(3.215.180.226) 您好!臺灣時間:2021/03/06 13:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:豐文馨
研究生(外文):Feng, Wen-Hsin
論文名稱:單次甲肌肽增補對氧化壓力與運動表現之影響
論文名稱(外文):Acute anserine supplementation on oxidative stress andexercise performance
指導教授:侯建文侯建文引用關係
指導教授(外文):Hou, Chien-Wen
口試日期:2019-06-20
學位類別:碩士
校院名稱:臺北市立大學
系所名稱:運動科學研究所
學門:民生學門
學類:運動科技學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:37
中文關鍵詞:肌肽乳酸活性氧化物質
外文關鍵詞:carnosinelactateROS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目的:探討單次補充甲肌肽對於有氧與無氧運動表現的影響及
有氧運動時抗氧化能力的影響。方法:本研究招募 20 位受試者,
受試者隨機平均分配於兩部分實驗,分別為有氧運動 (50% VO2
max) 和無氧運動 (60秒溫蓋特),採用交叉平衡次序實驗設計。在運
動前一小時會給予補充劑,分別為低劑量 (15 毫克/公斤)、高劑量
(30 毫克/公斤) 和安慰劑三組,washout 為 14 天。有氧運動會在空
腹、運動後 5 分鐘、運動後 60 分鐘和運動後 24 小時抽血檢測氧
化壓力和細胞損傷的指標,將運動時間視為有氧運動表現指標。無
氧運動則會在禁食、運動前、運動後 5 分鐘和運動後 15 分鐘,檢
測乳酸,無氧運動表現指標為測得的功率輸出。結果:有氧運動氧
化壓力指標中,高劑量組SOD顯著高於低劑量和安慰劑組 (p <
0.001),GSSG 低劑量 (p < 0.01) 和高劑量組別 (p < 0.001) 運動後
均顯著高於安慰劑組,無論時間點。TBARS,GSH 和 CAT 則不受
補充劑和運動影響。對細胞損傷指標,高劑量組的 GPT 和 CKMB
都顯著高於低劑量 (p < 0.05),GOT 和 myoglobin 則不受甲肌肽劑
量和運動時間的影響,也沒有任何交互作用。有氧運動跑步時間,
三組間沒有差異。無氧運動表現,高劑量組顯著增加無氧平均功率
ii
輸出 (p < 0.05),但對無氧峰值功率輸出和疲勞指數沒有影響,乳酸
也不受到補充劑的影響,三組皆在運動後顯著上升 (p < 0.001)。結
論:急性甲肌肽增補可以增加有氧運動時 SOD 和 GSSG 的活性,
並增加無氧平均功率輸出。然而,甲肌肽影響生理功能的確切生化
機制仍需要更多實驗探討。
Aim : To investigate the effects of acute anserine supplementation
on the performance of aerobic and anaerobic exercise as well as the
antioxidative capacity in aerobic exercise. Methods: Twenty subjects
were enrolled in this study. The subjects were randomly separated in
two parts, Aerobic exercise (50% VO2 max) and Anaerobic exercise (60s
Wingate) respectively. And both parts were crossover designed.
Supplements were given one hour before exercise, which were low dose
(15 mg/kg), high dose (30 mg/kg) and placebo (PLA), and washed out for
14 days. For aerobic exercise, we were collecting blood on the fasting
state, 5 minutes after exercise, 60 minutes after exercise and 24 hours
after exercise to measure oxidative stress and cell damage biomarker. The
total running time was regarded as an aerobic performance indicator. We
measured lactate on the fasting state, before exercise, 5 minutes and 15
minutes after anaerobic exercise, and the anaerobic performance indicator
was the power output and fatigue index. Results: Among the oxidative
stress biomarkers of aerobic exercise, high dose can significantly increase
SOD compared with low dose and PLA (p < 0.001). Both low dose (p <
0.01) and high dose (p < 0.001) can significantly increase GSSG. TBARS,
GSH and CAT were no difference between group. For the cell damage
biomarkers, GPT was significantly higher in high dose than low dose (p
< 0.05), but there was no difference compared with PLA. High dose
showed higher CKMB than PLA (p < 0.05). GOT and myoglobin levels
were no difference between group. Total exercise time was no difference
iv
between group. On the other hand, the mean power output in anaerobic
exercise performance was enhanced in high dose compared with low dose
and PLA (p < 0.05), but there was no effect on anaerobic peak power
output and fatigue index. Blood lactate was increased by exercise in three
group, but there was no difference between groups. Conclusion: Acute
anserine supplementation can increase activities of SOD and GSSG
during aerobic exercise and anaerobic mean power output. However, the
biochemical mechanism to affect physiological functions of anserine
need further investigation.
中文摘要................................................. i
英文摘要 ...............................................iii
謝誌 .................................................... v
目錄 ................................................... vi
圖目錄 ............................................... viii
第壹章 緒論............................................... 1
第一節 研究背景........................................... 1
第二節 研究目的........................................... 3
第三節 研究假設........................................... 3
第貳章 文獻探討........................................... 4
第一節 甲肌肽之介紹 ...................................... 4
第二節 甲肌肽之生理功能 ................................... 5
第三節 甲肌肽增補對無氧運動能力的影響....................... 8
第四節 總結............................................... 8
第參章 研究方法........................................... 9
第一節 研究設計和受試者 ................................... 9
第二節 實驗流程............................................ 9
第三節 甲肌肽補充劑 ...................................... 12
第四節 統計分析........................................... 12
第肆章 結果............................................... 13
第伍章 討論............................................... 20
第陸章 結論............................................... 27
參考文獻 ................................................. 28

圖目錄

圖 1 甲肌肽的化學結構..................................... 4

圖 2 有氧運動流程圖...................................... 11

圖 3 無氧運動流程圖...................................... 12

圖 4 在有氧運動測驗前補充不同劑量甲肌肽和安慰劑,其跑步至
力竭的時間.............................................. 13

圖 5 在有氧運動前補充不同劑量甲肌肽和安慰劑,隨時間變化,
對 SOD 的影響........................................... 14

圖 6 在有氧運動前補充不同劑量甲肌肽和安慰劑,隨時間變化,
對 GSSG 的影響.......................................... 15

圖 7 在有氧運動前補充不同劑量甲肌肽和安慰劑,隨時間變化,
對 TBARS (A)、CAT (B) 和 GSH (C) 的影響.................. 16

圖 8 在有氧運動前補充不同劑量甲肌肽和安慰劑,隨時間變化,
對 GOT (A)、GPT (B)、CKMB (C) 和 myoglobin (D) 的影響.... 17

圖 9 在無氧運動測驗前補充不同劑量甲肌肽和安慰劑,其溫蓋特
運動表現指標,無氧爆發力 (A)、無氧能力 (B) 與疲勞指數 (C)... 18

圖 10 在無氧運動前補充不同劑量甲肌肽和安慰劑,隨時間變化,
對血乳酸的影響........................................... 19
Boldyrev AA, Dupin AM, Pindel EV and Severin SE. (1988). Antioxidative
properties of histidine-containing dipeptides from skeletal muscles of
vertebrates. Comp. Btochem. Physiol. Vol. 8911, No. 2, pp. 245-25
Aydin Aydin, A. F., Bingul, I., Kucukgergin, C., Dogan-Ekici, I., Dogru
Abbasoglu, S., & Uysal, M. (2017). Carnosine decreased oxidation and
glycation products in serum and liver of high-fat diet and low-dose
streptozotocin-induced diabetic rats. Int J Exp Pathol, 98(5), 278-288.
doi:10.1111/iep.12252
Baguet, A., Bourgois, J., Vanhee, L., Achten, E., & Derave, W. (2010).
Important role of muscle carnosine in rowing performance. J Appl
Physiol (1985), 109(4), 1096-1101.
doi:10.1152/japplphysiol.00141.2010
Beasley, L., Smith, L., Antonio, J., Gordon, D., Johnstone, J., & Roberts, J.
(2018). The effect of two beta-alanine dosing strategies on 30-minute
rowing performance: a randomized, controlled trial. J Int Soc Sports
Nutr, 15(1), 59. doi:10.1186/s12970-018-0266-3
Bellinger, P. M., & Minahan, C. L. (2016). Additive Benefits of beta-Alanine
Supplementation and Sprint-Interval Training. Med Sci Sports Exerc,
48(12), 2417-2425. doi:10.1249/MSS.0000000000001050
Botezelli, J. D., Cambri, L. T., Ghezzi, A. C., Dalia, R. A., PP, M. S., Ribeiro,
C., . . . Mello, M. A. (2011). Different exercise protocols improve
29
metabolic syndrome markers, tissue triglycerides content and antioxidant
status in rats. Diabetol Metab Syndr, 3, 35. doi:10.1186/1758-5996-3-35
Broch-Lips, M., Overgaard, K., Praetorius, H. A., & Nielsen, O. B. (2007).
Effects of extracellular HCO3(-) on fatigue, pHi, and K+ efflux in rat
skeletal muscles. J Appl Physiol (1985), 103(2), 494-503.
doi:10.1152/japplphysiol.00049.2007
Brun, J. F., Connes, P., & Varlet-Marie, E. (2007). Alterations of blood
rheology during and after exercise are both consequences and modifiers
of body's adaptation to muscular activity. Science & Sports, 22(6), 251-
266. doi:10.1016/j.scispo.2007.09.010
Dragsted, L. O. (2010). Biomarkers of meat intake and the application of
nutrigenomics. Meat Science, 84(2), 301-307.
doi:10.1016/j.meatsci.2009.08.028
Elimination of Exercise-Induced Plasma Lactate and Ammonia.pdf>.
Everaert, I., Baron, G., Barbaresi, S., Gilardoni, E., Coppa, C., Carini, M., . . .
Regazzoni, L. (2018). Development and validation of a sensitive LC–
MS/MS assay for the quantification of anserine in human plasma and
urine and its application to pharmacokinetic study. Amino Acids, 51(1),
103-114. doi:10.1007/s00726-018-2663-y
Harris, R. C., Tallon, M. J., Dunnett, M., Boobis, L., Coakley, J., Kim, H.
J., . . . Wise, J. A. (2006). The absorption of orally supplied β-alanine
and its effect on muscle carnosine synthesis in human vastus lateralis.
Amino Acids, 30(3), 279-289. doi:10.1007/s00726-006-0299-9
30
Jordan, T., Lukaszuk, J., Misic, M., & Umoren, J. (2010). Effect of beta-alanine
supplementation on the onset of blood lactate accumulation (OBLA)
during treadmill running: Pre/post 2 treatment experimental design.
Journal of the International Society of Sports Nutrition, 7(1).
doi:10.1186/1550-2783-7-20
Kaczmarek, D., Łochyński, D., Everaert, I., Pawlak, M., Derave, W., &
Celichowski, J. (2016). Role of histidyl dipeptides in contractile function
of fast and slow motor units in rat skeletal muscle. Journal of Applied
Physiology, 121(1), 164-172. doi:10.1152/japplphysiol.00848.2015
Katakura, Y., Totsuka, M., Imabayashi, E., Matsuda, H., & Hisatsune, T.
(2017). Anserine/Carnosine Supplementation Suppresses the Expression
of the Inflammatory Chemokine CCL24 in Peripheral Blood
Mononuclear Cells from Elderly People. Nutrients, 9(11).
doi:10.3390/nu9111199
Kwong, J. Q., Huo, J., Bround, M. J., Boyer, J. G., Schwanekamp, J. A.,
Ghazal, N., . . . Molkentin, J. D. (2018). The mitochondrial calcium
uniporter underlies metabolic fuel preference in skeletal muscle. JCI
Insight, 3(22). doi:10.1172/jci.insight.121689
Lancha Junior, A. H., Painelli Vde, S., Saunders, B., & Artioli, G. G. (2015).
Nutritional Strategies to Modulate Intracellular and Extracellular
Buffering Capacity During High-Intensity Exercise. Sports Med, 45
Suppl 1, S71-81. doi:10.1007/s40279-015-0397-5
Laver, D., Paraiso, L. F., Gonçalves-e-Oliveira, A. F. M., Cunha, L. M., de
Almeida Neto, O. P., Pacheco, A. G., . . . Penha-Silva, N. (2017). Effects
31
of acute and chronic exercise on the osmotic stability of erythrocyte
membrane of competitive swimmers. PLoS One, 12(2).
doi:10.1371/journal.pone.0171318
Lima, F. D., Stamm, D. N., Della-Pace, I. D., Dobrachinski, F., de Carvalho, N.
R., Royes, L. F., . . . Bresciani, G. (2013). Swimming training induces
liver mitochondrial adaptations to oxidative stress in rats submitted to
repeated exhaustive swimming bouts. PLoS One, 8(2), e55668.
doi:10.1371/journal.pone.0055668
McLeay, Y., Stannard, S., Houltham, S., & Starck, C. (2017). Dietary thiols in
exercise: oxidative stress defence, exercise performance, and adaptation.
J Int Soc Sports Nutr, 14, 12. doi:10.1186/s12970-017-0168-9
Menon, K., Mousa, A., & de Courten, B. (2018). Effects of supplementation
with carnosine and other histidine-containing dipeptides on chronic
disease risk factors and outcomes: protocol for a systematic review of
randomised controlled trials. BMJ Open, 8(3), e020623.
doi:10.1136/bmjopen-2017-020623
Parker, L., Trewin, A., Levinger, I., Shaw, C. S., & Stepto, N. K. (2018).
Exercise-intensity dependent alterations in plasma redox status do not
reflect skeletal muscle redox-sensitive protein signaling. J Sci Med
Sport, 21(4), 416-421. doi:10.1016/j.jsams.2017.06.017
Qin, S., Huang, B., Ma, J., Wang, X., Zhang, J., Li, L., & Chen, F. (2015).
Effects of Selenium-Chitosan on Blood Selenium Concentration,
Antioxidation Status, and Cellular and Humoral Immunity in Mice.
Biological Trace Element Research, 165(2), 145-152.
32
doi:10.1007/s12011-015-0243-5
Quindry, J. C., Stone, W. L., King, J., & Broeder, C. E. (2003). The Effects of
Acute Exercise on Neutrophils and Plasma Oxidative Stress. Medicine &
Science in Sports & Exercise, 35(7), 1139-1145.
doi:10.1249/01.Mss.0000074568.82597.0b
Rabelo, V. M., Magalhaes, P. C., Bressanin, L. A., Carvalho, D. T., Reis, C. O.
D., Karam, D., . . . Souza, T. C. (2019). The foliar application of a
mixture of semisynthetic chitosan derivatives induces tolerance to water
deficit in maize, improving the antioxidant system and increasing
photosynthesis and grain yield. Sci Rep, 9(1), 8164.
doi:10.1038/s41598-019-44649-7
Rusnak, M., VanderMeulen, M., Byrd, B., Byrd, G., Rusnak, R., Martin, J., &
Hew-Butler, T. (2019). Muscle Damage, Soreness, and Stress During
Preseason Training in Collegiate Swimmers. Clin J Sport Med.
doi:10.1097/JSM.0000000000000736
Sale, C., Saunders, B., & Harris, R. C. (2010). Effect of beta-alanine
supplementation on muscle carnosine concentrations and exercise
performance. Amino Acids, 39(2), 321-333. doi:10.1007/s00726-009-
0443-4
Saunders, B., Elliott-Sale, K., Artioli, G. G., Swinton, P. A., Dolan, E.,
Roschel, H., . . . Gualano, B. (2017). β-alanine supplementation to
improve exercise capacity and performance: a systematic review and
meta-analysis. British Journal of Sports Medicine, 51(8), 658-669.
doi:10.1136/bjsports-2016-096396
33
Seifi-Skishahr, F., Damirchi, A., Farjaminezhad, M., & Babaei, P. (2016).
Physical Training Status Determines Oxidative Stress and Redox
Changes in Response to an Acute Aerobic Exercise. Biochem Res Int,
2016, 3757623. doi:10.1155/2016/3757623
Siala, R., Khabir, A., Lassoued, I., Abdelhedi, O., Elfeki, A., Vallaeys, T., &
Nasri, M. (2016). Functional and Antioxidant Properties of Protein
Hydrolysates from Grey Triggerfish Muscle and in vivo
Evaluation of Hypoglycemic and Hypolipidemic Activities. Journal of
Applied & Environmental Microbiology, 4(6), 105-119.
Smith, A. E., Stout, J. R., Kendall, K. L., Fukuda, D. H., & Cramer, J. T.
(2012). Exercise-induced oxidative stress: the effects of beta-alanine
supplementation in women. Amino Acids, 43(1), 77-90.
doi:10.1007/s00726-011-1158-x
Smith, A. E., Walter, A. A., Graef, J. L., Kendall, K. L., Moon, J. R.,
Lockwood, C. M., . . . Stout, J. R. (2009). Effects of beta-alanine
supplementation and high-intensity interval training on endurance
performance and body composition in men; a double-blind trial. J Int
Soc Sports Nutr, 6, 5. doi:10.1186/1550-2783-6-5
Spanidis, Y., Veskoukis, A. S., Papanikolaou, C., Stagos, D., Priftis, A., Deli,
C. K., . . . Kouretas, D. (2018). Exercise-Induced Reductive Stress Is a
Protective Mechanism against Oxidative Stress in Peripheral Blood
Mononuclear Cells. Oxid Med Cell Longev, 2018, 3053704.
doi:10.1155/2018/3053704
St Clair Gibson, A. (2004). Evidence for complex system integration and
34
dynamic neural regulation of skeletal muscle recruitment during exercise
in humans. British Journal of Sports Medicine, 38(6), 797-806.
doi:10.1136/bjsm.2003.009852
Stout, J. R., Cramer, J. T., Zoeller, R. F., Torok, D., Costa, P., Hoffman, J.
R., . . . O'Kroy, J. (2007). Effects of beta-alanine supplementation on the
onset of neuromuscular fatigue and ventilatory threshold in women.
Amino Acids, 32(3), 381-386. doi:10.1007/s00726-006-0474-z
Swietach, P., Leem, C.-H., Spitzer, K. W., & Vaughan-Jones, R. D. (2014).
Pumping Ca2+up H+gradients: a Ca2+-H+exchanger without a
membrane. The Journal of Physiology, 592(15), 3179-3188.
doi:10.1113/jphysiol.2013.265959
Szczesniak, D., Budzen, S., Kopec, W., & Rymaszewska, J. (2014). Anserine
and carnosine supplementation in the elderly: Effects on cognitive
functioning and physical capacity. Arch Gerontol Geriatr, 59(2), 485-
490. doi:10.1016/j.archger.2014.04.008
Tauler, P., Aguiló, A., Cases, N., Sureda, A., Gimenez, F., Villa, G., . . . Pons
Biescas, A. (2009). Acute Phase Immune Response to Exercise Coexists
with Decreased Neutrophil Antioxidant Enzyme Defences. Free Radical
Research, 36(10), 1101-1107. doi:10.1080/1071576021000028334
Tobias, G., Benatti, F. B., de Salles Painelli, V., Roschel, H., Gualano, B., Sale,
C., . . . Artioli, G. G. (2013). Additive effects of beta-alanine and sodium
bicarbonate on upper-body intermittent performance. Amino Acids,
45(2), 309-317. doi:10.1007/s00726-013-1495-z
Tomonaga, S., Hayakawa, T., Yamane, H., Maemura, H., Sato, M., Takahata,
35
Y., . . . Furuse, M. (2007). Oral administration of chicken breast extract
increases brain carnosine and anserine concentrations in rats. Nutr
Neurosci, 10(3-4), 181-186. doi:10.1080/10284150701587338
Yamano, E., Tanaka, M., Ishii, A., Tsuruoka, N., Abe, K., & Watanabe, Y.
(2013). Effects of chicken essence on recovery from mental fatigue in
healthy males. Med Sci Monit, 19, 540-547. doi:10.12659/MSM.883971
Yeum, K. J., Orioli, M., Regazzoni, L., Carini, M., Rasmussen, H., Russell, R.
M., & Aldini, G. (2010). Profiling histidine dipeptides in plasma and
urine after ingesting beef, chicken or chicken broth in humans. Amino
Acids, 38(3), 847-858. doi:10.1007/s00726-009-0291-2
Young, H., Benton, D., & Carter, N. (2015). The Effect of Chicken Extract on
Mood, Cognition and Heart Rate Variability. Nutrients, 7(2), 887-904.
doi:10.3390/nu7020887
Zhenyukh, O., Civantos, E., Ruiz-Ortega, M., Sanchez, M. S., Vazquez, C.,
Peiro, C., . . . Mas, S. (2017). High concentration of branched-chain
amino acids promotes oxidative stress, inflammation and migration of
human peripheral blood mononuclear cells via mTORC1 activation. Free
Radic Biol Med, 104, 165-177.
doi:10.1016/j.freeradbiomed.2017.01.009
Zoeller, R. F., Stout, J. R., O'Kroy J, A., Torok, D. J., & Mielke, M. (2007).
Effects of 28 days of beta-alanine and creatine monohydrate
supplementation on aerobic power, ventilatory and lactate thresholds,
and time to exhaustion. Amino Acids, 33(3), 505-510.
doi:10.1007/s00726-006-0399-6
36
Wassif WS et al., (1994). Serum carnosinase activities in central nervous system
disorders. Clinica Chimica. Acta 225, 57-64.
Yasuhiro SUZUKI, Osamu ITO, Naoki MUKAI, Hideyuki TAKAHASHI, and
Kaoru TAKAMATSU. (2002). High Level of Skeletal Muscle Carnosine
Contributes to the Latter Half of Exercise Performance during 30-s
Maximal Cycle Ergometer Sprinting. Japanese Journal of Physiology, 52,
199–205.
Alexander A, Boldyrev, Sergei E & Severin. (1990). The histidine-containing
dipeptides, carnosine and anserine: Distribution, properties and biological
significance. Adv Enzyme Regul, 30, 175-94.
Hobson RM, Saunders B, Ball G, et al. (2012). Effects of β -alanine
supplementation on exercise performance: a meta-analysis. Amino
Acids;43:25–37.
Invernizzi, P. L., Limonta, E., Riboli, A., Bosio, A., Scurati, R., & Esposito, F.
(2016). Effects of Acute Carnosine and beta-Alanine on Isometric Force
and Jumping Performance. Int J Sports Physiol Perform, 11(3), 344-349.
doi:10.1123/ijspp.2014-0507
Dario G. Liebermanna and Larry Katzb. (2003). On the assessment of lowerlimb muscular power capability. Isokinetics and Exercise Science 11
(2003) 87–94
37
Marks R (2014). Perceived health status of women with knee osteoarthritis: a
cross-sectional study of the relationships of age, body mass, pain and
walking limitations. Open Orthop. J. 8: 255-263.
Okezie I. Aruoma, Jeremy P. E. Spencer, QDonna Warren, Peter Jenner, John
Butler & Barry Halliwell. (1997). Characterization of food antioxidants,
illustrated using commercial garlic and ginger preparations. Food
Chemistry, Vol. 60, No. 2, pp. 149-156, 1997
Hsin-I Lo , Daniel Tsi , Amabel CL Tan , Shyi-Wu Wang , and Mei-Chich Hsu.
(2005) Effects of Postexercise Supplementation of Chicken Essence on the
Elimination of Exercise-Induced Plasma Lactate and Ammonia. Chinese
Journal of Physiology 48(4): 187-192, 2005
電子全文 電子全文(網際網路公開日期:20220901)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔