跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/11 09:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉育佑
研究生(外文):Liu, Yu-You
論文名稱:偵測含磷酸根生物化學物螢光感測器設計:(一)以普魯士藍奈米材料設計;(二)以修飾有第六型溶菌酶之金奈米簇設計
論文名稱(外文):Design Fluorescence Sensor for the Detection of Phosphate Group Biochemicals :(1) Using Prussian Blue Nanomaterials;(2)Using Lysozyme Protected Au8 Nanolusters
指導教授:余政儒
指導教授(外文):Yu, Cheng-Ju
口試日期:2019-07-22
學位類別:碩士
校院名稱:臺北市立大學
系所名稱:應用物理暨化學系
學門:自然科學學門
學類:其他自然科學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:126
中文關鍵詞:螢光感測器鹼性磷酸酶普魯士藍奈米材料金奈米簇
外文關鍵詞:Fluorescence Sensoralkaline phosphatasePrussian blue nanomaterialsgold nanoclusters
相關次數:
  • 被引用被引用:1
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
(一) 利用聚乙烯吡咯烷酮包覆普魯士藍奈米材料作為消光材料用以
偵測含磷酸根之生物化學物螢光感測器
普魯士藍為一在十八世紀時發現的配位聚合物,並被做為染料使用。在我們開發的螢光檢測系統中,我們利用利用聚乙烯吡咯烷酮包覆普魯士藍奈米材料作為良好的消光材料,並使用BODIPY-ATP 做為檢測系統中的螢光染料。普魯士藍奈米材料與BODIPY-ATP 兩者鍵結產生消光,藉由添加含磷酸根之生物化學物質與BODIPY-ATP 競爭,便能偵測含磷酸根之生物化學物質,如:三磷酸腺苷(ATP)經鹼性磷酸酶(ALP)水解後產生之磷酸根(Pi)或是焦磷酸根(PPi),也可以透過此種方式進行鹼性磷酸酶之偵測。在焦磷酸根檢測部分,我們設計之檢測系統的線性區間為0.08 至1 μM;在鹼性磷酸酶檢測部分,我們所設計之系統的線性區間為0.01 至1 U/L,而後我們進行了酵素結合免疫吸附分析法,利用IgG 抗體綁上鹼性磷酸酶的方式檢測IgG抗原,所得到偵測線性區間為0.05 到1 ng/mL。

(二)以第六型溶菌酶穩定結構之金奈米簇作為螢光探測器來偵測鹼
性磷酸酶
金奈米簇是由數個至數十個金原子組成之材料,尺寸大小小於3 nm,
能階分布屬於離散能階,因此具有螢光之特性。在我們所設計的螢光感測系統中,我們利用第六型溶菌酶穩定結構之8 個原子金奈米簇作為螢光訊號來源,利用碘分子與碘離子作為消光材料,其消光方式為碘分子及碘離子可以將金奈米簇蝕刻,使其螢光淬熄,透過抗壞血酸還原碘酸鉀(KIO3)形成碘分子的方式,我們可使用抗壞血酸磷酸鈉透過鹼性磷酸酶(ALP)水解形成抗壞血酸的方式來定量鹼性磷酸酶。在抗壞血酸檢測部分,我們設計之檢測系統的線性區間為0.02 至0.6 mM;在鹼性磷酸酶檢測部分,我們所設計之系統的線性區間為0.05 至125 U/L,而後我們進行了酵素結合免疫吸附分析法,利用IgG 抗體綁上鹼性磷酸酶的方式檢測IgG 抗原,所得到偵測線性區間
為2 至50 ng/mL。
(一) PVP-capped Prussian Blue Nanomaterials Act as Quencher for Phosphate Group Biochemicals Fluorescence Sensor
Prussian blue nanoparticles (PBNPs) is an ancient dye that is found in 18 century, a well-known coordination polymer (CP) with the formation Fe4[Fe(CN)6]3. In this study, we developed a sensor that polyvinylpyrrolidone (PVP)-capped PBNMs act as an efficient quencher and boron-dipyrromethene conjugated adenosine triphosphate (BODIPY-ATP) as fluorescein dye for sensing the analytes with phosphate groups such as pyrophosphate ion (PPi) and adenosine triphosphate (ATP). PPi is one of the product in ATP hydrolysis, the size of PPi is much smaller than BODIPY-ATP, it could compete with BODIPY-ATP to chelate on the surface of PBNPs. The fluorescence increases linearly with the PPi concentration increasing range from 0.08 μM to 1 μM, with the limit of detection is 0.03 μM. Thus, we could set up a turn-on fluorescence sensor to detect phosphate group biochemicals and phosphatase, we could detect alkaline phosphatase (ALP) in the system we proposed by using the ALP-catalyzed hydrolysis of BODIPY-ATP, the product will be BODIPY conjugated adenosine and phosphate ions, the fluorescence signal could be read because of BODIPY conjugated adenosine. The linear range of the ALP concentrations is 0.01 U/L to 1 U/L, with the limit of detection is 0.003 U/L. And we use this system for ELISA detection of IgG, with the linear range 0.05 ng/mL to1 ng/mL, the limit of detection is 0.02 ng/mL.

(二) Turn-Off Fluorescent Strategy for Sensing Alkaline Phosphatase Based on Iodine-Mediated Etching of Lysozyme Protected Gold Nanoclusters
Gold nanoclusters has fluorescence due to it’s particle size is under 3 nm that made the energy level is fitting the Fermi level, the energy level of gold nanoclusters is not continuous. In this study, we developed a sensor that iodine molecules (I2) and iodide ions (I-) act as an efficient quencher and lysozyme type vi – stablilized Au8 (Lyz@Au8) nanoclusters as fluorophore for sensing various species. For instance, ascorbic acid (AA) is one of the product form ascorbic acid-phosphate (AAP) hydrolysis by alkaline phosphatase (ALP). That ascorbic acid could let potassium iodate reducing to be iodine molecules and it could etching gold nanoclusters. The fluorescence decreasing linearly with the AA concentration increasing range from 0.02 mM to 0.6 mM, with the limit of detection is 0.007 mM. Thus we could design a turn-off fluorescence sensor to detect alkaline phosphatase by using the ALP-catalyzed hydrolysis of AAP, the product will be AA and phosphate ions, the fluorescence signal could be read because of Lyz@Au8. The linear range of the ALP concentrations is 0.05 U/L to 125 U/L, with the limit of detection is 0.02 U/L. And we use this system for ELISA detection of IgG, with the linear range 2 ng/mL to50 ng/mL, the limit of detection is 0.7 ng/mL.
英文摘要 I
中文摘要 III
第一章 1
1. 前言 2
1.1.1 金屬有機框架材料簡介 2
1.1.2 普魯士藍 2
1.2 螢光消光機制種類與文獻探討 3
1.3 鹼性磷酸酶簡介 11
1.4 酵素免疫分析法 12
1.5 研究動機 13
2. 實驗部分 14
2.1 實驗藥品 14
2.2 實驗儀器 19
2.3 藥品配製與合成 22
2.4 實驗過程 26
3. 實驗結果與討論 30
3.1 比較以鐵(III)與鐵(II)離子合成之PVP-PB NMs差異 30
3.2 探討PVP-Fe(III) PB NMs之基本性質 38
3.3 PVP-Fe(III) PB NMs與BODIPY-ATP偵測系統最佳化 41
3.4 PVP-Fe(III) PB NMs與BODIPY-ATP之消光機制探討 48
3.5 以PVP-Fe(III) PB NMs與BODIPY-ATP定量焦磷酸鈉鹽 54
3.6 以PVP-Fe(III) PB NMs與BODIPY-ATP定量鹼性磷酸酶 59
3.7 以PVP-Fe(III) PB NMs與BODIPY-ATP之ELISA檢測 63
4. 結論 69
5. 參考文獻 70
第二章 75
1. 前言 76
1.1.1 金奈米簇 76
1.1.2 金奈米簇合成方法 76
1.2 尺寸效應 78
1.3 研究動機 79
2. 實驗部分 80
2.1 實驗藥品 80
2.2 實驗儀器 85
2.3 藥品配製與合成 86
2.4 實驗過程 89
3. 實驗結果與討論 94
3.1 比較以不同pH值合成之第六型溶菌酶穩定結構之金奈米簇抗蝕刻性質 94
3.2 Lyz@ Au8對碘離子蝕刻偵測系統最佳化 99
3.3 Lyz@ Au8對碘離子蝕刻偵測系統定量抗壞血酸 106
3.4 Lyz@ Au8對碘離子蝕刻偵測系統定量鹼性磷酸酶 111
3.5 Lyz@ Au8對碘離子蝕刻偵測系統之ELISA偵測 116
4. 結論 123
5. 參考文獻 124
(一)
1.Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112, 933-969.
2.Jiang, D.; Urakawa, A.; Yulikov, M.; Mallat, T.; Jeschke, G.; Baiker, A., Size Selectivity of a Copper Metal–Organic Framework and Origin of Catalytic Activity in Epoxide Alcoholysis. Chem. Eur. J. 2009, 15, 12255-12262.
3.Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319, 939-943.
4.Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; Keeffe, M.; Yaghi, O. M., Hydrogen Storage in Microporous Metal-Organic Frameworks. Science 2003, 300, 1127-1129.
5.Hamon, L.; Llewellyn, P. L.; Devic, T.; Ghoufi, A.; Clet, G.; Guillerm, V.; Pirngruber, G. D.; Maurin, G.; Serre, C.; Driver, G.; van Beek, W.; Jolimaître, E.; Vimont, A.; Daturi, M.; Férey, G., Co-adsorption and Separation of CO2−CH4 Mixtures in the Highly Flexible MIL-53(Cr) MOF. J. Am. Chem. Soc. 2009, 131, 17490-17499.
6.Millward, A. R.; Yaghi, O. M., Metal−Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. JACS 2005, 127, 17998-17999.
7.Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I., A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science 2005, 309, 2040-2042.
8.Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 2006, 103, 10186-10191.
9.Robin, M. B., The Color and Electronic Configurations of Prussian Blue. Inorg. Chem. 1962, 1, 337-342.
10.Lawrence, G. D.; Fishelson, S., UV Catalysis, Cyanotype Photography, and Sunscreens. J. Chem. Educ. 1999, 76, 1199-1200.
11.Hoffman, R. S., Thallium Toxicity and the Role of Prussian Blue in Therapy. Toxicological Reviews 2003, 22, 29-40.
12.Koshiyama, T.; Tanaka, M.; Honjo, M.; Fukunaga, Y.; Okamura, T.; Ohba, M., Direct Synthesis of Prussian Blue Nanoparticles in Liposomes Incorporating Natural Ion Channels for Cs(+) Adsorption and Particle Size Control. Langmuir 2018, 34, 1666-1672.
13.Kim, H.; Kim, M.; Lee, W.; Kim, S., Rapid removal of radioactive cesium by polyacrylonitrile nanofibers containing Prussian blue. J. Hazard. Mater. 2018, 347, 106-113.
14.Yang, N.; Huang, Y.; Ding, G.; Fan, A., In Situ Generation of Prussian Blue with Potassium Ferrocyanide to Improve the Sensitivity of Chemiluminescence Immunoassay Using Magnetic Nanoparticles as Label. Anal Chem 2019, 91, 4906-4912.
15.Wen, S. H.; Wang, Y.; Yuan, Y. H.; Liang, R. P.; Qiu, J. D., Electrochemical sensor for arsenite detection using graphene oxide assisted generation of prussian blue nanoparticles as enhanced signal label. Anal Chim Acta 2018, 1002, 82-89.
16.Zhuang, X.; Mao, L.; Li, Y., In situ synthesis of a Prussian blue nanoparticles/graphdiyne oxide nanocomposite with high stability and electrocatalytic activity. Electrochem. Commun 2017, 83, 96-101.
17.Wang, M.; Yang, L.; Hu, B.; Liu, J.; He, L.; Jia, Q.; Song, Y.; Zhang, Z., Bimetallic NiFe oxide structures derived from hollow NiFe Prussian blue nanobox for label-free electrochemical biosensing adenosine triphosphate. Biosens. Bioelectron. 2018, 113, 16-24.
18.Farka, Z.; Cunderlova, V.; Horackova, V.; Pastucha, M.; Mikusova, Z.; Hlavacek, A.; Skladal, P., Prussian Blue Nanoparticles as a Catalytic Label in a Sandwich Nanozyme-Linked Immunosorbent Assay. Anal Chem 2018, 90, 2348-2354.
19.Vázquez-González, M.; Torrente-Rodríguez, R. M.; Kozell, A.; Liao, W.-C.; Cecconello, A.; Campuzano, S.; Pingarrón, J. M.; Willner, I., Mimicking Peroxidase Activities with Prussian Blue Nanoparticles and Their Cyanometalate Structural Analogues. Nano Lett. 2017, 17, 4958-4963.
20.Zhang, W.; Ma, D.; Du, J., Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose. Talanta 2014, 120, 362-367.
21.Qi, J.; Liu, D.; Liu, X.; Guan, S.; Shi, F.; Chang, H.; He, H.; Yang, G., Fluorescent pH Sensors for Broad-Range pH Measurement Based on a Single Fluorophore. Anal Chem 2015, 87, 5897-904.
22.Yu, C.-J.; Wu, S.-M.; Tseng, W.-L., Magnetite Nanoparticle-Induced Fluorescence Quenching of Adenosine Triphosphate–BODIPY Conjugates: Application to Adenosine Triphosphate and Pyrophosphate Sensing. Anal. Chem. 2013, 85, 8559-8565.
23.de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E., Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev. 1997, 97, 1515-1566.
24.Kim, J. S.; Quang, D. T., Calixarene-Derived Fluorescent Probes. Chem. Rev. 2007, 107, 3780-3799.
25.Carter, K. P.; Young, A. M.; Palmer, A. E., Fluorescent Sensors for Measuring Metal Ions in Living Systems. Chem. Rev. 2014, 114, 4564-4601.
26.Lin, J. H.; Yang, Y. C.; Shih, Y. C.; Hung, S. Y.; Lu, C. Y.; Tseng, W. L., Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay. Biosens. Bioelectron. 2016, 77, 242-248.
27.Förster, T., Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 1948, 437, 55-75.
28.Wang, Y.; Li, Z.; Hu, D.; Lin, C.-T.; Li, J.; Lin, Y., Aptamer/Graphene Oxide Nanocomplex for in Situ Molecular Probing in Living Cells. JACS 2010, 132, 9274-9276.
29.Song, E.; Cheng, D.; Song, Y.; Jiang, M.; Yu, J.; Wang, Y., A graphene oxide-based FRET sensor for rapid and sensitive detection of matrix metalloproteinase 2 in human serum sample. Biosens. Bioelectron. 2013, 47, 445-450.
30.Wang, Y.-T.; Tseng, W.-L., Surfen-Assembled Graphene Oxide for Fluorescence Turn-On Detection of Sulfated Glycosaminoglycans in Biological Matrix. ACS Sensors 2017, 2, 748-756.
31.Ma, Y.; Bai, Y.; Mao, H.; Hong, Q.; Yang, D.; Zhang, H.; Liu, F.; Wu, Z.; Jin, Q.; Zhou, H.; Cao, J.; Zhao, J.; Zhong, X.; Mao, H., A panel of promoter methylation markers for invasive and noninvasive early detection of NSCLC using a quantum dots-based FRET approach. Biosens. Bioelectron. 2016, 85, 641-648.
32.Dennis, A. M.; Rhee, W. J.; Sotto, D.; Dublin, S. N.; Bao, G., Quantum Dot–Fluorescent Protein FRET Probes for Sensing Intracellular pH. ACS Nano 2012, 6, 2917-2924.
33.Shang, L.; Dong, S., Design of Fluorescent Assays for Cyanide and Hydrogen Peroxide Based on the Inner Filter Effect of Metal Nanoparticles. Anal. Chem. 2009, 81, 1465-1470.
34.Shao, N.; Zhang, Y.; Cheung, S.; Yang, R.; Chan, W.; Mo, T.; Li, K.; Liu, F., Copper Ion-Selective Fluorescent Sensor Based on the Inner Filter Effect Using a Spiropyran Derivative. Anal. Chem. 2005, 77, 7294-7303.
35.Zhang, R.; Li, N.; Sun, J.; Gao, F., Colorimetric and Phosphorimetric Dual-Signaling Strategy Mediated by Inner Filter Effect for Highly Sensitive Assay of Organophosphorus Pesticides. J. Agric. Food Chem. 2015, 63, 8947-8954.
36.Zheng, M.; Xie, Z.; Qu, D.; Li, D.; Du, P.; Jing, X.; Sun, Z., On–Off–On Fluorescent Carbon Dot Nanosensor for Recognition of Chromium(VI) and Ascorbic Acid Based on the Inner Filter Effect. ACS Appl. Mater. Interfaces 2013, 5, 13242-13247.
37.Ma, J.-L.; Yin, B.-C.; Wu, X.; Ye, B.-C., Copper-Mediated DNA-Scaffolded Silver Nanocluster On–Off Switch for Detection of Pyrophosphate and Alkaline Phosphatase. Anal. Chem. 2016, 88, 9219-9225.
38.Xu, L.; Li, B.; Jin, Y., Inner filter effect of gold nanoparticles on the fluorescence of quantum dots and its application to biological aminothiols detection. Talanta 2011, 84, 558-564.
39.Li, J.; Li, X.; Shi, X.; He, X.; Wei, W.; Ma, N.; Chen, H., Highly Sensitive Detection of Caspase-3 Activities via a Nonconjugated Gold Nanoparticle–Quantum Dot Pair Mediated by an Inner-Filter Effect. ACS Appl. Mater. Interfaces 2013, 5, 9798-9802.
40.Miller, P. D., Bone Disease in CKD: A Focus on Osteoporosis Diagnosis and Management. Am. J. Kidney Dis. 2014, 64, 290-304.
41.Limdi, J. K.; Hyde, G. M., Evaluation of abnormal liver function tests. Postgrad. Med. J. 2003, 79, 307-312.
42.Keshaviah, A.; Dellapasqua, S.; Rotmensz, N.; Lindtner, J.; Crivellari, D.; Collins, J.; Colleoni, M.; Thurlimann, B.; Mendiola, C.; Aebi, S.; Price, K. N.; Pagani, O.; Simoncini, E.; Castiglione Gertsch, M.; Gelber, R. D.; Coates, A. S.; Goldhirsch, A., CA15-3 and alkaline phosphatase as predictors for breast cancer recurrence: a combined analysis of seven International Breast Cancer Study Group trials. Ann. Oncol. 2007, 18, 701–708.
43.Powell, M. E.; Smith, M. J., The determination of serum acid and alkaline phosphatase activity with 4-aminoantipyrine (A.A.P.). J. Clin. Pathol. 1954, 7, 245-248.
44.Bowers, G. N.; McComb, R. B., Measurement of Total Alkaline Phosphatase Activity in Human Serum. Clin. Chem. 1975, 21, 1988-1995.
45.Liu, B.; Liu, J., Comprehensive Screen of Metal Oxide Nanoparticles for DNA Adsorption, Fluorescence Quenching, and Anion Discrimination. ACS Appl. Mater. Interfaces 2015, 7, 24833-24838.
46.Tong, L.-l.; Chen, Z.-z.; Jiang, Z.-y.; Sun, M.-m.; Li, L.; Liu, J.; Tang, B., Fluorescent sensing of pyrophosphate anion in synovial fluid based on DNA-attached magnetic nanoparticles. Biosens. Bioelectron. 2015, 72, 51-55.
47.Jiang, T.; He, J.; Sun, L.; Wang, Y.; Li, Z.; Wang, Q.; Sun, Y.; Wang, W.; Yu, M., Highly efficient photothermal sterilization of water mediated by Prussian blue nanocages. Environ. Sci.: Nano 2018, 5, 1161-1168.
48.Uemura, T.; Kitagawa, S., Prussian Blue Nanoparticles Protected by Poly(vinylpyrrolidone). JACS 2003, 125, 7814-7815.
49.Grundl, T.; Delwiche, J., Kinetics of ferric oxyhydroxide precipitation. J. Contam. Hydrol. 1993, 14, 71-87.
50.Ware, W. R., OXYGEN QUENCHING OF FLUORESCENCE IN SOLUTION: AN EXPERIMENTAL STUDY OF THE DIFFUSION PROCESS. J. Phys. Chem. A 1962, 66, 455-458.
51.Deng, J.; Yu, P.; Wang, Y.; Mao, L., Real-time Ratiometric Fluorescent Assay for Alkaline Phosphatase Activity with Stimulus Responsive Infinite Coordination Polymer Nanoparticles. Anal. Chem. 2015, 87, 3080-3086.
52.Qian, Z.; Chai, L.; Tang, C.; Huang, Y.; Chen, J.; Feng, H., Carbon Quantum Dots-Based Recyclable Real-Time Fluorescence Assay for Alkaline Phosphatase with Adenosine Triphosphate as Substrate. Anal. Chem. 2015, 87, 2966-2973.
53.Gao, Z.; Deng, K.; Wang, X.-D.; Miró, M.; Tang, D., High-Resolution Colorimetric Assay for Rapid Visual Readout of Phosphatase Activity Based on Gold/Silver Core/Shell Nanorod. ACS Appl. Mater. Interfaces 2014, 6, 18243-18250.
54.Zhao, W.; Chiuman, W.; Lam, J. C. F.; Brook, M. A.; Li, Y., Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Chem. Commun. 2007, 3729-3731.
55.Li, C. M.; Zhen, S. J.; Wang, J.; Li, Y. F.; Huang, C. Z., A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range. Biosens. Bioelectron. 2013, 43, 366-371.
56.Xuan, Z.; Li, M.; Rong, P.; Wang, W.; Li, Y.; Liu, D., Plasmonic ELISA based on the controlled growth of silver nanoparticles. Nanoscale 2016, 8, 17271-17277.
57.Gao, Z.; Xu, M.; Hou, L.; Chen, G.; Tang, D., Irregular-shaped platinum nanoparticles as peroxidase mimics for highly efficient colorimetric immunoassay. Anal. Chim. Acta 2013, 776, 79-86.
58.Dong, H.; Li, C.-M.; Zhang, Y.-F.; Cao, X.-D.; Gan, Y., Screen-printed microfluidic device for electrochemical immunoassay. Lab Chip 2007, 7, 1752-1758.
59.Liu, X.; Huo, Q., A washing-free and amplification-free one-step homogeneous assay for protein detection using gold nanoparticle probes and dynamic light scattering. J. Immunol. Methods 2009, 349, 38-44.

(二)
1.Zheng, J.; Nicovich, P. R.; Dickson, R. M., Highly Fluorescent Noble-Metal Quantum Dots. Annu. Rev. Phys. Chem. 2007, 58, 409-431.
2.Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R. L., Gold Nanoelectrodes of Varied Size: Transition to Molecule-Like Charging. Science 1998, 280, 2098-2101.
3.Lu, Y.; Chen, W., Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012, 41, 3594-3623.
4.Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X., Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing. Anal. Chem. 2011, 83, 1193-1196.
5.Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L., Gold-Nanocluster-Based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water. Adv. Funct. Mater. 2010, 20, 951-956.
6.Lin, C.-A. J.; Yang, T.-Y.; Lee, C.-H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J.-L.; Wang, H.-H.; Yeh, H.-I.; Parak, W. J.; Chang, W. H., Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. ACS Nano 2009, 3, 395-401.
7.Xie, J.; Zheng, Y.; Ying, J. Y., Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. JACS 2009, 131, 888-889.
8.Li, L.; Liu, H.; Shen, Y.; Zhang, J.; Zhu, J.-J., Electrogenerated Chemiluminescence of Au Nanoclusters for the Detection of Dopamine. Anal. Chem. 2011, 83, 661-665.
9.Chan, P.-H.; Chen, Y.-C., Human Serum Albumin Stabilized Gold Nanoclusters as Selective Luminescent Probes for Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus. Anal. Chem. 2012, 84, 8952-8956.
10.Santhosh, M.; Chinnadayyala, S. R.; Singh, N. K.; Goswami, P., Human serum albumin-stabilized gold nanoclusters act as an electron transfer bridge supporting specific electrocatalysis of bilirubin useful for biosensing applications. Bioelectrochemistry 2016, 111, 7-14.
11.Chen, T.-H.; Tseng, W.-L., (Lysozyme Type VI)-Stabilized Au8 Clusters: Synthesis Mechanism and Application for Sensing of Glutathione in a Single Drop of Blood. Small 2012, 8, 1912-1919.
12.Li, J.; Zhu, J.-J.; Xu, K., Fluorescent metal nanoclusters: From synthesis to applications. TrAC, Trends Anal. Chem. 2014, 58, 90-98.
13.Habeeb Muhammed, M. A.; Ramesh, S.; Sinha, S. S.; Pal, S. K.; Pradeep, T., Two distinct fluorescent quantum clusters of gold starting from metallic nanoparticles by pH-dependent ligand etching. Nano Research 2008, 1, 333-340.
14.Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T., Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II). Angew. Chem. Int. Ed. 2007, 46, 6824-6828.
15.Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, 933-937.
16.Brack, M., The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 1993, 65, 677-732.
17.Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H., A unified view of ligand-protected gold clusters as superatom complexes. PNAS 2008, 105, 9157-9162.
18.Shichibu, Y.; Negishi, Y.; Tsunoyama, H.; Kanehara, M.; Teranishi, T.; Tsukuda, T., Extremely High Stability of Glutathionate-Protected Au25 Clusters Against Core Etching. Small 2007, 3, 835-839.
19.Chen, Y.-M.; Cheng, T.-L.; Tseng, W.-L., Fluorescence turn-on detection of iodide, iodate and total iodine using fluorescein-5-isothiocyanate-modified gold nanoparticles. Analyst 2009, 134, 2106-2112.
20.Deng, J.; Yu, P.; Wang, Y.; Mao, L., Real-time Ratiometric Fluorescent Assay for Alkaline Phosphatase Activity with Stimulus Responsive Infinite Coordination Polymer Nanoparticles. Anal. Chem. 2015, 87, 3080-3086.
21.Ma, J.-L.; Yin, B.-C.; Wu, X.; Ye, B.-C., Copper-Mediated DNA-Scaffolded Silver Nanocluster On–Off Switch for Detection of Pyrophosphate and Alkaline Phosphatase. Anal. Chem. 2016, 88, 9219-9225.
22.Qian, Z.; Chai, L.; Tang, C.; Huang, Y.; Chen, J.; Feng, H., Carbon Quantum Dots-Based Recyclable Real-Time Fluorescence Assay for Alkaline Phosphatase with Adenosine Triphosphate as Substrate. Anal. Chem. 2015, 87, 2966-2973.
23.Gao, Z.; Deng, K.; Wang, X.-D.; Miró, M.; Tang, D., High-Resolution Colorimetric Assay for Rapid Visual Readout of Phosphatase Activity Based on Gold/Silver Core/Shell Nanorod. ACS Appl. Mater. Interfaces 2014, 6, 18243-18250.
24.Zhao, W.; Chiuman, W.; Lam, J. C. F.; Brook, M. A.; Li, Y., Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Chem. Commun. 2007, 3729-3731.
25.Li, C. M.; Zhen, S. J.; Wang, J.; Li, Y. F.; Huang, C. Z., A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range. Biosens. Bioelectron. 2013, 43, 366-371.
26.Xuan, Z.; Li, M.; Rong, P.; Wang, W.; Li, Y.; Liu, D., Plasmonic ELISA based on the controlled growth of silver nanoparticles. Nanoscale 2016, 8, 17271-17277.
27.Gao, Z.; Xu, M.; Hou, L.; Chen, G.; Tang, D., Irregular-shaped platinum nanoparticles as peroxidase mimics for highly efficient colorimetric immunoassay. Anal. Chim. Acta 2013, 776, 79-86.
28.Dong, H.; Li, C.-M.; Zhang, Y.-F.; Cao, X.-D.; Gan, Y., Screen-printed microfluidic device for electrochemical immunoassay. Lab Chip 2007, 7, 1752-1758.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top