跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 02:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何冠樺
研究生(外文):Guan-Hua He
論文名稱:應用旋轉靜電紡絲法製作氧化銅奈米纖維技術研究
論文名稱(外文):Application of electro-forcespinning technique for the fabrication of CuO nanowires
指導教授:張敏興
指導教授(外文):Min-Hsing Chang
口試委員:張敏興
口試委員(外文):Min-Hsing Chang
口試日期:2019-07-04
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:63
中文關鍵詞:旋轉靜電紡絲法氧化銅奈米纖維
外文關鍵詞:Electro forcespinningCuO Nanowires
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在應用旋轉靜電紡絲法製作氧化銅(CuO)奈米纖維,旋轉靜電紡絲法能以較低的製備時間製備纖維,同時也可提高產量,因此以旋轉靜電紡絲法來取代傳統靜電紡絲技術來製作出直徑可達奈米等級之氧化銅纖維,並調整旋轉靜電紡絲技術中之轉速速度、靜電電場大小及不同高分子聚乙烯吡咯烷酮 ( Polyvinylpyrrolidone,PVP,分子量:1300000)溶液濃度,並經過高溫燒結形成氧化銅奈米纖維,再找出可得到完整且纖維直徑均勻的最佳參數。最後成功得出當馬達轉速設定為2000 rpm且具有12 kV的靜電場電壓時,可得到平均直徑約 208.78 nm之纖維並具有完整的纖維型態。研究過程中則會以TGA (Thermogravimetric analysis)熱重量分析儀測定該纖維在燒結過程中高分子被分解的比重趨勢及XRD (X-ray diffraction)進行元素鑑別,最後再透過SEM (Scanning Electron Microscope)及FE-SEM (Field Emission Scanning Electron Microscop)顯微鏡觀測纖維狀態同時量測該樣品之纖維直徑並進行燒結前後纖維型態的比較,並以TEM (Transmission electron microscope)驗證氧化銅之元素單晶結構。
This study purpose to produce the copper oxide (CuO) nanowires by electro forcespinning. We can produce nanowires with lower time and larger yields of collector by electro forcespinning. Therefore, we replaced the traditional electrospinning technique with the electro forcespinning method to produce the copper oxide nanowires with nano grade. Also, we adjust the speed of rotating, the voltage of the electrostatic field and the different weight percentage concentration of polyvinylpyrrolidone (PVP, molecular weight: 1300000). After the calcination, the copper oxide nanowires are formed which was be able to find the best parameters for obtaining complete and uniform fiber diameter. When the motor speed set to 2000 rpm and the electrostatic field voltage at 12 kV, the fiber with an average diameter about 208.78 nm was obtained and had a complete pattern. During the research, the TGA thermogravimetric analyzer was used to determine the specific gravity of the polymer and the XRD for element identification. Finally, the fiber state of the sample was measured by SEM and FE-SEM, and the fiber diameter of the sample was measured and compared before and after sintering. The monoclinic crystal structure of the element of copper oxide was verified by TEM.
第一章 緒論1
1.1 前言1
1.2 文獻回顧2
1.2.1 氧化銅奈米纖維製程2
1.2.2 靜電紡絲法 (Electrospinning) 3
1.2.3 離心紡絲法 (Forcespinning) 5
1.2.4 旋轉靜電紡絲法 (Electro-forcespinning) 7
1.3 研究目的8
第二章 實驗規劃及方法9
2.1 實驗藥品材料配置9
2.1.1藥材及設備清單9
2.1.2 含銅之高分子溶液製備流程10
2.2旋轉電紡實驗設備10
2.2.1旋轉電紡設備清單11
2.2.2旋轉電紡設備設計12
2.3實驗流程13
2.4實驗分析及項目14
2.4.1掃描電子顯微鏡 (Scanning Electron Microscopy,SEM) 14
2.4.2場效發射式掃描電子顯微 (Field Emission Scanning Electron
Microscope,FE-SEM) 15
2.4.3 X-射線繞射分析(X-Ray Diffractometer,XRD) 16
2.4.4熱重量分析 (Thermogravimetric Analyzer,TGA) 16
2.4.5穿透式電子顯微鏡 (Transmission electron microscope,TEM) 17
第三章 實驗結果與討論19
3.1各種變因與纖維型態之影響19
3.1.1旋轉轉速與纖維型態之關係19
3.1.2高壓靜電場與纖維型態之關係31
3.1.3高分子溶液濃度與纖維型態之關係41
3.2氧化銅奈米纖維燒結前型態41
3.3氧化銅奈米纖維之TGA熱重量分析43
3.4氧化銅奈米纖維之XRD元素分析46
3.5氧化銅奈米纖維在TEM下的晶體型態及結構50
第四章 結果與未來展望54
4.1結論54
4.2未來展望56
參考文獻57
[1] C. T. Hsieh, J. M. Chen, H. H. Lin, H. C. Shih, “Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism,” Applied Physics Letters, 82(2003), 3315-3318
[2] G. Filipic, U. Cvelbar, “Copper oxide nanowires: a review of growth,” Nanotechnology, 23(2012), 1-16
[3] C. Huang, X. Tian, J. Liu, W. Wang, Z. Dong, L. Liu, “Fabrication of a Single CuO Nanowire-based Gas Sensor Working at Room Temperature,” International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), 2013,26-30
[4] S. H. Park, W. Jin. Lee, “Hierarchically mesoporous CuO/carbon nanofiber coaxial shell-core nanowires for lithium ion batteries,” Scientific Reports, 5(2015), 09754
[5] J. Tan, M. Dun, L. Li, J. Zhao, X. Li, Y. Hu, G. Huang, W. Tan, X. Huang, “Self-template derived CuO nanowires assembled microspheres and its gas sensing properties,” Sensors and Actuators, B(2017), 1-8
[6] T. H. Tran, M. H. Nguyen, T. H. T. Nguyen, V. P. T. Dao, P. M. Nguyen, V. T. Nguyen, N. H. Pham, V. V. Le, C. D. Sai, Q. H. Nguyen, T. T. Nguyen, K. H. Ho, Q. K. Doan, “Effect of annealing temperature on morphology and structure of CuO nanowires grown by thermal oxidation method,” Journal of Crystal Growth, 505(2019), 33-37
[7] H. Wu, D. Lin, W. Pan, “Fabrication, assembly, and electrical characterization of CuO nanofibers,” Applied Physics Letters, 89(2006), 133125
[8] S. D. Vrieze, T. V. Camp, A. Nelvig, B. Hagstrom, P. Westbroek, K. D. Clerck, “The effect of temperature and humidity on electrospinning,” J Mater Sci, 44(2009), 1357-1362
[9] H. Xiang, Y. Long, X. Yu, X. Zhang, N. Zhao, J. Xu, “A novel and facile method to prepare porous hollow CuO and Cu nanofibers based on electrospinning,” CrystEngComm, 13(2011), 4856-4860
[10] F. Cao, J. Gong, “Nonenzymatic glucose sensor based on CuO microfibers composed of CuO nanoparticles,” Analytica Chimica Acta, 723(2012), 39-44
[11] B. Wang, L. Luo, Y. Ding, D. Zhao, Q. Zhang, “Synthesis of hollow copper oxide by electrospinning and its application as a nonenzymatic hydrogen peroxide sensor,” Colloids and Surfaces B: Biointerfaces, 97(2012), 51-56
[12] H. R. Kim, T. Ito, B. S. Kim, I. S. Kim, “Fabrication of CuO nanotubes by electrospinning, metallisation and annealing,” Journal of Experimental Nanoscience, 8(2013), 852-858
[13] H. K. Kim, W. Honda, B. S. Kim, I. S. Kim, “Preparation and magnetic properties of electrospun CuO/NiO bimetallic nanofibers via sol–gel electrospinning,” Mater Sci, 48(2013), 1111-1116
[14] N. V. Dung, D. T. T. Le, N. D. Trung, H. N. Dung, N. M. Hung, N. V. Duy, N. D. Hoa, N. V. Hieu, “CuO Nanofibers Prepared by Electrospinning for Gas Sensing Application:Effect of Copper Salt Concentration,” Journal of Nanoscience and Nanotechnology, 16(2016), 7910-7918
[15] S. Bai, W. Guo, J. Sun, J. Li, Y. Tian, A. Chen, R. Luo, D. Li, “Synthesis of SnO2–CuO heterojunction using electrospinning andapplication in detecting of CO,” Sensors and Actuators B, 226(2016), 96-103
[16] D. Malwal, P. Gopinath, “Efficient adsorption and antibacterial properties of electrospun CuO-ZnO composite nanofibers for water remediation,” Journal of Hazardous Materials, 321(2017), 611-621
[17] H. Zhu, A. Liu, G. Liu, F. Shan, “Electrospun p-type CuO nanofibers for low-voltage field-effect transistors,” Applied Physics Letters, 111(2017), 143501
[18] Y. Zhang, J. He, R. Shi, P. Yang, “Preparation and photo Fenton-like activities of high crystalline CuO fibers,” Applied Surface Science, 422(2017), 1042-1051
[19] S. R. Hosseini, S. Ghasemi, M. K. Rousta, “Preparation of CuO/NiO composite nanofibers by electrospinning and their application for electro-catalytic oxidation of hydrazine,” Journal of Power Sources, 343(2017), 467-476
[20] G. Ungur, J. Hruza, “Modified polyurethane nanofibers as antibacterial filters for air and water purification,” The Royal Society of Chemistry, 7(2017), 49177-49187
[21] M. Harilal, S. G. Krishnan, B. Pal, M. V. Reddy, M. H. A. Rahim, M. M. Yusoff, R. Jose, “Environment-Modulated Crystallization of Cu2O and CuO Nanowires by Electrospinning and Their Charge Storage Properties,” Langmuir, 34(2018), 1873-1882
[22] Y. Zhmayev, A. C. Ruo, Y. L. Joo, “Centrifugal spinning of viscoelastic Boger fluids: flow visualization of the jetting behavior,” School of Chemical & Biomolecular Engineering, (2014), 14853
[23] T. O’Haire, M. Rigout, S. J. Russell and C. M. Carr, “Influence of nanotube dispersion and spinning conditions on nanofibre nanocomposites of polypropylene and multi-walled carbon nanotubes produced through ForcespinningTM,” Journal of Thermoplastic Composite Materials, 27(2014), 205-214
[24] Y. Zhmayev, M. J. Divvela, A. C. Ruo, T. Huang , Y. L. Joo, “The jetting behavior of viscoelastic Boger fluids during centrifugal spinning,” PHYSICS OF FLUIDS, 27(2015), 123101
[25] H. Chen, H. Xu, J. Sun, C. Liu, B. Yang, “Effective method for high-throughput manufacturing of ultrafine fibres via needleless centrifugal spinning,” Micro & Nano Letters, 10(2015), 81-84
[26] A. Fauzi, D. Edikresnha, M. M Munir, Khairurrijal, “Synthesis of Styrofoam Fibers using Rotary Forcespinning Technique,” Materials Science Forum, 827, (2015), 279-284
[27] Y. Fang, A. R. Dulaney, J. Gadley, J. Maia, C. J. Ellison, “A comparative parameter study: Controlling fiber diameter and diameter distribution in centrifugal spinning of photocurable monomers,” Polymer, 88(2016), 102-111
[28] T. Hou, X. Li, Y. Lu, B. Yang, “Highly porous fibers prepared by centrifugal spinning,” Materials and Design, 114(2017). 303-311
[29] S. J. Upson , T. O'Haire , S. J. Russell , K. Dalgarno , A. M. Ferreira, “Centrifugally spun PHBV micro and nanofibres,” Materials Science and Engineering C, 76(2017), 190-195
[30] M. R. Badrossamay, H. A. McIlwee, J. A. Goss, K. K. Parker, “Nanofiber Assembly by Rotary Jet-Spinning,” American Chemical Society, 10(2010), 2257-2261
[31] F. Dabirian, S. A. Hosseini Ravandi, A. R. Pishevar , R. A. Abuzade, “A comparative study of jet formation and nanofiber alignment in electrospinning and electrocentrifugal spinning systems,” Journal of Electrostatics, 69(2011), 540-546
[32] M. Khamforoush, T. Hatami, M. Mahjob, F. Dabirian, A. Zandi, “Performance evaluation of modified rotating-jet electrospinning method by investigating the effect of collector size on the nanofibers alignment,” Iran Polym J, 23(2014), 569-580
[33] M. Khamforoush, T. Asgari, T. Hatami, F. Dabirian, “The influences of collector diameter, spinneret rotational speed, voltage, and polymer concentration on the degree of nanofibers alignment generated by electrocentrifugal spinning method : Modeling and optimization by response surface methodology,” Korean J. Chem. Eng., 31(2014), 1695-1706
[34] A. Valipouri, S. A. H. Ravandi, A. Pishevar, “Optimization of the parameters involved in fabrication of solid state polymerized polyamide (SSP PA66) nanofibers via an enhanced electrocentrifuge spinning,” Journal of Industrial Textiles, 45(2015), 368-386
[35] M. Khamforoush, T. Asgari, “A Modified Electro-Centrifugal Spinning Method To Enhance the Production Rate of Highly Aligned Nanofiber,” World Scientific Publishing Company, 10(2015), 1550016
[36] A. R. Hashemi, A. R. Pishevar, A. Valipouri, E. I. Părău, “Numerical and experimental study on the steady cone-jet mode of electro-centrifugal spinning,” Physics of Fluids, 30(2018), 017103
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top