|
[1] S. Marsland, “Machine learning: an algorithmic perspective”, CRC press, 2015. [2] A. L. Buczak and E. Guven, “A survey of data mining and machine learning methods for cyber security intrusion detection,” IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1153–1176, Oct. 2015. [3] Wikipedia, History of self-driving cars, Retrieved from https://en.wikipedia.org/wiki/History_of_self-driving_cars(June 15, 2019) [4] AVENUE report, Autonomous Vehicles to Evolve to a New Urban Experience (2018) [5] ERTRAC Working Group report, Automated Driving Roadmap (2017) [6] Ghulam Mehdi, Jungang Miao, “Millimeter Wave FMCW Radar for Foreign Object Debris (FOD) Detection at Airport Runways”, Proceedings of 2012 9th International Bhurban Conference o n Applied Sciences & Technology (IBCAST), 407 (2012). [7] T. Yamawaki et al, “Millimeter-wave obstacle detection radar”, FUJITSU TEN TECH, No. 15 (2000) 10. [8] R. O. Chavez-Garcia, O. Aycard, “ Multiple sensor fusion and classification for moving object detection and tracking”, IEEE Transactions on Intelligent Transportation Systems, 17(2), 525-534. 2015. [9] G. E. Hinton, S. Osindero, Y.-W. Teh, “A fast learning algorithm for deep belief nets. Neural computation”, 18(7):1527–1554, 2006 [10] P.Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, “Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion”, The Journal of Machine Learning Research, 11:3371–3408. 2010. [11] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton, “ Imagenet classification with deep convolutional neural networks”, In Advances in Neural Information Processing Systems 25, 2012. [12] Quoc V Le, Marc’Aurelio Ranzato, Rajat Monga, Matthieu Devin, Kai Chen, Greg S Corrado, Jeff Dean, and Andrew Y Ng, “Building high-level features using large scale unsupervised learning”, In International Conference on Machine Learning, 2012. [13] R. S. R. Dheekonda, S. K. Panda, N. Khan, M. Al-Hasan, S. Anwar, “Object Detection from a Vehicle Using Deep Learning Network and Future Integration with Multi-Sensor Fusion Algorithm”. (No. 2017-01-0117). SAE Technical Paper. https://doi.org/10.4271/2017-01-0117. (2017). [14] Vivienne Sze, Yu-Hs in Chen, “Efficient Processing of Deep Neural Networks: A Tutorial and Survey”, Proceedings of the IEEE, Vol. 105, No. 12, December 2295. 2017. [15] Rodrigo Verschae, Javier Ruiz-del-Solar, “Object detection: Current and future directions, Frontiers in robotics and AI”, Front. Robot. AI, 19 November 2015 https://doi.org/10.3389/frobt.2015.00029. 2015. [16] XUE-WEN CHEN, XIAOTONG LIN, “Big Data Deep Learning: Challenges and Perspectives”, IEEE Access, 514. 2014. [17] 百度百科, 毫米波雷达, Retrieved from https://baike.baidu.com/item/%E6%AF%AB%E7%B1%B3%E6%B3%A2%E9%9B%B7%E8%BE%BE(June 16, 2019) [18] Xinyi Tang et al., “Experimental Results of Target Classification Using mm Wave Corner Radar Sensors”, 2018 Asia-Pacific Microwave Conference (APMC) (https://doi.org/10.23919/APMC.2018.8617234). 2018. [19] M. Kang, K. Ji, X. Leng, Z. Lin, “Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection”, Remote Sensing, 9(8), 860. 2017. [20] Shunguang Wu, S. Decker, P. Chang, T. Camus, and J. Eledath, “Collision Sensing by Stereo Vision and Radar Sensor Fusion”, IEEE Transactions on Intelligent Transportation Systems 10(4), 606_614. doi: 10. 1109/TITS.2009.2032769. 2009. [21] G. Alessandretti, A. Broggi, P. Cerri, “Vehicle and Guard Rail Detection Using Radar and Vision Data Fusion”, IEEE Transactions on Intelligent Transportation Systems 8(1), 95_104. doi: 10.1109/TITS. 2006.888597. 2007. [22] L. Bombini, P. Cerri, P. Medici, G. Alessandretti, “Radar-vision Fusion for Vehicle Detection”, Proceedings of International Workshop on Intelligent Transportation, 65-70. 2006. [23] Wei Huang, Zhen Zhang, Wentao Li and Jiandong Tian, “Moving Object Tracking Based on Millimeter-wave Radar and Vision Sensor”, Journal of Applied Science and Engineering, Vol. 21, No. 4, pp. 609_614. 2018. [24] Takahiro Yanagi, Karel Kreuter, Hiroshi Naganawa, “The World’s First Real-TimeMillimeter wave Radar Simulator using High Precision 3DCG MAP and Objects”, Use CASE. Retrieved from https://www.coseda-tech.com/files/coside/user_files/Files/pdf.%20Dokumente/TheWorld'sFirstMMWR_Sim_OTSL_DIAM_COSEDA_UGM_2017.pdf(June 20, 2019) [25] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You only look once: Unified, real-time object detection”. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). 2016. [26] J. Redmon, A. Farhadi, “YOLO9000: better, faster, stronger”, In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7263-7271). 2017. [27] J. Redmon, A. Farhadi, “Yolov3: An incremental improvement”, arXiv preprint arXiv:1804.02767. 2018. [28] S. Ren, K. He, R. Girshick, J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks”, In Advances in neural information processing systems (pp. 91-99). 2015. [29] K. He, G. Gkioxari, P. Dollár, R. Girshick, “Mask r-cnn”, In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969). 2017.
|