|
[1] C. T. Hsieh, J. M. Chen, H. H. Lin, H. C. Shih, “Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism,” Applied Physics Letters, 82(2003), 3315-3318 [2] G. Filipic, U. Cvelbar, “Copper oxide nanowires: a review of growth,” Nanotechnology, 23(2012), 1-16 [3] C. Huang, X. Tian, J. Liu, W. Wang, Z. Dong, L. Liu, “Fabrication of a Single CuO Nanowire-based Gas Sensor Working at Room Temperature,” International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), 2013,26-30 [4] S. H. Park, W. Jin. Lee, “Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries,” Scientific Reports, 5(2015), 09754 [5] J. Tan, M. Dun, L. Li, J. Zhao, X. Li, Y. Hu, G. Huang, W. Tan, X. Huang, “Self-template derived CuO nanowires assembled microspheres and its gas sensing properties,” Sensors and Actuators, B(2017), 1-8 [6] T. H. Tran, M. H. Nguyen, T. H. T. Nguyen, V. P. T. Dao, P. M. Nguyen, V. T. Nguyen, N. H. Pham, V. V. Le, C. D. Sai, Q. H. Nguyen, T. T. Nguyen, K. H. Ho, Q. K. Doan, “Effect of annealing temperature on morphology and structure of CuO nanowires grown by thermal oxidation method,” Journal of Crystal Growth, 505(2019), 33-37 [7] H. Wu, D. Lin, W. Pan, “Fabrication, assembly, and electrical characterization of CuO nanofibers,” Applied Physics Letters, 89(2006), 133125 [8] S. D. Vrieze, T. V. Camp, A. Nelvig, B. Hagstrom, P. Westbroek, K. D. Clerck, “The effect of temperature and humidity on electrospinning,” J Mater Sci, 44(2009), 1357-1362 [9] H. Xiang, Y. Long, X. Yu, X. Zhang, N. Zhao, J. Xu, “A novel and facile method to prepare porous hollow CuO and Cu nanofibers based on electrospinning,” CrystEngComm, 13(2011), 4856-4860 [10] F. Cao, J. Gong, “Nonenzymatic glucose sensor based on CuO microfibers composed of CuO nanoparticles,” Analytica Chimica Acta, 723(2012), 39-44 [11] B. Wang, L. Luo, Y. Ding, D. Zhao, Q. Zhang, “Synthesis of hollow copper oxide by electrospinning and its application as a nonenzymatic hydrogen peroxide sensor,” Colloids and Surfaces B: Biointerfaces, 97(2012), 51-56 [12] H. R. Kim, T. Ito, B. S. Kim, I. S. Kim, “Fabrication of CuO nanotubes by electrospinning, metallisation and annealing,” Journal of Experimental Nanoscience, 8(2013), 852-858 [13] H. K. Kim, W. Honda, B. S. Kim, I. S. Kim, “Preparation and magnetic properties of electrospun CuO/NiO bimetallic nanofibers via sol–gel electrospinning,” Mater Sci, 48(2013), 1111-1116 [14] N. V. Dung, D. T. T. Le, N. D. Trung, H. N. Dung, N. M. Hung, N. V. Duy, N. D. Hoa, N. V. Hieu, “CuO Nanofibers Prepared by Electrospinning for Gas Sensing Application:Effect of Copper Salt Concentration,” Journal of Nanoscience and Nanotechnology, 16(2016), 7910-7918 [15] S. Bai, W. Guo, J. Sun, J. Li, Y. Tian, A. Chen, R. Luo, D. Li, “Synthesis of SnO2–CuO heterojunction using electrospinning andapplication in detecting of CO,” Sensors and Actuators B, 226(2016), 96-103 [16] D. Malwal, P. Gopinath, “Efficient adsorption and antibacterial properties of electrospun CuO-ZnO composite nanofibers for water remediation,” Journal of Hazardous Materials, 321(2017), 611-621 [17] H. Zhu, A. Liu, G. Liu, F. Shan, “Electrospun p-type CuO nanofibers for low-voltage field-effect transistors,” Applied Physics Letters, 111(2017), 143501 [18] Y. Zhang, J. He, R. Shi, P. Yang, “Preparation and photo Fenton-like activities of high crystalline CuO fibers,” Applied Surface Science, 422(2017), 1042-1051 [19] S. R. Hosseini, S. Ghasemi, M. K. Rousta, “Preparation of CuO/NiO composite nanofibers by electrospinning and their application for electro-catalytic oxidation of hydrazine,” Journal of Power Sources, 343(2017), 467-476 [20] G. Ungur, J. Hruza, “Modified polyurethane nanofibers as antibacterial filters for air and water purification,” The Royal Society of Chemistry, 7(2017), 49177-49187 [21] M. Harilal, S. G. Krishnan, B. Pal, M. V. Reddy, M. H. A. Rahim, M. M. Yusoff, R. Jose, “Environment-Modulated Crystallization of Cu2O and CuO Nanowires by Electrospinning and Their Charge Storage Properties,” Langmuir, 34(2018), 1873-1882 [22] Y. Zhmayev, A. C. Ruo, Y. L. Joo, “Centrifugal spinning of viscoelastic Boger fluids: flow visualization of the jetting behavior,” School of Chemical & Biomolecular Engineering, (2014), 14853 [23] T. O’Haire, M. Rigout, S. J. Russell and C. M. Carr, “Influence of nanotube dispersion and spinning conditions on nanofibre nanocomposites of polypropylene and multi-walled carbon nanotubes produced through ForcespinningTM,” Journal of Thermoplastic Composite Materials, 27(2014), 205-214 [24] Y. Zhmayev, M. J. Divvela, A. C. Ruo, T. Huang , Y. L. Joo, “The jetting behavior of viscoelastic Boger fluids during centrifugal spinning,” PHYSICS OF FLUIDS, 27(2015), 123101 [25] H. Chen, H. Xu, J. Sun, C. Liu, B. Yang, “Effective method for high-throughput manufacturing of ultrafine fibres via needleless centrifugal spinning,” Micro & Nano Letters, 10(2015), 81-84 [26] A. Fauzi, D. Edikresnha, M. M Munir, Khairurrijal, “Synthesis of Styrofoam Fibers using Rotary Forcespinning Technique,” Materials Science Forum, 827, (2015), 279-284 [27] Y. Fang, A. R. Dulaney, J. Gadley, J. Maia, C. J. Ellison, “A comparative parameter study: Controlling fiber diameter and diameter distribution in centrifugal spinning of photocurable monomers,” Polymer, 88(2016), 102-111 [28] T. Hou, X. Li, Y. Lu, B. Yang, “Highly porous fibers prepared by centrifugal spinning,” Materials and Design, 114(2017). 303-311 [29] S. J. Upson , T. O'Haire , S. J. Russell , K. Dalgarno , A. M. Ferreira, “Centrifugally spun PHBV micro and nanofibres,” Materials Science and Engineering C, 76(2017), 190-195 [30] M. R. Badrossamay, H. A. McIlwee, J. A. Goss, K. K. Parker, “Nanofiber Assembly by Rotary Jet-Spinning,” American Chemical Society, 10(2010), 2257-2261 [31] F. Dabirian, S. A. Hosseini Ravandi, A. R. Pishevar , R. A. Abuzade, “A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems,” Journal of Electrostatics, 69(2011), 540-546 [32] M. Khamforoush, T. Hatami, M. Mahjob, F. Dabirian, A. Zandi, “Performance evaluation of modified rotating-jet electrospinning method by investigating the effect of collector size on the nanofibers alignment,” Iran Polym J, 23(2014), 569-580 [33] M. Khamforoush, T. Asgari, T. Hatami, F. Dabirian, “The influences of collector diameter, spinneret rotational speed, voltage, and polymer concentration on the degree of nanofibers alignment generated by electrocentrifugal spinning method : Modeling and optimization by response surface methodology,” Korean J. Chem. Eng., 31(2014), 1695-1706 [34] A. Valipouri, S. A. H. Ravandi, A. Pishevar, “Optimization of the parameters involved in fabrication of solid state polymerized polyamide (SSP PA66) nanofibers via an enhanced electrocentrifuge spinning,” Journal of Industrial Textiles, 45(2015), 368-386 [35] M. Khamforoush, T. Asgari, “A Modified Electro-Centrifugal Spinning Method To Enhance the Production Rate of Highly Aligned Nanofiber,” World Scientific Publishing Company, 10(2015), 1550016 [36] A. R. Hashemi, A. R. Pishevar, A. Valipouri, E. I. Părău, “Numerical and experimental study on the steady cone-jet mode of electro-centrifugal spinning,” Physics of Fluids, 30(2018), 017103
|