跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/19 22:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:KUNANYA,MASODSAI
研究生(外文):KUNANYA,MASODSAI
論文名稱:老化高血壓之心血管病變與運動和原兒茶酸介入之影響
論文名稱(外文):Aging-related Cardiovascular Dysfunction in Hypertension and its Reversal through Exercise and Protocatechuic Acid
指導教授:楊艾倫楊艾倫引用關係
指導教授(外文):Yang, Ai-Lun
口試日期:2019-01-08
學位類別:博士
校院名稱:臺北市立大學
系所名稱:運動科學研究所
學門:民生學門
學類:運動科技學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:121
中文關鍵詞:老化高血壓內皮功能一氧化氮胰島素阻抗氧化壓力發炎有氧運動多酚原兒茶酸
外文關鍵詞:AgingHypertensionEndothelial functionNitric oxideInsulin resistanceOxidative stressInflammationAerobic exercisePolyphenolProtocatechuic acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
背景和目的: 根據流行病學研究,高血壓的發生率可能無法避免隨著年齡增加,高血壓與老化兩者皆對心血管病變有顯著的影響,特別是內皮功能障礙。規律的運動已被證明是非藥物性預防與治療高血壓的方式。此外,天然多酚化合物,如原兒茶酸,被認為具有促進健康的效果,包括心血管保護作用。在本研究中,我們欲探討是否老化對高血壓之內皮功能障礙有加成效應。此外,我們也進一步探討運動或原兒茶酸介入對老化高血壓之內皮功能障礙的影響。方法: 本研究使用雄性自發性高血壓大鼠(spontaneously hypertensive rats, SHR)和正常血壓大鼠(Wistar-Kyoto, WKY),隨機分為四組:24週齡正常血壓組(24wk-WKY)、48週齡正常血壓組(48wk-WKY)、24週齡高血壓組(24wk-SHR)與48週齡高血壓組(48wk-SHR)。此外,只有48週齡高血壓組另接受運動或原兒茶酸介入(分別為48wk-SHR-Ex和48wk-SHR-PCA),須完成12週中等強度跑步機介入(21公尺/分鐘,60分鐘/天,5天/週)或每日於飲用水中口服原兒茶酸(200毫克/公斤/天)。在所有動物達到其年齡並完成介入後,使用組織浴系統評估其內皮功能,即血管反應性,且分析各組一氧化氮含量、氧化與抗氧化特性、發炎反應、及胰島素阻抗等,並進行比較。此外,利用西方墨點法檢測主動脈蛋白表現量。結果: 我們發現,不同品系(高血壓)會有血壓顯著增加的情形,而非老化造成(P<0.05)。由胰島素和類胰島素生長因子-1誘導之內皮依賴性血管舒張反應於SHR兩個週齡中均顯著降低(P<0.05),而48wk-SHR組比24wk-SHR組更為嚴重(P <0.05)。然而,這些血管舒張反應於48wk-SHR-Ex和48wk-SHR-PCA組中皆有顯著提升(P <0.05)。相似的情形也發生於一氧化氮濃度、氧化與抗氧化特性、發炎反應和胰島素阻抗等。而於磷脂酸肌醇3-酶(PI3K)或一氧化氮合成酶(NOS)抑制後,胰島素和類胰島素生長因子-1誘導之血管舒張反應皆無顯著差異。此外,與同週齡的正常血壓組相比,兩個週齡的高血壓組中胰島素受體,類胰島素生長因子-1受體,蛋白激酶B(Akt)和內皮型一氧化氮合成酶(eNOS)的蛋白表現量皆顯著下降(P <0.05)。然而,於運動或原兒茶酸介入後皆有顯著改善(P <0.05)。結論: 本研究證實老化會使高血壓之內皮功能障礙更為嚴重,然而,經12週運動或原兒茶酸介入可顯著改善老化高血壓之內皮功能障礙,可能經由胰島素/類胰島素生長因子-1-PI3K-NOS-NO途徑之影響。基於這些發現,我們建議運動或原兒茶酸介入可作為預防或治療老化高血壓之非藥物性方式。
Background and purpose: Based on the epidemiological studies, the prevalence of hypertension may unavoidably increase with advancing age. Both of hypertension and aging have remarkable effects on cardiovascular disorders, particularly endothelial dysfunction. Regular exercise has been proved as the non-pharmacological strategy in prevention and treatment for hypertension. In addition, natural polyphenolic compounds, such as protocatechuic acid (PCA), have been reviewed for various actions in health promotion, including cardiovascular-protective effects. In the present study, we investigated whether aging additively affected endothelial dysfunction in hypertension. Moreover, we explored the effects of exercise intervention or PCA administration on endothelial dysfunction in aging hypertension. Methods: Male spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were randomly divided into four groups: the 24-week-old WKY (24wk-WKY), 48-week-old WKY (48wk-WKY), 24-week-old SHR (24wk-SHR), and 48-week-old SHR (48wk-SHR) groups. Also, only the 48-week-old SHR group received either exercise intervention or PCA administration (48wk-SHR-Ex, 48wk-SHR-PCA, respectively). They completed the 12 weeks of either moderate-intensity treadmill running (21 m/min for 60 min/days, 5 days/week) or daily oral PCA administration (200 mg/kg/day) in drinking water. After all animals reached their age and completed interventions, endothelial function in term of vascular reactivity was evaluated by using the organ bath system. Also, the production of nitric oxide (NO), oxidant and antioxidant properties, inflammatory profiles, and insulin resistance were determined and compared among groups. Western immunoblot analysis was performed to determine the aortic protein expression. Results: Our results showed that blood pressure was significantly increased with the stain (SHR) but not with aging (P<0.05). The endothelium-dependent vasorelaxation induced by insulin and insulin-like growth factor-1 (IGF-1) was significantly decreased in both ages of SHRs (P<0.05), and it was significantly more severe in the 48wk-SHR group compared with the 24wk-SHR group (P<0.05). However, this vasorelaxation was significantly restored in 48wk-SHR-Ex and 48wk-SHR-PCA groups (P<0.05). Similar trends were also found in NO production, oxidant and antioxidant properties, inflammatory profiles, and insulin resistance. There were no significant differences in insulin- and IGF-1-induced vasorelaxation among groups after the pre-incubation of phosphatidylinositol 3-kinase (PI3K) or nitric oxide synthase (NOS) inhibitors, respectively. Moreover, the protein levels of insulin receptors, IGF-1 receptors, protein kinase B (Akt), and endothelial nitric oxide synthase (eNOS) were significantly declined in both ages of SHRs compared with the age-matched WKYs (P<0.05). However, they were significantly improved after exercise intervention or PCA administration (P<0.05). Conclusion: This study suggested that aging could additively induce severe endothelial dysfunction in hypertension, however, the 12 weeks of exercise intervention or PCA administration remarkably ameliorated endothelial dysfunction in aging hypertension partly through insulin/IGF-1-PI3K-NOS-NO pathways. Based on these findings, exercise intervention or PCA administration could be suggested as the non-pharmacological strategy for the prevention and/or treatment for aging hypertension.
CONTENTS
Page
ACKNOWLEDGEMENTS i
ABSTRACT ii
CONTENTS v
LIST OF TABLES vi
LIST OF FIGURES vii
LIST OF ABBREVIATIONS xii
CHAPTER I INTRODUCTION 1
CHAPTER II LITERATURE REVIEWS 8
CHAPTER III MATERIALS AND METHODS 32
CHAPTER IV RESULTS 38
4.1 First study 38
4.2 Second study 42
CHAPTER V DISCUSSION 46
5.1 First study 46
5.2 Second study 55
CHAPTER VI CONCLUSION 64
REFERENCES 65
TABLES AND FIGURES 90
First study 90
Second study 103
BIOGRAPHY 116

LIST OF TABLES

Page
Table 1 General characteristics (first study) 90
Table 2 Insulin resistance (first study) 90
Table 3 General characteristics (second study) 103
Table 4 Insulin resistance (second study) 103

LIST OF FIGURES

Page
Figure 1 Chemical Structure of protocatechuic acid (PCA) 28
Figure 2 Vasorelaxant responses of insulin (310-8 to 310-6 M) at cumulative concentration-response curves for endothelium-intact (A) and endothelium-denuded (B) aortic rings in 24-week-old (24wk) and 48-week-old (48wk) Wistar-Kyoto rats (WKY), and 24wk- and 48wk-spontaneously hypertensive rats (SHR). 90
Figure 3 Vasorelaxant responses of insulin-like growth factor-1 (IGF-1) (10-9 to 10-7 M) at cumulative concentration-response curves for endothelium-intact (A) and endothelium-denuded (B) aortic rings in 24-week-old (24wk) and 48-week-old (48wk) Wistar-Kyoto rats (WKY), and 24wk- and 48wk-spontaneously hypertensive rats (SHR). 91
Figure 4 Vasorelaxant responses of insulin (A, 10-6 M) and insulin-like growth factor-1 (IGF-1) (B, 310-8 M) in the presence of Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) (10-6 M) and Wortmannin (310-7 M) in aortic rings of 24-week-old (24wk) and 48-week-old (48wk) Wistar-Kyoto rats (WKY), and 24wk- and 48wk-spontaneously hypertensive rats (SHR). 92
Figure 5 Vasorelaxant responses of sodium nitroprusside (SNP) (310-10 to 310-8 M) at cumulative concentration-response curves for aortic rings in 24-week-old (24wk) and 48-week-old (48wk) Wistar-Kyoto rats (WKY), and 24wk- and 48wk-spontaneously hypertensive rats (SHR). 93
Figure 6 Serum Nitrate/Nitrite concentration in 24-week-old (24wk) and 48-week-old (48wk) Wistar-Kyoto rats (WKY), and 24wk- and 48wk-spontaneously hypertensive rats (SHR). 94

LIST OF FIGURES (CONT.)

Page
Figure 7 Serum malondialdehyde (MDA, A) concentration and superoxide dismutase (SOD, B) activity in 24-week-old (24wk) and 48-week-old (48wk) Wistar-Kyoto rats (WKY), and 24wk- and 48wk-spontaneously hypertensive rats (SHR). 95
Figure 8 Serum catalase activity(A) and antioxidant capacity (D) in 24-week-old (24wk) and 48-week-old (48wk) Wistar-Kyoto rats (WKY), and 24wk- and 48wk-spontaneously hypertensive rats (SHR). 96
Figure 9 Serum interleukin (IL)- 1beta (β) (A) and tumor necrosis factor-alpha (TNF-α, B) concentration in 24-week-old (24wk) and 48-week-old (48wk) Wistar-Kyoto rats (WKY), and 24wk- and 48wk-spontaneously hypertensive rats (SHR). 97
Figure 10 Representative immunoblots of insulin receptor (Insulin-R) protein extracted from aortas and relative protein quantification of Insulin-R normalized by the corresponding actin (B) in 24-week-old (24wk) and 48-week-old (48wk) Wistar-Kyoto rats (WKY), and 24wk- and 48wk-spontaneously hypertensive rats (SHR) 99
Figure 11 Representative immunoblots of insulin-liked growth factor 1 receptor (IGF-1R) protein extracted from aortas (A) and relative protein quantification of IGF-1R normalized by the corresponding actin (B) in 24-week-old (24wk) and 48-week-old (48wk) Wistar-Kyoto rats (WKY), and 24wk- and 48wk-spontaneously hypertensive rats (SHR) 100
Figure 12 Representative immunoblots of phospho-protein kinase B (p-Akt) protein extracted from aortas (A) and relative protein quantification of p-Akt normalized by the corresponding Akt (B) in 24-week-old (24wk) and 48-week-old (48wk) Wistar-Kyoto rats (WKY), and 24wk- and 48wk-spontaneously hypertensive rats (SHR) 101

LIST OF FIGURES (CONT.)

Page
Figure 13 Representative immunoblots of phospho-endothelial nitric oxide synthase (p-eNOS) protein extracted from aortas (A) and relative protein quantification of p-eNOS normalized by the corresponding eNOS (B) in 24-week-old (24wk) and 48-week-old (48wk) Wistar-Kyoto rats (WKY), and 24wk- and 48wk-spontaneously hypertensive rats (SHR) 102
Figure 14 Vasorelaxant responses of insulin (3x10-8 to 3x10-6 M) at cumulative concentration-response curves for endothelium-intact (A) and endothelium-denuded (B) aortic rings in 48-week-old Wistar-Kyoto rats (48wk-WKY), spontaneously hypertensive rats (48wk-SHR), SHR with exercise (48wk-SHR-Ex), and SHR with protocatechuic acid (48wk-SHR-PCA). 104
Figure 15 Vasorelaxant responses of insulin-like growth factor-1 (IGF-1) (10-9 to 10-7 M) at cumulative concentration-response curves for endothelium-intact (A) and endothelium-denuded (B) aortic rings in 48-week-old Wistar-Kyoto rats (48wk-WKY), spontaneously hypertensive rats (48wk-SHR), SHR with exercise (48wk-SHR-Ex), and SHR with protocatechuic acid (48wk-SHR-PCA). 105
Figure 16 Vasorelaxant responses of insulin (A, 10-6 M) and insulin-like growth factor-1 (IGF-1) (B, 3x10-8 M) in the presence of Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) (10-6 M) and Wortmannin (3x10-7 M) in aortic rings of 48-week-old Wistar-Kyoto rats (48wk-WKY), spontaneously hypertensive rats (48wk-SHR), SHR with exercise (48wk-SHR-Ex), and SHR with protocatechuic acid (48wk-SHR-PCA). 106


LIST OF FIGURES (CONT.)

Page
Figure 17 Vasorelaxant responses of sodium nitroprusside (SNP) (3x10-10 to 310-8 M) at cumulative concentration-response curves for aortic rings in 48-week-old Wistar-Kyoto rats (48wk-WKY), spontaneously hypertensive rats (48wk-SHR), SHR with exercise (48wk-SHR-Ex), and SHR with protocatechuic acid (48wk-SHR-PCA). 107
Figure 18 Serum Nitrate/Nitrite concentration in 48-week-old Wistar-Kyoto rats (48wk-WKY), spontaneously hypertensive rats (48wk-SHR), SHR with exercise (48wk-SHR-Ex), and SHR with protocatechuic acid (48wk-SHR-PCA). 108
Figure 19 Serum malondialdehyde (MDA, A) concentration and superoxide dismutase (SOD, B) activity in 48-week-old Wistar-Kyoto rats (48wk-WKY), spontaneously hypertensive rats (48wk-SHR), SHR with exercise (48wk-SHR-Ex), and SHR with protocatechuic acid (48wk-SHR-PCA). 109
Figure 20 Serum catalase activity (A) and antioxidant capacity (B) in 48-week-old Wistar-Kyoto rats (48wk-WKY), spontaneously hypertensive rats (48wk-SHR), SHR with exercise (48wk-SHR-Ex), and SHR with protocatechuic acid (48wk-SHR-PCA). 110
Figure 21 Serum interleukin (IL)- 1 beta (β) (A) and tumor necrosis factor-alpha (TNF-α, B) concentration in 48-week-old Wistar-Kyoto rats (48wk-WKY), spontaneously hypertensive rats (48wk-SHR), SHR with exercise (48wk-SHR-Ex), and SHR with protocatechuic acid (48wk-SHR-PCA). 111




LIST OF FIGURES (CONT.)

Page
Figure 22 Representative immunoblots of insulin receptor (Insulin-R) protein extracted from aortas (A) and relative protein quantification of Insulin-R normalized by the corresponding actin (B) in 48-week-old Wistar-Kyoto rats (48wk-WKY), spontaneously hypertensive rats (48wk-SHR), SHR with exercise (48wk-SHR-Ex), and SHR with protocatechuic acid (48wk-SHR-PCA) 112
Figure 23 Representative immunoblots of insulin-liked growth factor 1 receptor (IGF-1R) protein extracted from aortas (A) and relative protein quantification of IGF-1R normalized by the corresponding actin (B) in 48-week-old Wistar-Kyoto rats (48wk-WKY), spontaneously hypertensive rats (48wk-SHR), SHR with exercise (48wk-SHR-Ex), and SHR with protocatechuic acid (48wk-SHR-PCA) 113
Figure 24 Representative immunoblots of phospho-protein kinase B (p-Akt) protein extracted from aortas (A) and relative protein quantification of p-Akt normalized by the corresponding Akt (B) in 48-week-old Wistar-Kyoto rats (48wk-WKY), spontaneously hypertensive rats (48wk-SHR), SHR with exercise (48wk-SHR-Ex), and SHR with protocatechuic acid (48wk-SHR-PCA) 114
Figure 25 Representative immunoblots of phospho-endothelial nitric oxide synthase (p-eNOS) protein extracted from aortas (A) and relative protein quantification of p-eNOS normalized by the corresponding eNOS (B) in 48-week-old Wistar-Kyoto rats (48wk-WKY), spontaneously hypertensive rats (48wk-SHR), SHR with exercise (48wk-SHR-Ex), and SHR with protocatechuic acid (48wk-SHR-PCA) 115
REFERENCES

Addabbo, F., Montagnani, M., & Goligorsky, M. S. (2009). Mitochondria and reactive oxygen species. Hypertension, 53(6), 885-892.
Addabbo, F., Ratliff, B., Park, H. C., Kuo, M. C., Ungvari, Z., Csiszar, A., . . . Goligorsky, M. S. (2009). The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach. Am J Pathol, 174(1), 34-43.
Adler, A., Messina, E., Sherman, B., Wang, Z., Huang, H., Linke, A., & Hintze, T. H. (2003). NAD(P)H oxidase-generated superoxide anion accounts for reduced control of myocardial O2 consumption by NO in old Fischer 344 rats. Am J Physiol Heart Circ Physiol, 285(3), H1015-1022.
Agarwal, D., Elks, C. M., Reed, S. D., Mariappan, N., Majid, D. S., & Francis, J. (2012). Chronic exercise preserves renal structure and hemodynamics in spontaneously hypertensive rats. Antioxid Redox Signal, 16(2), 139-152.
Agarwal, D., Haque, M., Sriramula, S., Mariappan, N., Pariaut, R., & Francis, J. (2009). Role of proinflammatory cytokines and redox homeostasis in exercise-induced delayed progression of hypertension in spontaneously hypertensive rats. Hypertension, 54(6), 1393-1400.
American College of Sports Medicine Chodzko-Zajko, W. J., Proctor, D. N., Fiatarone Singh, M. A., Minson, C. T., Nigg, C. R., Salem, G. J., & Skinner, J. S. (2009). American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc, 41(7), 1510-1530.
Aronow, W. S., Fleg, J. L., Pepine, C. J., Artinian, N. T., Bakris, G., Brown, A. S., . . . Wesley, D. J. (2011). ACCF/AHA 2011 expert consensus document on hypertension in the elderly: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents developed in collaboration with the American Academy of Neurology, American Geriatrics Society, American Society for Preventive Cardiology, American Society of Hypertension, American Society of Nephrology, Association of Black Cardiologists, and European Society of Hypertension. J Am Soc Hypertens, 5(4), 259-352.
Bauersachs, J., Bouloumie, A., Mulsch, A., Wiemer, G., Fleming, I., & Busse, R. (1998). Vasodilator dysfunction in aged spontaneously hypertensive rats: changes in NO synthase III and soluble guanylyl cyclase expression, and in superoxide anion production. Cardiovasc Res, 37(3), 772-779.
Bautista, L. E., Vera, L. M., Arenas, I. A., & Gamarra, G. (2005). Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J Hum Hypertens, 19(2), 149-154.
Benigni, A., Cassis, P., & Remuzzi, G. (2010). Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med, 2(7), 247-257.
Berkowitz, D. E., White, R., Li, D., Minhas, K. M., Cernetich, A., Kim, S., . . . Hare, J. M. (2003). Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation, 108(16), 2000-2006.
Bertagnolli, M., Schenkel, P. C., Campos, C., Mostarda, C. T., Casarini, D. E., Bello-Klein, A., . . . Rigatto, K. (2008). Exercise training reduces sympathetic modulation on cardiovascular system and cardiac oxidative stress in spontaneously hypertensive rats. Am J Hypertens, 21(11), 1188-1193.
Besnier, F., Labrunee, M., Pathak, A., Pavy-Le Traon, A., Gales, C., Senard, J. M., & Guiraud, T. (2017). Exercise training-induced modification in autonomic nervous system: An update for cardiac patients. Ann Phys Rehabil Med, 60(1), 27-35.
Bird, S. R., & Hawley, J. A. (2016). Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med, 2(1), e000143.
Biron, P., Mongeau, J. G., & Bertrand, D. (1976). Familial aggregation of blood pressure in 558 adopted children. Can Med Assoc J, 115(8), 773-774.
Boegli, Y., Gremion, G., Golay, S., Kubli, S., Liaudet, L., Leyvraz, P. F., . . . Feihl, F. (2003). Endurance training enhances vasodilation induced by nitric oxide in human skin. J Invest Dermatol, 121(5), 1197-1204.
Bolton, E., & Rajkumar, C. (2011). The ageing cardiovascular system. Reviews in Clinical Gerontology, 21, 99–109.
Brandes, R. P., Fleming, I., & Busse, R. (2005). Endothelial aging. Cardiovasc Res, 66(2), 286-294.
Bromfield, S. G., Bowling, C. B., Tanner, R. M., Peralta, C. A., Odden, M. C., Oparil, S., & Muntner, P. (2014). Trends in hypertension prevalence, awareness, treatment, and control among US adults 80 years and older, 1988-2010. J Clin Hypertens (Greenwich), 16(4), 270-276.
Brown, M. D., Moore, G. E., Korytkowski, M. T., McCole, S. D., & Hagberg, J. M. (1997). Improvement of insulin sensitivity by short-term exercise training in hypertensive African American women. Hypertension, 30(6), 1549-1553.
Brunner, H., Cockcroft, J. R., Deanfield, J., Donald, A., Ferrannini, E., Halcox, J., . . . Endothelial Factors of the European Society of, H. (2005). Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens, 23(2), 233-246.
Bruno, R. M., Ghiadoni, L., Seravalle, G., Dell'oro, R., Taddei, S., & Grassi, G. (2012). Sympathetic regulation of vascular function in health and disease. Front Physiol, 3, 284.
Buford, T. W. (2016). Hypertension and aging. Ageing Res Rev, 26, 96-111.
Burnier, M., & Wuerzner, G. (2015). Pathophysiology of Hypertension. In G. Jagadeesh, P. Balakumar, & K. Maung-U (Eds.), Pathophysiology and Pharmacotherapy of Cardiovascular Disease (pp. 655-683). Cham: Springer International Publishing.
Cahill, P. A., & Redmond, E. M. (2016). Vascular endothelium - Gatekeeper of vessel health. Atherosclerosis, 248, 97-109.
Cai, H., & Harrison, D. G. (2000). Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res, 87(10), 840-844.
Carretero, O. A., & Oparil, S. (2000). Essential hypertension. Part I: definition and etiology. Circulation, 101(3), 329-335.
Cernadas, M. R., Sanchez de Miguel, L., Garcia-Duran, M., Gonzalez-Fernandez, F., Millas, I., Monton, M., . . . Lopez, F. (1998). Expression of constitutive and inducible nitric oxide synthases in the vascular wall of young and aging rats. Circ Res, 83(3), 279-286.
Cevenini, E., Caruso, C., Candore, G., Capri, M., Nuzzo, D., Duro, G., . . . Vasto, S. (2010). Age-related inflammation: the contribution of different organs, tissues and systems. How to face it for therapeutic approaches. Curr Pharm Des, 16(6), 609-618.
Cheng, H. M., Park, S., Huang, Q., Hoshide, S., Wang, J. G., Kario, K., . . . Characteristics on the Management of Hypertension in Asia - Morning Hypertension Discussion, G. (2017). Vascular aging and hypertension: Implications for the clinical application of central blood pressure. Int J Cardiol, 230, 209-213.
Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo, J. L., . . . Committee, t. N. H. B. P. E. P. C. (2003). Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension, 42(6), 1206-1252.
Chou, T. H., Ding, H. Y., Lin, R. J., Liang, J. Y., & Liang, C. H. (2010). Inhibition of melanogenesis and oxidation by protocatechuic acid from Origanum vulgare (oregano). J Nat Prod, 73(11), 1767-1774.
Collins, C., & Tzima, E. (2011). Hemodynamic forces in endothelial dysfunction and vascular aging. Exp Gerontol, 46(2-3), 185-188.
Cornelissen, V. A., & Smart, N. A. (2013). Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc, 2(1), e004473.
Del Colle, S., Morello, F., Rabbia, F., Milan, A., Naso, D., Puglisi, E., . . . Veglio, F. (2007). Antihypertensive drugs and the sympathetic nervous system. J Cardiovasc Pharmacol, 50(5), 487-496.
DeVan, A. E., & Seals, D. R. (2012). Vascular health in the ageing athlete. Exp Physiol, 97(3), 305-310.
Dickson, M. E., & Sigmund, C. D. (2006). Genetic basis of hypertension: revisiting angiotensinogen. Hypertension, 48(1), 14-20.
Didion, S. P., Kinzenbaw, D. A., & Faraci, F. M. (2005). Critical role for CuZn-superoxide dismutase in preventing angiotensin II-induced endothelial dysfunction. Hypertension, 46(5), 1147-1153.
Dikalov, S. I., & Nazarewicz, R. R. (2013). Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease. Antioxid Redox Signal, 19(10), 1085-1094.
Do, H. D., Lohsoonthorn, V., Jiamjarasrangsi, W., Lertmaharit, S., & Williams, M. A. (2010). Prevalence of insulin resistance and its relationship with cardiovascular disease risk factors among Thai adults over 35 years old. Diabetes Res Clin Pract, 89(3), 303-308.
Doggrell, S. A., & Brown, L. (1998). Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res, 39(1), 89-105.
Doughan, A. K., Harrison, D. G., & Dikalov, S. I. (2008). Molecular mechanisms of angiotensin II-mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ Res, 102(4), 488-496.
Eijsvogels, T. M., Molossi, S., Lee, D. C., Emery, M. S., & Thompson, P. D. (2016). Exercise at the Extremes: The Amount of Exercise to Reduce Cardiovascular Events. J Am Coll Cardiol, 67(3), 316-329.
El Assar, M., Angulo, J., & Rodriguez-Manas, L. (2013). Oxidative stress and vascular inflammation in aging. Free Radic Biol Med, 65, 380-401.
Elahi, M. M., Kong, Y. X., & Matata, B. M. (2009). Oxidative stress as a mediator of cardiovascular disease. Oxid Med Cell Longev, 2(5), 259-269.
Endemann, D. H., & Schiffrin, E. L. (2004). Endothelial dysfunction. J Am Soc Nephrol, 15(8), 1983-1992.
Feletou, M. (2011). The Endothelium: Part 1: Multiple Functions of the Endothelial Cells-Focus on Endothelium-Derived Vasoactive Mediators. San Rafael (CA).
Feletou, M., & Vanhoutte, P. M. (2006). Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol, 291(3), H985-1002.
Ferrari, A. U., Radaelli, A., & Centola, M. (2003). Invited review: aging and the cardiovascular system. J Appl Physiol (1985), 95(6), 2591-2597.
Fiuza-Luces, C., Garatachea, N., Berger, N. A., & Lucia, A. (2013). Exercise is the real polypill. Physiology (Bethesda), 28(5), 330-358.
Foresman, E. L., & Miller, F. J., Jr. (2013). Extracellular but not cytosolic superoxide dismutase protects against oxidant-mediated endothelial dysfunction. Redox Biol, 1, 292-296.
Forstermann, U., & Sessa, W. C. (2012). Nitric oxide synthases: regulation and function. Eur Heart J, 33(7), 829-837, 837a-837d.
Furchgott, R. F., & Zawadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288(5789), 373-376.
Gielen, S., Schuler, G., & Adams, V. (2010). Cardiovascular effects of exercise training: molecular mechanisms. Circulation, 122(12), 1221-1238.
Giles, T. D., Sander, G. E., Nossaman, B. D., & Kadowitz, P. J. (2012). Impaired vasodilation in the pathogenesis of hypertension: focus on nitric oxide, endothelial-derived hyperpolarizing factors, and prostaglandins. J Clin Hypertens (Greenwich), 14(4), 198-205.
Goto, C., Higashi, Y., Kimura, M., Noma, K., Hara, K., Nakagawa, K., . . . Nara, I. (2003). Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation, 108(5), 530-535.
Graham, D. A., & Rush, J. W. (2004). Exercise training improves aortic endothelium-dependent vasorelaxation and determinants of nitric oxide bioavailability in spontaneously hypertensive rats. J Appl Physiol (1985), 96(6), 2088-2096.
Griendling, K. K., Sorescu, D., & Ushio-Fukai, M. (2000). NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res, 86(5), 494-501.
Guerrero, F., Thioub, S., Goanvec, C., Theunissen, S., Feray, A., Balestra, C., & Mansourati, J. (2013). Effect of tetrahydrobiopterin and exercise training on endothelium-dependent vasorelaxation in SHR. J Physiol Biochem, 69(2), 277-287.
Guilbert, J. J. (2003). The world health report 2002 - reducing risks, promoting healthy life. Educ Health (Abingdon), 16(2), 230.
Hall, J. E., Granger, J. P., do Carmo, J. M., da Silva, A. A., Dubinion, J., George, E., . . . Hall, M. E. (2012). Hypertension: physiology and pathophysiology. Compr Physiol, 2(4), 2393-2442.
Harini, R., & Pugalendi, K. V. (2010). Antihyperglycemic effect of protocatechuic acid on streptozotocin-diabetic rats. J Basic Clin Physiol Pharmacol, 21(1), 79-91.
Harrison, D. G., Guzik, T. J., Lob, H. E., Madhur, M. S., Marvar, P. J., Thabet, S. R., . . . Weyand, C. M. (2011). Inflammation, immunity, and hypertension. Hypertension, 57(2), 132-140.
Harvey, A., Montezano, A. C., & Touyz, R. M. (2015). Vascular biology of ageing-Implications in hypertension. J Mol Cell Cardiol, 83, 112-121.
Higashi, Y., Sasaki, S., Kurisu, S., Yoshimizu, A., Sasaki, N., Matsuura, H., . . . Oshima, T. (1999). Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation, 100(11), 1194-1202.
Higashi, Y., Sasaki, S., Nakagawa, K., Fukuda, Y., Matsuura, H., Oshima, T., & Chayama, K. (2002). Tetrahydrobiopterin enhances forearm vascular response to acetylcholine in both normotensive and hypertensive individuals. Am J Hypertens, 15(4 Pt 1), 326-332.
Higashi, Y., & Yoshizumi, M. (2004). Exercise and endothelial function: role of endothelium-derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients. Pharmacol Ther, 102(1), 87-96.
Hirase, T., & Node, K. (2012). Endothelial dysfunction as a cellular mechanism for vascular failure. Am J Physiol Heart Circ Physiol, 302(3), H499-505.
Hirose, A., Tanikawa, T., Mori, H., Okada, Y., & Tanaka, Y. (2010). Advanced glycation end products increase endothelial permeability through the RAGE/Rho signaling pathway. FEBS Lett, 584(1), 61-66.
Hirschfield, G. M., & Pepys, M. B. (2003). C-reactive protein and cardiovascular disease: new insights from an old molecule. QJM, 96(11), 793-807.
Ho, E., Karimi Galougahi, K., Liu, C. C., Bhindi, R., & Figtree, G. A. (2013). Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biol, 1, 483-491.
Horita, S., Seki, G., Yamada, H., Suzuki, M., Koike, K., & Fujita, T. (2011). Insulin resistance, obesity, hypertension, and renal sodium transport. Int J Hypertens, 2011, 391762.
Hsu, C. C., Hsu, C. L., Tsai, S. E., Fu, T. Y., & Yen, G. C. (2009). Protective effect of Millettia reticulata Benth against CCl(4)-induced hepatic damage and inflammatory action in rats. J Med Food, 12(4), 821-828.
Izzo, J. L., Jr. (2008). Stagnation and the critical need for hypertension subtyping. J Clin Hypertens (Greenwich), 10(3), 174-175.
Jordao, C. P., Fernandes, T., Tanaka, L. Y., Bechara, L. R. G., de Sousa, L. G. O., Oliveira, E. M., & Ramires, P. R. (2017). Aerobic Swim Training Restores Aortic Endothelial Function by Decreasing Superoxide Levels in Spontaneously Hypertensive Rats. Clinics (Sao Paulo), 72(5), 310-316.
Kakkar, S., & Bais, S. (2014). A review on protocatechuic Acid and its pharmacological potential. ISRN Pharmacol, 2014, 952943.
Kang, L. S., Reyes, R. A., & Muller-Delp, J. M. (2009). Aging impairs flow-induced dilation in coronary arterioles: role of NO and H(2)O(2). Am J Physiol Heart Circ Physiol, 297(3), H1087-1095.
Katakam, P. V., Ujhelyi, M. R., & Miller, A. W. (1999). EDHF-mediated relaxation is impaired in fructose-fed rats. J Cardiovasc Pharmacol, 34(3), 461-467.
Kloss, S., Bouloumie, A., & Mulsch, A. (2000). Aging and chronic hypertension decrease expression of rat aortic soluble guanylyl cyclase. Hypertension, 35(1 Pt 1), 43-47.
Kuzkaya, N., Weissmann, N., Harrison, D. G., & Dikalov, S. (2003). Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J Biol Chem, 278(25), 22546-22554.
Laakso, M., & Kuusisto, J. (2014). Insulin resistance and hyperglycaemia in cardiovascular disease development. Nat Rev Endocrinol, 10(5), 293-302.
Lakatta, E. G., & Levy, D. (2003a). Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: a "set up" for vascular disease. Circulation, 107(1), 139-146.
Lakatta, E. G., & Levy, D. (2003b). Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation, 107(2), 346-354.
Lamina, S., Okoye, C. G., & Dagogo, T. T. (2009). Therapeutic effect of an interval exercise training program in the management of erectile dysfunction in hypertensive patients. J Clin Hypertens (Greenwich), 11(3), 125-129.
Landmesser, U., Dikalov, S., Price, S. R., McCann, L., Fukai, T., Holland, S. M., . . . Harrison, D. G. (2003). Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest, 111(8), 1201-1209.
Landmesser, U., Spiekermann, S., Dikalov, S., Tatge, H., Wilke, R., Kohler, C., . . . Drexler, H. (2002). Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation, 106(24), 3073-3078.
Lantz, J., Renner, J., Lanne, T., & Karlsson, M. (2015). Is aortic wall shear stress affected by aging? An image-based numerical study with two age groups. Med Eng Phys, 37(3), 265-271.
Leong, X. F., Ng, C. Y., & Jaarin, K. (2015). Animal Models in Cardiovascular Research: Hypertension and Atherosclerosis. Biomed Res Int, 2015, 528757.
Lesniewski, L. A., Durrant, J. R., Connell, M. L., Henson, G. D., Black, A. D., Donato, A. J., & Seals, D. R. (2011). Aerobic exercise reverses arterial inflammation with aging in mice. Am J Physiol Heart Circ Physiol, 301(3), H1025-1032.
Levick, J. R. (2010). An Introduction to Cardiovascular Physiology: An Hachette UK company.
Lewis, K. N., Mele, J., Hayes, J. D., & Buffenstein, R. (2010). Nrf2, a guardian of healthspan and gatekeeper of species longevity. Integr Comp Biol, 50(5), 829-843.
Li, H., Witte, K., August, M., Brausch, I., Godtel-Armbrust, U., Habermeier, A., . . . Forstermann, U. (2006). Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. J Am Coll Cardiol, 47(12), 2536-2544.
Li, J., Zhou, Z., Jiang, D. J., Li, D., Tan, B., Liu, H., & Li, Y. J. (2007). Reduction of NO- and EDHF-mediated vasodilatation in hypertension: role of asymmetric dimethylarginine. Clin Exp Hypertens, 29(7), 489-501.
Li, Q., Youn, J. Y., & Cai, H. (2015). Mechanisms and consequences of endothelial nitric oxide synthase dysfunction in hypertension. J Hypertens, 33(6), 1128-1136.
Lima, L. G., Bonardi, J. M., Campos, G. O., Bertani, R. F., Scher, L. M., Louzada-Junior, P., . . . Lima, N. K. (2015). Effect of aerobic training and aerobic and resistance training on the inflammatory status of hypertensive older adults. Aging Clin Exp Res, 27(4), 483-489.
Lin, Y. Y., Lee, S. D., Su, C. T., Cheng, T. L., & Yang, A. L. (2015). Long-term treadmill training ameliorates endothelium-dependent vasorelaxation mediated by insulin and insulin-like growth factor-1 in hypertension. J Appl Physiol (1985), 119(6), 663-669.
Ling, W. C., Murugan, D. D., Lau, Y. S., Vanhoutte, P. M., & Mustafa, M. R. (2016). Sodium nitrite exerts an antihypertensive effect and improves endothelial function through activation of eNOS in the SHR. Scientific Reports, 6, 33048.
Linz, W., Wohlfart, P., Schoelkens, B. A., Becker, R. H., Malinski, T., & Wiemer, G. (1999). Late treatment with ramipril increases survival in old spontaneously hypertensive rats. Hypertension, 34(2), 291-295.
Luksha, L., Agewall, S., & Kublickiene, K. (2009). Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease. Atherosclerosis, 202(2), 330-344.
Madhur, M. S., Lob, H. E., McCann, L. A., Iwakura, Y., Blinder, Y., Guzik, T. J., & Harrison, D. G. (2010). Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension, 55(2), 500-507.
Maiorana, A., O'Driscoll, G., Taylor, R., & Green, D. (2003). Exercise and the nitric oxide vasodilator system. Sports Med, 33(14), 1013-1035.
Marosi, K., Bori, Z., Hart, N., Sarga, L., Koltai, E., Radak, Z., & Nyakas, C. (2012). Long-term exercise treatment reduces oxidative stress in the hippocampus of aging rats. Neuroscience, 226, 21-28.
Masodsai, K., Lin, Y. Y., Lee, S. D., and Yang, A. L. (2017). Exercise and Endothelial Dysfunction in Hypertension. Adaptive Medicine, 9(1), 1-14.
Masuo, K., Mikami, H., Ogihara, T., & Tuck, M. L. (2000). Weight gain-induced blood pressure elevation. Hypertension, 35(5), 1135-1140.
Mateos-Caceres, P. J., Zamorano-Leon, J. J., Rodriguez-Sierra, P., Macaya, C., & Lopez-Farre, A. J. (2012). New and old mechanisms associated with hypertension in the elderly. Int J Hypertens, 2012, 150107.
Matthews, D. R., Hosker, J. P., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28(7), 412-419.
Michel, T., & Feron, O. (1997). Nitric oxide synthases: which, where, how, and why? J Clin Invest, 100(9), 2146-2152.
Min, S. W., Ryu, S. N., & Kim, D. H. (2010). Anti-inflammatory effects of black rice, cyanidin-3-O-beta-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int Immunopharmacol, 10(8), 959-966.
Mojiminiyi, F. B., Dikko, M., Muhammad, B. Y., Ojobor, P. D., Ajagbonna, O. P., Okolo, R. U., . . . Anga, T. J. (2007). Antihypertensive effect of an aqueous extract of the calyx of Hibiscus sabdariffa. Fitoterapia, 78(4), 292-297.
Moncada, S., & Higgs, A. (1993). The L-arginine-nitric oxide pathway. N Engl J Med, 329(27), 2002-2012.
Moncada, S., & Higgs, E. A. (1991). Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest, 21(4), 361-374.
Monk, B. A., & George, S. J. (2015). The Effect of Ageing on Vascular Smooth Muscle Cell Behaviour--A Mini-Review. Gerontology, 61(5), 416-426.
Montezano, A. C., Dulak-Lis, M., Tsiropoulou, S., Harvey, A., Briones, A. M., & Touyz, R. M. (2015). Oxidative stress and human hypertension: vascular mechanisms, biomarkers, and novel therapies. Can J Cardiol, 31(5), 631-641.
Moreau, K. L., Degarmo, R., Langley, J., McMahon, C., Howley, E. T., Bassett, D. R., Jr., & Thompson, D. L. (2001). Increasing daily walking lowers blood pressure in postmenopausal women. Med Sci Sports Exerc, 33(11), 1825-1831.
Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., . . . Stroke Statistics, S. (2016). Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation, 133(4), e38-360.
Muniyappa, R., Montagnani, M., Koh, K. K., & Quon, M. J. (2007). Cardiovascular actions of insulin. Endocr Rev, 28(5), 463-491.
Muniyappa, R., & Sowers, J. R. (2013). Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord, 14(1), 5-12.
Narasimhan, M., & Rajasekaran, N. S. (2016). Exercise, Nrf2 and Antioxidant Signaling in Cardiac Aging. Front Physiol, 7, 241.
Noll, G., Wenzel, R. R., Binggeli, C., Corti, C., & Luscher, T. F. (1998). Role of sympathetic nervous system in hypertension and effects of cardiovascular drugs. Eur Heart J, 19 Suppl F, F32-38.
Oparil, S., Zaman, M. A., & Calhoun, D. A. (2003). Pathogenesis of hypertension. Ann Intern Med, 139(9), 761-776.
Orosz, Z., Csiszar, A., Labinskyy, N., Smith, K., Kaminski, P. M., Ferdinandy, P., . . . Ungvari, Z. (2007). Cigarette smoke-induced proinflammatory alterations in the endothelial phenotype: role of NAD(P)H oxidase activation. Am J Physiol Heart Circ Physiol, 292(1), H130-139.
Panza, J. A., Quyyumi, A. A., Brush, J. E., Jr., & Epstein, S. E. (1990). Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med, 323(1), 22-27.
Pasceri, V., Willerson, J. T., & Yeh, E. T. (2000). Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation, 102(18), 2165-2168.
Perez-Vizcaino, F., Cogolludo, A. L., Zaragoza-Arnaez, F., Fajardo, S., Ibarra, M., Lopez-Lopez, J. G., & Tamargo, J. (1999). Vasodilator effects of sodium nitroprusside, levcromakalim and their combination in isolated rat aorta. Br J Pharmacol, 128(7), 1419-1426.
Pescatello, L. S., Franklin, B. A., Fagard, R., Farquhar, W. B., Kelley, G. A., Ray, C. A., & American College of Sports, M. (2004). American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc, 36(3), 533-553.
Potenza, M. A., Marasciulo, F. L., Chieppa, D. M., Brigiani, G. S., Formoso, G., Quon, M. J., & Montagnani, M. (2005). Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. Am J Physiol Heart Circ Physiol, 289(2), H813-822.
Rajagopalan, S., Kurz, S., Munzel, T., Tarpey, M., Freeman, B. A., Griendling, K. K., & Harrison, D. G. (1996). Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest, 97(8), 1916-1923.
Rodriguez-Iturbe, B., Sepassi, L., Quiroz, Y., Ni, Z., Wallace, D. C., & Vaziri, N. D. (2007). Association of mitochondrial SOD deficiency with salt-sensitive hypertension and accelerated renal senescence. J Appl Physiol (1985), 102(1), 255-260.
Roque, F. R., Briones, A. M., Garcia-Redondo, A. B., Galan, M., Martinez-Revelles, S., Avendano, M. S., . . . Salaices, M. (2013). Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br J Pharmacol, 168(3), 686-703.
Roque, F. R., Hernanz, R., Salaices, M., & Briones, A. M. (2013). Exercise training and cardiometabolic diseases: focus on the vascular system. Curr Hypertens Rep, 15(3), 204-214.
Saad, M. F., Rewers, M., Selby, J., Howard, G., Jinagouda, S., Fahmi, S., . . . Haffner, S. M. (2004). Insulin resistance and hypertension: the Insulin Resistance Atherosclerosis study. Hypertension, 43(6), 1324-1331.
Safaeian, L., Hajhashemi, V., Haghjoo Javanmard, S., & Sanaye Naderi, H. (2016). The Effect of Protocatechuic Acid on Blood Pressure and Oxidative Stress in Glucocorticoid-induced Hypertension in Rat. Iran J Pharm Res, 15(Suppl), 83-91.
Sarr, M., Ngom, S., Kane, M. O., Wele, A., Diop, D., Sarr, B., . . . Diallo, A. S. (2009). In vitro vasorelaxation mechanisms of bioactive compounds extracted from Hibiscus sabdariffa on rat thoracic aorta. Nutr Metab (Lond), 6, 45.
Scazzocchio, B., Vari, R., Filesi, C., D'Archivio, M., Santangelo, C., Giovannini, C., . . . Masella, R. (2011). Cyanidin-3-O-beta-glucoside and protocatechuic acid exert insulin-like effects by upregulating PPARgamma activity in human omental adipocytes. Diabetes, 60(9), 2234-2244.
Scazzocchio, B., Vari, R., Filesi, C., Del Gaudio, I., D'Archivio, M., Santangelo, C., . . . Masella, R. (2015). Protocatechuic acid activates key components of insulin signaling pathway mimicking insulin activity. Mol Nutr Food Res, 59(8), 1472-1481.
Schlaich, M. P., Parnell, M. M., Ahlers, B. A., Finch, S., Marshall, T., Zhang, W. Z., & Kaye, D. M. (2004). Impaired L-arginine transport and endothelial function in hypertensive and genetically predisposed normotensive subjects. Circulation, 110(24), 3680-3686.
Schulman, I. H., & Zhou, M. S. (2009). Vascular insulin resistance: a potential link between cardiovascular and metabolic diseases. Curr Hypertens Rep, 11(1), 48-55.
Schulz, E., Gori, T., & Munzel, T. (2011). Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res, 34(6), 665-673.
Scrivo, R., Vasile, M., Bartosiewicz, I., & Valesini, G. (2011). Inflammation as "common soil" of the multifactorial diseases. Autoimmun Rev, 10(7), 369-374.
Seals, D. R., Jablonski, K. L., & Donato, A. J. (2011). Aging and vascular endothelial function in humans. Clin Sci (Lond), 120(9), 357-375.
Seals, D. R., Kaplon, R. E., Gioscia-Ryan, R. A., & LaRocca, T. J. (2014). You're only as old as your arteries: translational strategies for preserving vascular endothelial function with aging. Physiology (Bethesda), 29(4), 250-264.
Sehgel, N. L., Sun, Z., Hong, Z., Hunter, W. C., Hill, M. A., Vatner, D. E., . . . Meininger, G. A. (2015). Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging. Hypertension, 65(2), 370-377.
Semaming, Y., Kumfu, S., Pannangpetch, P., Chattipakorn, S. C., & Chattipakorn, N. (2014). Protocatechuic acid exerts a cardioprotective effect in type 1 diabetic rats. J Endocrinol, 223(1), 13-23.
Semaming, Y., Pannengpetch, P., Chattipakorn, S. C., & Chattipakorn, N. (2015). Pharmacological properties of protocatechuic Acid and its potential roles as complementary medicine. Evid Based Complement Alternat Med, 2015, 593902.
Sena, C. M., Pereira, A. M., & Seica, R. (2013). Endothelial dysfunction - a major mediator of diabetic vascular disease. Biochim Biophys Acta, 1832(12), 2216-2231.
Shi, G. F., An, L. J., Jiang, B., Guan, S., & Bao, Y. M. (2006). Alpinia protocatechuic acid protects against oxidative damage in vitro and reduces oxidative stress in vivo. Neurosci Lett, 403(3), 206-210.
Shimokawa, H., Yasutake, H., Fujii, K., Owada, M. K., Nakaike, R., Fukumoto, Y., . . . Takeshita, A. (1996). The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol, 28(5), 703-711.
Silva, B. R., Pernomian, L., & Bendhack, L. M. (2012). Contribution of oxidative stress to endothelial dysfunction in hypertension. Front Physiol, 3, 441.
Simon, G. (2004). Pathogenesis of structural vascular changes in hypertension. J Hypertens, 22(1), 3-10.
Sindler, A. L., Delp, M. D., Reyes, R., Wu, G., & Muller-Delp, J. M. (2009). Effects of ageing and exercise training on eNOS uncoupling in skeletal muscle resistance arterioles. J Physiol, 587(Pt 15), 3885-3897.
Singh, T., & Newman, A. B. (2011). Inflammatory markers in population studies of aging. Ageing Res Rev, 10(3), 319-329.
Sowers, J. R. (1997). Insulin and insulin-like growth factor in normal and pathological cardiovascular physiology. Hypertension, 29(3), 691-699.
Spiekermann, S., Landmesser, U., Dikalov, S., Bredt, M., Gamez, G., Tatge, H., . . . Harrison, D. G. (2003). Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation, 107(10), 1383-1389.
Sriramula, S., Haque, M., Majid, D. S., & Francis, J. (2008). Involvement of tumor necrosis factor-alpha in angiotensin II-mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension, 51(5), 1345-1351.
Sroka, Z., & Cisowski, W. (2003). Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol, 41(6), 753-758.
Stefanadi, E., Tousoulis, D., Androulakis, E. S., Papageorgiou, N., Charakida, M., Siasos, G., . . . Stefanadis, C. (2010). Inflammatory markers in essential hypertension: potential clinical implications. Curr Vasc Pharmacol, 8(4), 509-516.
Su, J. B. (2015). Vascular endothelial dysfunction and pharmacological treatment. World J Cardiol, 7(11), 719-741.
Sun, M. W., Qian, F. L., Wang, J., Tao, T., Guo, J., Wang, L., . . . Chen, H. (2008). Low-intensity voluntary running lowers blood pressure with simultaneous improvement in endothelium-dependent vasodilatation and insulin sensitivity in aged spontaneously hypertensive rats. Hypertens Res, 31(3), 543-552.
Sun, Z. (2015). Aging, arterial stiffness, and hypertension. Hypertension, 65(2), 252-256.
Suzuki, H., DeLano, F. A., Parks, D. A., Jamshidi, N., Granger, D. N., Ishii, H., . . . Schmid-Schonbein, G. W. (1998). Xanthine oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats. Proc Natl Acad Sci U S A, 95(8), 4754-4759.
Suzuki, Y., Ruiz-Ortega, M., Lorenzo, O., Ruperez, M., Esteban, V., & Egido, J. (2003). Inflammation and angiotensin II. Int J Biochem Cell Biol, 35(6), 881-900.
Taddei, S., Ghiadoni, L., Virdis, A., Versari, D., & Salvetti, A. (2003). Mechanisms of endothelial dysfunction: clinical significance and preventive non-pharmacological therapeutic strategies. Curr Pharm Des, 9(29), 2385-2402.
Tarray, R., Saleem, S., Afroze, D., Yousuf, I., Gulnar, A., Laway, B., & Verma, S. (2014). Role of insulin resistance in essential hypertension. Cardiovascular Endocrinology, 3(4), 129-133.
Thijssen, D. H., Carter, S. E., & Green, D. J. (2016). Arterial structure and function in vascular ageing: are you as old as your arteries? J Physiol, 594(8), 2275-2284.
Trinity, J. D., Groot, H. J., Layec, G., Rossman, M. J., Ives, S. J., & Richardson, R. S. (2014). Impact of age and body position on the contribution of nitric oxide to femoral artery shear rate: implications for atherosclerosis. Hypertension, 63(5), 1019-1025.
Tsai, S. J., & Yin, M. C. (2012). Anti-glycative and anti-inflammatory effects of protocatechuic acid in brain of mice treated by D-galactose. Food Chem Toxicol, 50(9), 3198-3205.
Tschudi, M. R., Barton, M., Bersinger, N. A., Moreau, P., Cosentino, F., Noll, G., . . . Luscher, T. F. (1996). Effect of age on kinetics of nitric oxide release in rat aorta and pulmonary artery. J Clin Invest, 98(4), 899-905.
Ungvari, Z., Kaley, G., de Cabo, R., Sonntag, W. E., & Csiszar, A. (2010). Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci, 65(10), 1028-1041.
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 39(1), 44-84.
Vane, J., & Corin, R. E. (2003). Prostacyclin: a vascular mediator. Eur J Vasc Endovasc Surg, 26(6), 571-578.
Vanhoutte, P. M., Shimokawa, H., Feletou, M., & Tang, E. H. (2015). Endothelial Dysfunction and Vascular Disease - A Thirthieth Anniversary Update. Acta Physiol (Oxf).
Vecchione, C., Colella, S., Fratta, L., Gentile, M. T., Selvetella, G., Frati, G., . . . Lembo, G. (2001). Impaired insulin-like growth factor I vasorelaxant effects in hypertension. Hypertension, 37(6), 1480-1485.
Venugopal, S. K., Devaraj, S., Yuhanna, I., Shaul, P., & Jialal, I. (2002). Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation, 106(12), 1439-1441.
Versari, D., Daghini, E., Virdis, A., Ghiadoni, L., & Taddei, S. (2009). Endothelium-dependent contractions and endothelial dysfunction in human hypertension. Br J Pharmacol, 157(4), 527-536.
Viel, E. C., Benkirane, K., Javeshghani, D., Touyz, R. M., & Schiffrin, E. L. (2008). Xanthine oxidase and mitochondria contribute to vascular superoxide anion generation in DOCA-salt hypertensive rats. Am J Physiol Heart Circ Physiol, 295(1), H281-288.
Wang, D., Wei, X., Yan, X., Jin, T., & Ling, W. (2010). Protocatechuic acid, a metabolite of anthocyanins, inhibits monocyte adhesion and reduces atherosclerosis in apolipoprotein E-deficient mice. J Agric Food Chem, 58(24), 12722-12728.
West, L. A., Cole, S., Goodkind, D., & He, W. (2014). 65+ in the United States: 2010. P23-212.
WHO, A. (2013). Global Brief on Hypertension. World Health Organization.
Wilcox, G. (2005). Insulin and insulin resistance. Clin Biochem Rev, 26(2), 19-39.
Wu, K. L., Chan, S. H., & Chan, J. Y. (2012). Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. J Neuroinflammation, 9, 212.
Yan, G., You, B., Chen, S. P., Liao, J. K., & Sun, J. (2008). Tumor necrosis factor-alpha downregulates endothelial nitric oxide synthase mRNA stability via translation elongation factor 1-alpha 1. Circ Res, 103(6), 591-597.
Yang, A. L., & Chen, H. I. (2003). Chronic exercise reduces adhesion molecules/iNOS expression and partially reverses vascular responsiveness in hypercholesterolemic rabbit aortae. Atherosclerosis, 169(1), 11-17.
Yang, A. L., Lo, C. W., Lee, J. T., & Su, C. T. (2011). Enhancement of vasorelaxation in hypertension following high-intensity exercise. Chin J Physiol, 54(2), 87-95.
Yang, A. L., Su, C. T., Lin, K. L., Chao, J. I., You, H. P., & Lee, S. D. (2006). Exercise training improves insulin-induced and insulin-like growth factor-1-induced vasorelaxation in rat aortas. Life Sci, 79(21), 2017-2021.
Yang, A. L., Tsai, S. J., Jiang, M. J., Jen, C. J., & Chen, H. I. (2002). Chronic exercise increases both inducible and endothelial nitric oxide synthase gene expression in endothelial cells of rat aorta. J Biomed Sci, 9(2), 149-155.
Yang, A. L., Yeh, C. K., Su, C. T., Lo, C. W., Lin, K. L., & Lee, S. D. (2010). Aerobic exercise acutely improves insulin- and insulin-like growth factor-1-mediated vasorelaxation in hypertensive rats. Exp Physiol, 95(5), 622-629.
Zaros, P. R., Pires, C. E., Bacci, M., Jr., Moraes, C., & Zanesco, A. (2009). Effect of 6-months of physical exercise on the nitrate/nitrite levels in hypertensive postmenopausal women. BMC Womens Health, 9, 17.
Zhang, W., Wang, W., Yu, H., Zhang, Y., Dai, Y., Ning, C., . . . Xia, Y. (2012). Interleukin 6 underlies angiotensin II-induced hypertension and chronic renal damage. Hypertension, 59(1), 136-144.
Zhao, S., Li, Q., Liu, L., Xu, Z., & Xiao, J. (2004). Simvastatin reduces interleukin-1beta secretion by peripheral blood mononuclear cells in patients with essential hypertension. Clin Chim Acta, 344(1-2), 195-200.
Zhou, M. S., Schulman, I. H., & Raij, L. (2010). Vascular inflammation, insulin resistance, and endothelial dysfunction in salt-sensitive hypertension: role of nuclear factor kappa B activation. J Hypertens, 28(3), 527-535.
Zhou, M. S., Wang, A., & Yu, H. (2014). Link between insulin resistance and hypertension: What is the evidence from evolutionary biology? Diabetol Metab Syndr, 6(1), 12.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊