吸附於膠體的碳量子點其螢光強度會隨著鐵離子濃度的增加而呈線性遞減。因此此方法可使提供碳量子點檢測鐵離子的另一種方法。
In this study, carbon quantum dots with good water solubility and particle size distribution of 6~8nm were prepared by using citric acid as carbon sources by microwave digestion method with 800W. The surface functional groups of carbon quantum dots were determined by FT-IR spectroscopy. The highest fluorescence intensity at the excitation wavelength of 342 nm and the emission wavelength is 414 nm, and after mixing various metal ions with carbon quantum dots solutions, the carbon quantum dots have a significant fluorescence quenching effect on Fe3+. To modify the surface of carbon quantum dots, the carbon quantum dots were reacted with ethylenediamine, ethylene glycol and ethanolamine, respectively, with a coupling agent N,N'-Dicyclohexyl-carbodiimide (DCC) with a catalyst 4-Dimethylaminopyridine (DMAP) or N-Hydroxysuccinimide(NHS). The results showed that the reactivity of ethylenediamine with monoethanolamine (MEA) was relatively good, however ethylene glycol and the reaction of CDs-MEA with acryloyl chloride due to functional groups is not obvious, so it’s impossible to determine whether the reaction is successful. In application, acrylamide(AAm), (3-Acrylamidopropyl)-trimethylammonium chloride (APTMA), and equivalent cationic CD-COONa were copolymerized to prepare hydrogels to detect their fluorescence intensity and detect Fe3+. The experimental results confirmed the carbon quantum dots adsorbed on the hydrogels. The intensity of the fluorescence is linearly decreases as the concentration of Fe3+ increases. Hence, this method can provide as another way to detect ferric ions.
誌謝 I
ABSTRACT II
摘要 IV
目錄 V
LIST OF TABLES VI
LIST OF SCHEMES VI
LIST OF FIGURES VII
第一章 序論 1
第二章 實驗 3
2.1實驗藥品 3
2.2碳量子點(CARBON QUANTUM DOTS,CDS)之製備 4
2.3碳量子點光學性質的量測 5
2.4不同金屬離子對於碳量子點螢光強度之影響 5
2.5 碳量子點之表面改質 6
2.5.1 碳量子點與乙二胺醯胺化反應(CDs-EDA) 6
2.5.2 碳量子點與乙二醇酯化反應(CDs-EG) 8
2.5.3碳量子點與乙醇胺醯胺化反應(CDs-MEA) 10
2.5.4 Acryl(CDs-MEA)之合成 12
2.6膠體製備 14
2.6.1 AAM-co-APTMA 水凝膠(AAP系列) 14
2.6.2 AAM-co-APTMA/CD- COONa 水凝膠 (AAP-CD系列) 16
2.7 平衡膨潤度測量 18
2.8 CD-COONA於膠體中吸附量之測定 18
2.9 AAP系列膠體對鐵(III)離子之偵測 18
第三章 結果與討論 19
3.1 碳量子點的製備與特徵之探討 19
3.2 碳量子點的光致發光性質之探討 22
3.3不同金屬離子濃度對碳量子點之螢光強度的影響 25
3.4碳量子點表面改質之探討 29
3.4.1 CDs-EDA之合成結果探討 29
3.4.2 CDs-EG之合成結果探討 31
3.4.3 CDs-MEA及Acryl(CDs-MEA)之合成結果探討 33
3.5 膠體平衡膨潤度之探討 35
3.6 AAP系列於膠體中CD-COONA吸附量與膠體用於
鐵離子偵測之結果探討 39
第四章 結論 42
參考文獻 43
1. H. Li, Z. Kang, Y. Liu, S. Lee, Carbon nanodots: synthesis, properties and applications, J. Mater. Chem. 22 (2012) 24230–24253.
2. Y. Q. Dong, N. N. Zhou, X. M. Lin, J. P. Lin, Y. W. Chi and G. N. Chen, Chem. Mater., 2010, 22, 5895–5899.
3. Q. L. Wang, H. Z. Zheng, Y. J. Long, L. Y. Zhang, M. Gao and W. J. Bai, Carbon, 2011, 49, 3134–3140.
4. H. Ming, Z. Ma, Y. Liu, K. M. Pan, H. Yu, F. Wang and Z. H. Kang, Dalton Trans., 2012, 41, 9526–9531.
5. H. T. Li, X. D. He, Y. Liu, H. Huang, S. Y. Lian, S.-T. Lee andZ. H. Kang, Carbon, 2010, 49, 605–609.
6. H. T. Li, H. Ming, Y. Liu, H. Yu, X. D. He, H. Huang, K. M. Pan, Z. H. Kang and S.T. Lee, New J. Chem., 2011, 35,2666–2670.
7. Y. M. Guo, Z. Wang, H. W. Shao and X. Y. Jiang, Carbon,2013, 52, 583–589.
8. Z.C. Yang, X. Li and J. Wang, Carbon, 2011, 49, 5207–5212.
9. W. B. Lu, X. Y. Qin, S. Liu, G. H. Chang, Y. W. Zhang,Y. L. Luo, A. M. Asiri, A. O. AlYoubi and X. P. Sun, Anal.Chem., 2012, 84, 5351–5357.
10. J. J. Zhou, Z. H. Sheng, H. Y. Han, M. Q. Zou and C. X. Li,Mater. Lett., 2012, 66, 222–224.
11. Q. Wang, M. Zhang, C. C. Chen, W. H. Ma and J. C. Zhao, Angew. Chem., 2010, 49, 7976–7979.
12. Z. R. Tang, Y. H. Zhang and Y. J. Xu, ACS Appl. Mater. Interfaces, 2012, 4, 1512–1520.
13. H. T. Li, R. H. Liu, S. Y. Lian, Y. Liu, H. Huang and Z. H. Kang, Nanoscale, 2013, 5, 3289–3297.
14. Z. Ma, H. Ming, H. Huang, Y. Liu and Z. H. Kang, New J. Chem., 2012, 36, 861–864.
15. S. L. Hu, R. X. Tian, Y. G. Dong, J. L. Yang, J. Liu and Q. Chang, Nanoscale, 2013, 5, 11665–11671.
16. S. L. Hu, R. X. Tian, L. L. Wu, Q. Zhao, J. L. Yang, J. Liu and S. R. Cao, Chem. Asian J., 2013, 8, 1035–1041.
17. H. T. Li, R. H. Liu, W. Q. Kong, J. Liu, Y. Liu, L. Zhou, X. Zhang, S.-T. Lee and Z. H. Kang, Nanoscale, 2014, 6, 867–873.
18. R. H. Liu, H. Huang, H. T. Li, Y. Liu, J. Zhong, Y. Y. Li, S. Zhang and Z. H. Kang, ACS Catal., 2014, 4, 328–336.
19. Q. H. Liang, W. J. Ma, Y. Shi, Z. Li and X. M. Yang, Carbon,2013, 60, 421–428.
20. D. L. Xiao, D. H. Yuan and H. He, J. Lumin., 2013, 140,120–125.
21. X. M. Lin, G. M. Gao, L. Y. Zheng, Y. W. Chi and G. N. Chen, Anal. Chem., 2014, 86, 1223–1228.
22. Y. Xu, M. Wu, Y. Liu, X. Z. Feng, X. B. Yin, X. W. He and Y. K. Zhang, Chem. Eur. J., 2013, 19, 2276–2283.
23. S. R. Zhang, Q. Wang, G. H. Tian and H. G. Ge, Mater. Lett.,2014, 115, 233–236.
24. X. J. Liu, N. Zhang, T. Bing and D. H. Shangguan, Anal.Chem., 2014, 86, 2289–2296.
25. K. G. Qu, J. S. Wang, J. S. Ren and X. G. Qu, Chem. – Eur. J.,2013, 19, 7243–7249.
26. S. S. Wee, Y. H. Ng and S. M. Ng, Talanta, 2013, 116, 71–76
27. F. l. Zu, F. Y. Yan, Z. J. Bai, J. X. Xu, Y. Y. Wang, Y. C. Huang and X. G. Zhou, Microchim Acta, 2017, 184, 1899–1914
28. Lakowicz JR, Principles of fluorescence pectroscopy.Maryland, USA,2006
29. W. Liu, H. Diao, H. Chang, H. Wang, T. Li, and W. Wei, Sensors Actuators B, 2017, 241, 190–198
30. Vivek Borse, Mukeshchand Thakur, Sohini Sengupta, Rohit Srivastava, Sensors and Actuators B: Chemical, 2017, 248, 481–492.
31. P. J. Li, Y. Hong, H.T. Feng and Sam F. Y. Li, Journal of Materials Chemistry B, 2017, 5, 2979—2988.
32. C. P. Han, R. Wang, K.Y. Wang , H.T. Xu , M. R. Sui, J. J. Li and Kai Xu, Biosensors and Bioelectronics, 2016,83, 229–236
33. P. P. Liu, C. C. Zhang, X. Liu, P. Cui, Applied Surface Science.,2016, 368, 122-128.
34. C. Pan, L.B. Liu, Q. Chen, Q. Zhang and G.L. Guo, Appl. Mater. Interfaces., 2017, 43, 38052-38061.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top