|
PART I 1.M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, Emerging applications of stimuli-responsive polymer materials. Nat. Mater., 9, 101–13, 2010. 2.A. S. Hoffman, Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev., 65, 10–16, 2013. 3.M. Elsabahy, K. L. Wooley, Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev., 41, 2545–2561, 2012. 4.Y. Yu, Y. Li, C. Zhu, and L. Liu, Synthesis and characterization of temperature sensitive and biodegradable hydrogel based on N -isopropylacrylamide. Cent. Eur. J. Chem., 8, 426–433, 2010. 5.D. Roy, W. L. A. Brooks, B. S. Sumerlin, New directions in thermoresponsive polymers. Chem. Soc. Rev., 42, 7214–7243, 2013. 6.H. G. Schild, Poly(N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci., 17, 163–249, 1992. 7.H. Ivan Meléndez-Ortiz and E. Bucio, Stimuli-Sensitive Behaviour of Binary Graft Co-polymers (PP-g-DMAEMA)-g-NIPAAm and (PP-g-4VP)-g-NIPAAm in Acidic and Basic Medium. Des. Monomers Polym. 12, 99–108, 2009. 8.W. F. Lee, and Y. H. Lin, Swelling behavior and drug release of NIPAAm/ PEGMEA copolymeric hydrogels with different crosslinkers. J. Mater. Sci., 41, 7333–7340, 2006. 9.S. R. Huang, K. F. Lin, T. M. Don, C. F. Lee, M. S. Wang and W. Y. Chiu, Thermoresponsive Conductive Polymer Composite Thin Film and Fiber Mat: Crosslinked PEDOT:PSS and P(NIPAAm-co-NMA) Composite. J. Polym. Sci. Part A Polym. Chem. 54, 1078–1087, 2016. 10.D. J. Liaw, and W. F. Lee, Thermal Degradation of Poly [ 3-Dimethyl(methylmethacryloylethy1) Ammonium Propanesulfonate]. Appl. Polym., 30, 4697–4706, 1985. 11.R. Zeng, S. Xu, J. Cheng, Z. Cai, P. Pi, and X. Wen, Thermoresponsive / low-fouling Zwitterionic Hydrogel for Controlled Drug Release. J. Appl. Polym. Sci., 131, 39816, 1–7, 2014. 12.L. Chen, Y. Honma, T. Mizutani, D. Liaw, J. P. Gong and Y. Osada, Effects of polyelectrolyte complexation on the UCST of zwitterionic polymer. Polymer, 41, 141–147, 2000. 13.Y. J. Shih, Y. Chang, A. Deratani and D. Quemener, “Schizophrenic” Hemocompatible Copolymers via Switchable Thermoresponsive Transition of Nonionic/ zwitterionic Block Self-Assembly in Human Blood. Biomacromolecules, 13, 2849–2858, 2012. 14.K. Haraguchi, J. Ning and G. Li, Changes in the Properties and Self-Healing Behaviors of Zwitterionic Nanocomposite Gels Across Their UCST Transition. Macromol. Symp., 358, 182–193, 2015. 15.D. N. Schulz, D. G. Peiffer, P. K. Agarwal, J. Larabee, J. J. Kaladas, L. Soni, B. Handwerker and R. T. Garner, Phase behaviour and solution properties of sulphobetaine polymers. Polymer, 27, 1734–1742, 1986. 16.M. Li, , X. He, , Y. Ling and H. Tang, Dual Thermoresponsive Homopolypeptide with LCST-Type Linkages and UCST-Type Pendants: Synthesis, Characterization, and Thermoresponsive Properties. Polymer, 132, 264–272, 2017. 17.L. Mäkinen, D. Varadharajan, H. Tenhu and S. Hietala, Triple Hydrophilic UCST-LCST Block Copolymers. Macromolecules, 49, 2016. 18.Y. Kotsuchibashi, M. Ebara, T. Aoyagi and R. Narain, Recent advances in dual temperature responsive block copolymers and their potential as biomedical applications. Polymers, 8, 380, 2016. 19.F. J. Xu, E. T. Kang and K. G. Neoh, pH- and temperature-responsive hydrogels from crosslinked triblock copolymers prepared via consecutive atom transfer radical polymerizations. Biomaterials, 27, 2787–2797, 2006. 20.H. Sun, J. Chen, X. Han and H. Liu, Multi-responsive hydrogels with UCST- and LCST-induced shrinking and controlled release behaviors of rhodamine B. Mater. Sci. Eng. C, 82, 284–290, 2018. 21.A. Kikuchi, T. Okano, Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. J. Control. Release, 193, 2–8, 2014. 22.H. Yagi, K. Yamamoto, T. Aoyagi, New liquid chromatography method combining thermo-responsive material and inductive heating via alternating magnetic field. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 876, 97–102, 2008. 23.F. Dai, P. Wang, Y. Wang, L. Tang, J. Yang, W. Liu, H. Li and G. Wang, Double thermoresponsive polybetaine-based ABA triblock copolymers with capability to condense DNA. Polymer, 49, 5322–5328, 2008. 24.R. T. A. Mayadunne, J. Jeffery, G. Moad and E. Rizzardo, Living Free Radical Polymerization with Reversible Addition−Fragmentation Chain Transfer (RAFT Polymerization): Approaches to Star Polymers. Macromolecules, 36, 1505–1513, 2003. 25.G. Moad, E. Rizzardo and S. H. Thang, A. Living Free-Radical Polymerization by Reversible Addition - Fragmentation Chain Transfer: The RAFT Process, Macromolecules, 31, 5559–5562, 1998. 26.C. L. McCormick, A. B. Lowe, Aqueous RAFT polymerization: recent developments in synthesis of functional water-soluble (co)polymers with controlled structures. Acc. Chem. Res., 37, 312–325, 2004. 27.F. Xu, D.Wu, Y. Huang, H. Wei, Y. Gao, X. Feng, D. Yan and Y. Mai, Multi-Dimensional Self-Assembly of a Dual-Responsive ABC Miktoarm Star Terpolymer. ACS Macro Lett., 6, 426–430, 2017. 28.C. Y. Kuo, T. M. Don, S. C. Hsu, C. F. Lee, W. Y. Chiu and C. Y. Huang, Thermo- and pH-induced self-assembly of P(AA-b-NIPAAm-b-AA) triblock copolymers synthesized via RAFT polymerization. J. Polym. Sci. Part A Polym. Chem., 54, 1109–1118, 2016. 29.K. E. B. Doncom, H. Willcock and R. K. O'Reilly, The direct synthesis of sulfobetaine-containing amphiphilic block copolymers and their self-assembly behavior. Eur. Polym. J., 87, 497–507, 2017. 30.G. Moad, E. Rizzardo and S.H. Thang, Living Radical Polymerization by the RAFT Process - A Third Update. Australian Journal of Chemistry, 65, 985–1076, 2012. PART II 1.M. A. Ramin, L. Latxague, K. R. Sindhu, O. Chassande and P. Barthélémy, Low molecular weight hydrogels derived from urea based-bolaamphiphiles as new injectable biomaterials. Biomaterials, 145, 72–80, 2017. 2.Y. Wang, A. Guan, I. Isayeva, K. Vorvolakos, S. Das, Z. Li and K. S. Phillips, Interactions of Staphylococcus aureus with ultrasoft hydrogel biomaterials. Biomaterials, 95, 74–85, 2016. 3.J. Kopeček, Hydrogel biomaterials: A smart future? Biomaterials, 28, 5185–5192, 2007. 4.F. J. Xu, E. T. Kang and K. G. Neoh, pH- and temperature-responsive hydrogels from crosslinked triblock copolymers prepared via consecutive atom transfer radical polymerizations. Biomaterials, 27, 2787–2797, 2006. 5.L. Li, B. Yan, J. Yang, W. Huang, L. Chen and H. Zeng, Injectable Self-Healing Hydrogel with Antimicrobial and Antifouling Properties. ACS Appl. Mater. Interfaces, 9, 9221–9225, 2017. 6.Q. Yang, P. Wang, C. Zhao, W. Wang, J. Yang and Q. Liu, Light-Switchable Self-Healing Hydrogel Based on Host–Guest Macro-Crosslinking. Macromol. Rapid Commun., 38, 1600741, 2017. 7.X. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu and P. X. Ma, Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 122, 34–47, 2017. 8.Z. Gong, G. Zhang, X. Zeng, J. Li, G. Li, W. Huang, R. Sun and C. Wong, High-Strength, Tough, Fatigue Resistant, and Self-Healing Hydrogel Based on Dual Physically Cross-Linked Network. ACS Appl. Mater. Interfaces, 8, 24030–24037, 2016. 9.D. L. Taylor and M. in het Panhuis, Self-Healing Hydrogels. Adv. Mater. 28, 9060–9093, 2016. 10.H. U. Rehman, Y. Chen, Y. Guo, Q. Du, J. Zhou, Y. Guo, H. Duan, H. Li and H. Liu, Stretchable, strong and self-healing hydrogel by oxidized CNT-polymer composite. Compos. Part A Appl. Sci. Manuf., 90, 250–260, 2016. 11.H. Yu, Y. Liu, H. Yang, K. Peng and X. Zhang, An Injectable Self-Healing Hydrogel Based on Chain-Extended PEO-PPO-PEO Multiblock Copolymer. Macromol. Rapid Commun., 37, 1723–1728, 2016. 12.L. Shi, Y. Han, J. Hilborn and D. Ossipov, ‘Smart’ drug loaded nanoparticle delivery from a self-healing hydrogel enabled by dynamic magnesium-biopolymer chemistry. Chem. Commun., 52, 11151–11154, 2016. 13.S. Maity, A. Datta, S. Lahiri and J.Ganguly, A dynamic chitosan-based self-healing hydrogel with tunable morphology and its application as an isolating agent. RSC Adv., 6, 81060–81068, 2016. 14.H. Hong, H. Liao, S. Chen and H. Zhang, Facile method to prepare self-healable PVA hydrogels with high water stability. Mater. Lett., 122, 227–229, 2014. 15.Y. Fang, C. F. Wang, Z. H. Zhang, H. Shao and S. Chen, Robust self-healing hydrogels assisted by cross-linked nanofiber networks. Sci. Rep., 3, 2811, 2013. 16.H. Liu, C. Xiong, Z. Tao, Y. Fan, X. Tang and H. Yang, Zwitterionic copolymer-based and hydrogen bonding-strengthened self-healing hydrogel. RSC Adv., 5, 33083–33088, 2015. 17.K. Haraguchi, J. Ning and G. Li, Changes in the Properties and Self-Healing Behaviors of Zwitterionic Nanocomposite Gels Across Their UCST Transition. Macromol. Symp., 358, 182–193, 2015. 18.Z. Ye, P. Zhang, J. Zhang, L. Deng, J. Zhang, C. Lin, R. Guo and A. Dong, Novel dual-functional coating with underwater self-healing and anti-protein-fouling properties by combining two kinds of microcapsules and a zwitterionic copolymer. Prog. Org. Coatings, 127, 211–221, 2019. 19.D. J. Liaw and W. F. Lee, Thermal Degradation of Poly [ 3-Dimethyl(methylmethacryloylethy1) Ammonium Propanesulfonate]. Appl. Polym., 30, 4697–4706, 1985. 20.K. E. B. Doncom, H. Willcock and R. K. O’Reilly, The direct synthesis of sulfobetaine-containing amphiphilic block copolymers and their self-assembly behavior. Eur. Polym. J., 87, 497–507, 2017. 21.B. Zhou, C. Zuo, Z. Xiao, X. Zhou, D. He, X. Xie and Z. Xue, Self-Healing Polymer Electrolytes Formed via Dual-Networks: A New Strategy for Flexible Lithium Metal Batteries. Chemistry - A European Journal, 24, 19200–19207, 2018. 22.J. Wu, Z. Xiao, A. Chen, H. He, C. He, X. Shuai, X. Li, S. Chen, Y. Zhang, B. Ren, J. Zheng and J. Xiao, Sulfated zwitterionic poly(sulfobetaine methacrylate) hydrogels promote complete skin regeneration. Acta. Biomater., 71, 293–305, 2018. 23.S. Chen, F. Mo, Y. Yang, F. J. Stadler, S. Chen, H. Yang and Z. Ge, Development of zwitterionic polyurethanes with multi-shape memory effects and self-healing properties. J. Mater. Chem. A, 3, 2924–2933, 2015.
|