跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 10:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林柏儒
研究生(外文):Bo-Ru Lin
論文名稱:以離子交換樹脂催化酸油之連續酯化反應
論文名稱(外文):CONTINUOUS ESTERIFICATION OF SYNTHETIC ACID OIL CATALYZED BY ION-EXCHANGE RESIN
指導教授:陳嘉明陳嘉明引用關係
指導教授(外文):Jia-Ming Chern
口試委員:陳嘉明
口試委員(外文):Jia-Ming Chern
口試日期:2019-07-10
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:75
中文關鍵詞:非均相觸媒催化連續酯化生質柴油Amberlyst BD 20離子交換樹脂
外文關鍵詞:Heterogeneous catalysisContinuous esterificationBiodieselAmberlyst BD 20Ion-exchange resin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:103
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
廢食用油由於對環境有害,許多國家皆有立相關環保法規管制。並且由於能源的短缺,以廢食用油做為生質能源的原料已逐漸成為一個趨勢,所以廢食用油慢慢的作為生質柴油、生質汽油…等再生能源的製造來源。
目前生質柴油常使用轉酯化反應進行生產,採用鹼性觸媒進行催化,其優勢為反應時間短且有高轉化率,但若遇到使用原料含有游離脂肪酸的話會產生皂化反應,所以含有游離脂肪酸的油品需先經過酯化反應將酸轉化,再進行轉酯化反應,以避免對系統的損害。
常見的酯化反應以均相觸媒為主,如以鹽酸、硫酸…等,但生產出的產物尚需油水分離與酸鹼處理,所以出現非均相觸媒進行催化的方式,可使觸媒與產物容易分離。本研究利用模擬廢食用油流經裝有Amberlyst BD 20觸媒的觸媒連續反應器,以非均相觸媒的催化方式測定不同油料的組成(油酸、大豆沙拉油、水之間的比例)、油醇比、質量流率、溫度對酯化反應的影響,結果顯示以油醇比1:44、質量流率0.5 g/s、溫度65℃的情形下對不同的模擬廢油皆有好的效果。同時使用張之實驗數據(張筑鈞,2018)進行迴歸,尋找動力學參數,帶入Aspen Plus,進行理論值計算,以作為比較,結果顯示實驗數據與Aspen Plus模擬之趨勢結果相同。
Waste cooking oil (WCO) is harmful to our environment; thus many countries have the relevant environmental regulations. Due to the shortages of energy, using WCO as the material for green energy has become a trend. Therefore, WCO has become the source material of renewable energy, such as biodiesel, biogas, etc.
The normal way to make biodiesel is using transesterification method, catalyzed by base catalyst. The advantage of transesterification is the high conversion and short time reaction, but if there is free fatty acid (FFA) in the material, it will make saponification happen. Therefore, esterification will be used first to remove the FFA, then doing the transesterification to avoid the damage to the system.
Normally esterification is using homogeneous catalysts such as hydrochloric acid, sulfuric acid, etc. However, the product by this method need to separate the aqueous phase and oil phase, also the aqueous phase has to be neutralized by base. Therefore, heterogeneous method has become more popular for use, makes the catalyst and product to separate easily. This research using synthetic acid oil flow through the column packed with Amberlyst BD 20 catalyst in the continuous catalyst reactor. The following conditions: different composition of synthetic acid oil (different ratios of oleic acid, soybean oil, and water), different molar ratios of methanol to synthetic acid oil, different mass flow rates, and different temperatures has been tested to understand their effects on esterification. The results showed that when the molar ratio of methanol to synthetic acid oil is 44, mass flow rate is 0.5 g/s, temperature is 65℃ had the good result for the synthetic acid oils. The data of batch experiment from Chang’s thesis (Chang, 2018) is used for data regression to find kinetic parameters. A kinetic model with the regression result is then used to simulate by Aspen Plus. As a comparison, the results showed that the experimental data trends were consistent with the results simulated by Aspen Plus.
Acknowledgments i
Abstract iii
摘要 v
Table of Contents vi
List of Tables ix
List of Figures x
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objectives and Scope 5
Chapter 2 Literature Review 7
2.1 Biodiesel Production Method 7
2.1.1 Microemulsion 7
2.1.2 Pyrolysis 8
2.1.3 Transesterification 9
2.1.4 Esterification 11
2.2 Waste Cooking Oil (WCO) 12
2.3 Continuous Method 14
2.4 Ion-exchange Using on Esterification 17
2.5 Kinetic Model 23
2.6 Thermal Method 24
2.7 Analysis method - Acid Value 25
Chapter 3 Experimental 27
3.1 Materials 27
3.2 Equipment and Apparatus 27
3.3 Procedure 30
3.3.1 Experimental Procedure 30
3.3.2 Analysis Procedure 31
3.4 Oleic Acid Removal and Conversion Calculation 31
Chapter 4 Results and Discussion 35
4.1 Effects of Initial Acid Value (AV0) 35
4.2 Effects of Water Content 41
4.3 Effects of Molar Ratios 47
4.4 Effects of Mass Flow Rates 49
4.5 Effects of Reaction Temperatures 51
4.6 Experiment Results Compared with Simulation 53
4.6.1 Kinetic Model and Parameters Estimation 53
4.6.2 Comparison with Aspen Plus Result 58
Chapter 5 Conclusions and Future Works 66
5.1 Conclusions 66
5.2 Future Works 67
References 68
Abidin, S. Z.; Haigh, K. F.; Saha, B. Esterification of Free Fatty Acids in Used Cooking Oil Using Ion-Exchange Resins as Catalysts: An Efficient Pretreatment Method for Biodiesel Feedstock, Ind. Eng. Chem. Res., 51, 14653−14664, 2012.
Abrams, D. S.; Prausnitz, J. M. Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems, AlChE Journal, 21(1), 116-128, 1975.
Basso, R. C.; Silva, C. A. S. da; Sousa, C. de O.; Meirelles, A. J. de A.; Batista, E. A. C. LLE experimental data, thermodynamic modeling and sensitivity analysis in the ethyl biodiesel from macauba pulp oil settling step, Bioresource Technology, 131, 468–475, 2013.
Chang C. C. Kinetic simulation of oleic acid esterification with methanol by solid acid catalyst. Department of Chemical Engineering, Tatung University, Master Thesis, 2018.
Chang, J. S.; Cheng, J. C.; Ling, T. R.; Chern, J. M.; Wang, G. B.; Chou, T. C.; Kuo, C. T. Low acid value bio-gasoline and bio-diesel made from waste cooking oils using a fast pyrolysis process, Journal of the Taiwan Institute of Chemical Engineers, 73, 1-11, 2017.
Chang Y. H. Waste energy application. Industrial Technology Research Institute, 2018, http://www.me.ncku.edu.tw/~wenhtlab/webpage/course/energy/.
Chen J. J.; Chiu C. Y.; Liao S. W.; Lai W. L. Algae production of biodiesel. Science Development, 438,12-17,2009.
Chen Y. H. Biodiesel (Ⅱ)-Process 1/2, National Taipei University of Technology, https://myweb.ntut.edu.tw/~yhchen1/biodiesel-2.pdf.
Cossio-Vargas, E.; Barroso-Muñoz, F. O.; Hernandez, S.; Segovia-Hernandez, J. G.; Cano-Rodriguez, M. I. Thermally coupled distillation sequences: Steady state simulation of the esterification of fatty organic acids, Chemical Engineering and Processing, 62, 176– 182, 2012.
Deng F. Y. Enzymatic hydrolysis and chemical esterification production of biodiesel from waste cooking oil. Department of Bioengineering, Tatung University, Master Thesis, 2013.
Feng, Y. H.; Zhang, A. Q.; Li, J. X.; He, B. Q. A continuous process for biodiesel production in a fixed bed reactor packed with cation-exchange resin as heterogeneous catalyst, Bioresource Technology, 102, 3607–3609, 2011.
Fredenslund, A.; Jones, R. L.; Prausnitz, J. M. Group-Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures, AlChE Journal, 21(6), 1086-1099, 1975.
Hykkerud, A.; Marchetti, J. M. Esterification of oleic acid with ethanol in the presence of Amberlyst 15, Biomass and Bioenergy, 95, 340-343, 2016.
Kaddour, M. Esterification of Free Fatty Acid by Selected Homogeneous and Solid Acid Catalysts for Biodiesel Production, The University of Western Ontario, Master Thesis, 2016.
Kansedo, J.; Lee, K. T. Esterification of hydrolyzed sea mango (Cerbera odollam) oil using various cationic ion exchange resins, Energy Science and Engineering, 2(1), 31–38, 2014.
Li, M.; Zheng, Y.; Chen, Y. X.; Zhu, X. F. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk, Bioresource Technology, 154, 345–348, 2014.
Ma, L. L.; Lv, E. M.; Du, L. X.; Han, Y.; Lu, J.; Ding, J. C. A flow-through tubular catalytic membrane reactor using zirconium sulfate tetrahydrate-impregnated carbon membranes for acidified oil esterification, Journal of the Energy Institute, 90, 875-883, 2017.
Naima, K.; Liazid, A. Waste oils as alternative fuel for diesel engine: A review, Journal of Petroleum Technology and Alternative Fuels, 4(3), 30-43, 2013.
Omberg, K. S. Small-scale biodiesel production based on a heterogeneous technology, Norwegian University of Life Sciences, Master Thesis, 2015.
Pan, Y.; Alam, Md. A.; Wang, Z. M.; Wu, J. C.; Zhang, Y., Yuan, Z. H. Enhanced esterification of oleic acid and methanol by deep eutectic solvent assisted Amberlyst heterogeneous catalyst, Bioresource Technology, 220, 543-548, 2016.
Park, J. Y.; Kim, D. K.; Lee, J. S. Esterification of free fatty acids using water-tolerable Amberlyst as a heterogeneous catalyst, Bioresource Technology, 101, S62–S65, 2010.
Park, Y. M.; Lee, D. W.; Kim, D. K.; Lee, J. S.; Lee, K. Y. The heterogeneous catalyst system for the continuous conversion of free fatty acids in used vegetable oils for the production of biodiesel, Catalysis Today, 131, 238–243, 2008.
Pinnarat, T. Noncatalytic Esterification for Biodiesel Production, The University of Michigan of Chemical Engineering, Thesis of Doctor of Philosophy, 2011.
Pisarello, M. L.; Costa, B. D.; Mendow, G.; Querini, C.A. Esterification with ethanol to produce biodiesel from high acidity raw materials Kinetic studies and analysis of secondary reactions, Fuel Processing Technology, 91, 1005–1014, 2010.
Renon, H.; Prausnitz, J. M. Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, AlChE Journal, 14(1), 135-144, 1968.
Senoymak, M. I.; Ilgen, O. Biodiesel production from waste sunflower oil by using Amberlyst 46 as a catalyst, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 21, 3139–3143, 2016.
Shibasaki-Kitakawa, N.; Tsuji, T.; Chida, K.; Kubo, M.; Yonemoto, T. Simple Continuous Production Process of Biodiesel Fuel from Oil with High Content of Free Fatty Acid Using Ion-Exchange Resin Catalysts, Energy Fuels, 24, 3634–3638, 2010.
Shieh J. C. Discussion on technology and literature of biodiesel Version 1, 2007, http://www.taiwan921.lib.ntu.edu.tw/mypdf/bd05.pdf.
Shu, Q.; Yuan, H.; Liu, B.; Zhu, L. H.; Zhang, C. X.; Wang, J. F. Synthesis of biodiesel from model acidic oil catalyzed by a novel solid acid catalyst SO42-/C/Ce4+, Fuel, 143, 547–554, 2015.
Silva, C.; Fabiano, L. A.; Cameron G.; Seider W. D.; Optimal Design of an Algae Oil Transesterification Process, Computer Aided Chemical Engineering, 31, 880-884, 2012.
Veillette, M.; Giroir-Fendler, A.; Faucheux, N.; Heitz, M. Esterification of free fatty acids with methanol to biodiesel using heterogeneous catalysts: From model acid oil to microalgae lipids, Chemical Engineering Journal, 308(15), 101-109, 2016.
Veljković, V. B.; Banković-Ilić, I. B.; Stamenković, O. S. Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification, Renewable and Sustainable Energy Reviews, 49, 500–516, 2015.
Wiuf, C.; Feliu, E. Power-Law Kinetics and Determinant Criteria for the Preclusion of Multistationarity in Networks of Interacting Species, SIAM Journal on Applied Dynamical Systems, 12(4), 1685–1721, 2013.
Zhang, Y.; Dubé, M. A.; McLean, D. D.; Kates, M. Biodiesel production from waste cooking oil: 1. Process design and technological assessment, Bioresource Technology, 89, 1–16, 2003.
Zhou, Y. J.; Noshadi, I.; Ding, H.; Liu, J. J.; Parnas, R. S.; Clearfield, A.; Xiao, M.; Meng, Y. Z.; Sun, L. Y. Solid Acid Catalyst Based on Single-Layer -Zirconium Phosphate Nanosheets for Biodiesel Production via Esterification, Catalysts, 8(1), 17-24, 2018.
Biodiesel policy is canceled for poor quality. Taiwan environmental information center, 2014, https://e-info.org.tw/node/99126.
BP Statistical Review of World Energy, 2018, https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf.
EPA: Exports of waste cooking oil surged due to the cancel of canceled biodiesel policy. Taiwan environmental information center, 2014, https://e-info.org.tw/node/102159.
Fischer Esterification, Organic Chemistry Portal, https://www.organic-chemistry.org/namedreactions/fischer-esterification.shtm.
Microemulsions, Croda Crop Care, https://www.crodacropcare.com/en-gb/products-and-applications/microemulsion.
Specifically-Designed AMBERLYST™ BD20 Catalyst Leads to Effective and Efficient Conversion of FFAs to FAME, Dow Chemical, http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_08ca/0901b803808ca0a2.pdf?filepath=liquidseps/pdfs/noreg/609-03014.pdf&fromPage=GetDoc.
Saudi Arabia, the United States, and Russia, occupy the top three of global recoverable oil reserves, MONEYDJ News, 2017, http://blog.moneydj.com/news/.
Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration, ASTM International, https://www.astm.org/DATABASE.CART/HISTORICAL/D664-11A.htm.
The Reaction of Biodiesel: Transesterification, EGEE 439, https://www.e-education.psu.edu/egee439/node/684.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top