(3.238.240.197) 您好!臺灣時間:2021/04/12 03:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃國書
研究生(外文):Guo-Shu Huang
論文名稱:氣動消音器性能設計、分析與最佳化
論文名稱(外文):Performance Design, Analysis and Optimization of Pneumatic Mufflers
指導教授:張英俊張英俊引用關係
指導教授(外文):Ying-Chun Chang
口試委員:張英俊
口試委員(外文):Ying-Chun Chang
口試日期:2019-01-18
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:99
中文關鍵詞:氣動消音器有限元素法類神經網路系統COMSOL
外文關鍵詞:COMSOLNeural NetworkFEMThe Pneumatic Muffler
相關次數:
  • 被引用被引用:0
  • 點閱點閱:39
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用多重物理量耦合數值分析軟體COMSOL Multiphysics之有限元素法(Finite element method,FEM)分析,其主要目的在於研究分析氣動消音器的性能,並透過在外部添加擴張室、擋板、延伸管、沖孔管和貼附吸音材料來分析及設計兩段式之氣動消音器。
本論文主要分為三部分:(1)探討氣動消音器消音性能,改變消音器的構造,如孔隙率和吸音材料厚度等對於氣動消音器性能的影響。(2)將氣動消音器外部添加擴張室、擋板、延伸管、沖孔管和吸音材料,來探討噪音通過兩段式消音器的性能及聲學效果。(3)整合類神經網路與遺傳演算法之最佳化方法,設計兩段式氣動消音器內部結構尺寸之最佳化設計。
本論文之消音器設計,是使用COMSOL模擬分析得出聲音傳遞損失值,與結合類神經網路及遺傳演算法之最佳化設計,找出兩個內部結構的最佳尺寸及其聲音傳遞損失值,可有效提升消音性能,並提升該產品在市場上的競爭力。
COMSOL, a multiple physical quantities coupled numerical analysis software, is adopted in the acoustical analysis in the thesis. The primary purpose of the research is to study the performance of pneumatic mufflers and to analyze and design two phase mufflers by adding baffles, extended tube, perforated tube and sound muffling material outside.
The thesis includes three parts: (1) An assessment of the acoustical performance for the pneumatic muffler. Here, the acoustical effect of the porosity and the diameter of the sound muffling material will be discussed. (2) The pneumatic muffler will be added with chambers, baffles, extended tubes, perforated tubes and sound muffling material. The acoustical effect of the two phase pneumatic mufflers will be explored. (3) A best geometric dimension design of the two phase pneumatic mufflers will be explored by using the artificial neural network in conjunction with the GA optimizer.
Consequently, the pneumatic muffler is designed and improved using the COMSOL during the optimal process. With this analysis, the relevant effects of geometric dimensions with respect to the acoustic performance and targeted frequency will be recognized, and even that the efficiency of the mufflers will be promoted.
致謝i
摘要ii
Abstractiii
目錄iv
圖目錄vi
表目錄ix
第一章 緒論1
1.1 前言1
1.2 文獻回顧 1
1.3 研究動機 4
第二章 理論基礎 5
2.1 消音器5
2.2 氣動消音器5
2.3 類神經網路系統6
2.3.1 多項式類神經網路的概念6
2.3.2 多項式類神經網路之架構8
2.3.3 多項式類神經網路之建構10
2.4 遺傳演算法12
2.4.1 遺傳演算法流程12
2.5 多重物理量耦合分析14
2.5.1 有限元素法14
2.5.2 平面波14
2.5.3 COMSOL建模流程16
第三章 消音器性能驗證17
3.1 消音器模擬驗證17
3.2 分析設定 17
3.3 圓形截面直通式出入口擴張型消音器22
3.4 圓形截面內置開孔擋板延伸管消音器24
3.5 圓形截面沖孔延伸管直通型消音器26
3.6 使用Johnson-Champoux-Allard(JCA)模型對多孔材料進行建模28
第四章 樹脂多孔消音器之設計與消音性能分析 30
4.1 樹脂多孔消音器之消音性能30
4.2 樹脂多孔消音器之兩段式設計與消音性能34
4.3 樹脂多孔消音器外置沖孔管之不同長度沖孔部分消音性能比較37
4.4 樹脂多孔消音器外置不同沖孔率之沖孔管消音性能比較39
4.5 樹脂多孔消音器外置不同長度之圓弧擋板消音性能比較41
4.6 樹脂多孔消音器外置不同孔數量之開孔擋板消音性能比較43
4.7 樹脂多孔消音器外置不同孔位置之開孔擋板消音性能比較45
第五章 燒結青銅消音器之設計與消音性能分析47
5.1 燒結青銅消音器之消音性能47
5.2 燒結青銅消音器之兩段式設計與消音性能49
5.3 燒結青銅消音器外置不同數量之錐形擋板消音性能比較52
5.4 燒結青銅消音器外置不同孔數量之錐形擋板消音性能比較54
5.5 燒結青銅消音器外置不同孔直徑之錐形擋板消音性能比較56
5.6 燒結青銅消音器內部延伸管不同直徑之消音性能比較58
5.7 燒結青銅消音器外貼附不同吸音材料之消音性能比較60
5.8 燒結青銅消音器兩段式螺旋擋板設計與消音性能62
5.9 螺旋擋板設計內部不同數量之錐形擋板消音性能比較65
5.10 螺旋擋板設計內部貼附不同吸音材料之消音性能比較67
第六章 兩段式氣動消音器尺寸最佳化69
6.1 樹脂多孔兩段式設計消音器內改變沖孔管直徑及沖孔部分長度之兩變數最佳化71
6.2 燒結青銅兩段式設計消音器內改變延伸管直徑及錐形擋板與入口距離之兩變數最佳化 79
第七章 結論87
參考文獻 90
附錄一93
附錄二94
附錄三97
附錄四98
[1]Delany, M. E., and E. N. Bazley, 1970, Applied acoustics 3.2 105-116.111"Acoustical properties of fibrous absorbent materials."
[2]Johnson, David Linton, Joel Koplik, and Roger Dashen, 1987, Journal of fluid mechanics 176: 379-402. "Theory of dynamic permeability and tortuosity in fluid-saturated porous media."
[3]Champoux, Yvan, and Jean‐F. Allard, 1991, Journal of applied physics 70.4 : 1975-1979. "Dynamic tortuosity and bulk modulus in air‐saturated porous media."
[4]Lafarge, Denis, et al, 1997 The Journal of the Acoustical Society of America 102.4 : 1995-2006. "Dynamic compressibility of air in porous structures at audible frequencies."
[5]A. Cummings, 1974, Journal of Sound and Vibration 35, 451-477, Sound Transmission in Curved Ducts Bends.
[6]C. R. Fuller and D. A. Bies, 1978, Journal of Sound and Vibration 56(1), 45-59, A Reactive Acoustic Attenuator.
[7]C. R. Fuller and D. A. Bies, 1978, Journal of the Acoustical Society of America 63, 681-686, Propagation of Sound in a Curved Bend Containing Curved Axial Partition.
[8]W. Rostafinski, 1974, Journal of the Acoustical Society of America 56, 1005-1007, Transmission of Wave Energy in Curved Ducts.
[9]J. T. Kim and J. G. Ih, 1999, Applied Acoustics 56, 297-309, Transfer Matrix of Curved Duct Bends and Sound Attenuation in Curved Expansion Chambers.
[10]A. Selamet, N. S. Dickey and J. M. Novak, 1994, J. Acoust. Soc. Am. 96, 3177-3185, The Theory of Hershel-Quinckee Tube: A Theoretical Computational and Experimental Investigation.
[11]D. D. Davis, Jr., G. M. Stokes, D. Moore and G. L. Stevens, Jr., 1954, National Advisory Committee for Aeronautics Report, 1192, Theoretical and Experimental Investigation of Mufflers with Comments on Engine-Exhaust Muffler Design.
[12]M. G. Prasad and M. J. Crocker, 1983, Journal of Sound and Vibration, 90(4), 491-508, Studies of Acoustical Performance of a Multi- cylinder Engine Exhaust Muffler System.
[13]M. G. Prasad, 1984, Journal of Sound and Vibration, 95(2), 284-290, A Note on Acoustic Plane Waves in a Uniform Pipe With Mean Flow.
[14]M. L. Munjal, John Wiley and Sons, 1987, New York, Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design.
[15]Bernhard and J. Robert, 1986, Noise Control Engineering Journal, 27,1,10-17, Shape Optimization of Reactive Mufflers.
[16]Y. C. Chang, L. J. Yeh, M. C. Chiu and G. J. Lai, 2004, Tamkang Journal of Science and Engineering, Vol. 7, No. 3, 171-181, Computer Aided Design on Single Expansion Muffler with Extended Tube under Space Constraints.
[17]L. J. Yeh, M. C. Chiu and G. J. Lai, 2002, Proceedings of the 19th National Conference on Mechanical Engineering (The Chinese Society of Mechanical Engineers), Hu-Wei, Taiwan; C7, 625-633, Computer Aided Design on Single Expansion Muffler under Space Constraints.
[18]Y. C. Chang, M. C. Chiu and M. M. Cheng, 2007, Proceedings of the 24th National Conference on Mechanical Engineering (The Chinese Society of Mechanical Engineers) , Chung-Li, Taiwan; D19, 4599-4604, Optimum Design of Perforated Mufflers by Using Neural Network and Genetic Algorithms.
[19]鄭牧民,2007,大同大學機械工程系所,大同大學碩士論文,利用類神經網路與遺傳演算法於槽孔消音器之最佳化設計。
[20]Nag, Sarthak, Arpan Gupta, and Atul Dhar, 2017, Nonlinear Studies 24.1 . "Sound attenuation in expansion chamber muffler using plane wave method and finite element analysis."
[21]Coustyx software. Muffler Transmission Loss – Double Expansion Chamber.
[22]Jeon, Soohong, et al, 2014, International Journal of Naval Architecture and Ocean Engineering 6.4 : 935-946. "Acoustic performance of industrial mufflers with CAE modeling and simulation."
[23]Barbosa, L. R., and A. Lenzi, 2018, Applied Acoustics 136: 94-101."Parametric optimization and analysis of metallic porous material used for discharge system of hermetic compressor."
[24]Ivakhnenko, Alexey Grigorevich, 1971, IEEE transactions on Systems, Man, and Cybernetics4 : 364-378. "Polynomial theory of complex systems."
電子全文 電子全文(網際網路公開日期:20220118)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔