|
(一) 1.Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112, 933-969. 2.Jiang, D.; Urakawa, A.; Yulikov, M.; Mallat, T.; Jeschke, G.; Baiker, A., Size Selectivity of a Copper Metal–Organic Framework and Origin of Catalytic Activity in Epoxide Alcoholysis. Chem. Eur. J. 2009, 15, 12255-12262. 3.Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science 2008, 319, 939-943. 4.Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; Keeffe, M.; Yaghi, O. M., Hydrogen Storage in Microporous Metal-Organic Frameworks. Science 2003, 300, 1127-1129. 5.Hamon, L.; Llewellyn, P. L.; Devic, T.; Ghoufi, A.; Clet, G.; Guillerm, V.; Pirngruber, G. D.; Maurin, G.; Serre, C.; Driver, G.; van Beek, W.; Jolimaître, E.; Vimont, A.; Daturi, M.; Férey, G., Co-adsorption and Separation of CO2−CH4 Mixtures in the Highly Flexible MIL-53(Cr) MOF. J. Am. Chem. Soc. 2009, 131, 17490-17499. 6.Millward, A. R.; Yaghi, O. M., Metal−Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. JACS 2005, 127, 17998-17999. 7.Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I., A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area. Science 2005, 309, 2040-2042. 8.Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS 2006, 103, 10186-10191. 9.Robin, M. B., The Color and Electronic Configurations of Prussian Blue. Inorg. Chem. 1962, 1, 337-342. 10.Lawrence, G. D.; Fishelson, S., UV Catalysis, Cyanotype Photography, and Sunscreens. J. Chem. Educ. 1999, 76, 1199-1200. 11.Hoffman, R. S., Thallium Toxicity and the Role of Prussian Blue in Therapy. Toxicological Reviews 2003, 22, 29-40. 12.Koshiyama, T.; Tanaka, M.; Honjo, M.; Fukunaga, Y.; Okamura, T.; Ohba, M., Direct Synthesis of Prussian Blue Nanoparticles in Liposomes Incorporating Natural Ion Channels for Cs(+) Adsorption and Particle Size Control. Langmuir 2018, 34, 1666-1672. 13.Kim, H.; Kim, M.; Lee, W.; Kim, S., Rapid removal of radioactive cesium by polyacrylonitrile nanofibers containing Prussian blue. J. Hazard. Mater. 2018, 347, 106-113. 14.Yang, N.; Huang, Y.; Ding, G.; Fan, A., In Situ Generation of Prussian Blue with Potassium Ferrocyanide to Improve the Sensitivity of Chemiluminescence Immunoassay Using Magnetic Nanoparticles as Label. Anal Chem 2019, 91, 4906-4912. 15.Wen, S. H.; Wang, Y.; Yuan, Y. H.; Liang, R. P.; Qiu, J. D., Electrochemical sensor for arsenite detection using graphene oxide assisted generation of prussian blue nanoparticles as enhanced signal label. Anal Chim Acta 2018, 1002, 82-89. 16.Zhuang, X.; Mao, L.; Li, Y., In situ synthesis of a Prussian blue nanoparticles/graphdiyne oxide nanocomposite with high stability and electrocatalytic activity. Electrochem. Commun 2017, 83, 96-101. 17.Wang, M.; Yang, L.; Hu, B.; Liu, J.; He, L.; Jia, Q.; Song, Y.; Zhang, Z., Bimetallic NiFe oxide structures derived from hollow NiFe Prussian blue nanobox for label-free electrochemical biosensing adenosine triphosphate. Biosens. Bioelectron. 2018, 113, 16-24. 18.Farka, Z.; Cunderlova, V.; Horackova, V.; Pastucha, M.; Mikusova, Z.; Hlavacek, A.; Skladal, P., Prussian Blue Nanoparticles as a Catalytic Label in a Sandwich Nanozyme-Linked Immunosorbent Assay. Anal Chem 2018, 90, 2348-2354. 19.Vázquez-González, M.; Torrente-Rodríguez, R. M.; Kozell, A.; Liao, W.-C.; Cecconello, A.; Campuzano, S.; Pingarrón, J. M.; Willner, I., Mimicking Peroxidase Activities with Prussian Blue Nanoparticles and Their Cyanometalate Structural Analogues. Nano Lett. 2017, 17, 4958-4963. 20.Zhang, W.; Ma, D.; Du, J., Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose. Talanta 2014, 120, 362-367. 21.Qi, J.; Liu, D.; Liu, X.; Guan, S.; Shi, F.; Chang, H.; He, H.; Yang, G., Fluorescent pH Sensors for Broad-Range pH Measurement Based on a Single Fluorophore. Anal Chem 2015, 87, 5897-904. 22.Yu, C.-J.; Wu, S.-M.; Tseng, W.-L., Magnetite Nanoparticle-Induced Fluorescence Quenching of Adenosine Triphosphate–BODIPY Conjugates: Application to Adenosine Triphosphate and Pyrophosphate Sensing. Anal. Chem. 2013, 85, 8559-8565. 23.de Silva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E., Signaling Recognition Events with Fluorescent Sensors and Switches. Chem. Rev. 1997, 97, 1515-1566. 24.Kim, J. S.; Quang, D. T., Calixarene-Derived Fluorescent Probes. Chem. Rev. 2007, 107, 3780-3799. 25.Carter, K. P.; Young, A. M.; Palmer, A. E., Fluorescent Sensors for Measuring Metal Ions in Living Systems. Chem. Rev. 2014, 114, 4564-4601. 26.Lin, J. H.; Yang, Y. C.; Shih, Y. C.; Hung, S. Y.; Lu, C. Y.; Tseng, W. L., Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay. Biosens. Bioelectron. 2016, 77, 242-248. 27.Förster, T., Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 1948, 437, 55-75. 28.Wang, Y.; Li, Z.; Hu, D.; Lin, C.-T.; Li, J.; Lin, Y., Aptamer/Graphene Oxide Nanocomplex for in Situ Molecular Probing in Living Cells. JACS 2010, 132, 9274-9276. 29.Song, E.; Cheng, D.; Song, Y.; Jiang, M.; Yu, J.; Wang, Y., A graphene oxide-based FRET sensor for rapid and sensitive detection of matrix metalloproteinase 2 in human serum sample. Biosens. Bioelectron. 2013, 47, 445-450. 30.Wang, Y.-T.; Tseng, W.-L., Surfen-Assembled Graphene Oxide for Fluorescence Turn-On Detection of Sulfated Glycosaminoglycans in Biological Matrix. ACS Sensors 2017, 2, 748-756. 31.Ma, Y.; Bai, Y.; Mao, H.; Hong, Q.; Yang, D.; Zhang, H.; Liu, F.; Wu, Z.; Jin, Q.; Zhou, H.; Cao, J.; Zhao, J.; Zhong, X.; Mao, H., A panel of promoter methylation markers for invasive and noninvasive early detection of NSCLC using a quantum dots-based FRET approach. Biosens. Bioelectron. 2016, 85, 641-648. 32.Dennis, A. M.; Rhee, W. J.; Sotto, D.; Dublin, S. N.; Bao, G., Quantum Dot–Fluorescent Protein FRET Probes for Sensing Intracellular pH. ACS Nano 2012, 6, 2917-2924. 33.Shang, L.; Dong, S., Design of Fluorescent Assays for Cyanide and Hydrogen Peroxide Based on the Inner Filter Effect of Metal Nanoparticles. Anal. Chem. 2009, 81, 1465-1470. 34.Shao, N.; Zhang, Y.; Cheung, S.; Yang, R.; Chan, W.; Mo, T.; Li, K.; Liu, F., Copper Ion-Selective Fluorescent Sensor Based on the Inner Filter Effect Using a Spiropyran Derivative. Anal. Chem. 2005, 77, 7294-7303. 35.Zhang, R.; Li, N.; Sun, J.; Gao, F., Colorimetric and Phosphorimetric Dual-Signaling Strategy Mediated by Inner Filter Effect for Highly Sensitive Assay of Organophosphorus Pesticides. J. Agric. Food Chem. 2015, 63, 8947-8954. 36.Zheng, M.; Xie, Z.; Qu, D.; Li, D.; Du, P.; Jing, X.; Sun, Z., On–Off–On Fluorescent Carbon Dot Nanosensor for Recognition of Chromium(VI) and Ascorbic Acid Based on the Inner Filter Effect. ACS Appl. Mater. Interfaces 2013, 5, 13242-13247. 37.Ma, J.-L.; Yin, B.-C.; Wu, X.; Ye, B.-C., Copper-Mediated DNA-Scaffolded Silver Nanocluster On–Off Switch for Detection of Pyrophosphate and Alkaline Phosphatase. Anal. Chem. 2016, 88, 9219-9225. 38.Xu, L.; Li, B.; Jin, Y., Inner filter effect of gold nanoparticles on the fluorescence of quantum dots and its application to biological aminothiols detection. Talanta 2011, 84, 558-564. 39.Li, J.; Li, X.; Shi, X.; He, X.; Wei, W.; Ma, N.; Chen, H., Highly Sensitive Detection of Caspase-3 Activities via a Nonconjugated Gold Nanoparticle–Quantum Dot Pair Mediated by an Inner-Filter Effect. ACS Appl. Mater. Interfaces 2013, 5, 9798-9802. 40.Miller, P. D., Bone Disease in CKD: A Focus on Osteoporosis Diagnosis and Management. Am. J. Kidney Dis. 2014, 64, 290-304. 41.Limdi, J. K.; Hyde, G. M., Evaluation of abnormal liver function tests. Postgrad. Med. J. 2003, 79, 307-312. 42.Keshaviah, A.; Dellapasqua, S.; Rotmensz, N.; Lindtner, J.; Crivellari, D.; Collins, J.; Colleoni, M.; Thurlimann, B.; Mendiola, C.; Aebi, S.; Price, K. N.; Pagani, O.; Simoncini, E.; Castiglione Gertsch, M.; Gelber, R. D.; Coates, A. S.; Goldhirsch, A., CA15-3 and alkaline phosphatase as predictors for breast cancer recurrence: a combined analysis of seven International Breast Cancer Study Group trials. Ann. Oncol. 2007, 18, 701–708. 43.Powell, M. E.; Smith, M. J., The determination of serum acid and alkaline phosphatase activity with 4-aminoantipyrine (A.A.P.). J. Clin. Pathol. 1954, 7, 245-248. 44.Bowers, G. N.; McComb, R. B., Measurement of Total Alkaline Phosphatase Activity in Human Serum. Clin. Chem. 1975, 21, 1988-1995. 45.Liu, B.; Liu, J., Comprehensive Screen of Metal Oxide Nanoparticles for DNA Adsorption, Fluorescence Quenching, and Anion Discrimination. ACS Appl. Mater. Interfaces 2015, 7, 24833-24838. 46.Tong, L.-l.; Chen, Z.-z.; Jiang, Z.-y.; Sun, M.-m.; Li, L.; Liu, J.; Tang, B., Fluorescent sensing of pyrophosphate anion in synovial fluid based on DNA-attached magnetic nanoparticles. Biosens. Bioelectron. 2015, 72, 51-55. 47.Jiang, T.; He, J.; Sun, L.; Wang, Y.; Li, Z.; Wang, Q.; Sun, Y.; Wang, W.; Yu, M., Highly efficient photothermal sterilization of water mediated by Prussian blue nanocages. Environ. Sci.: Nano 2018, 5, 1161-1168. 48.Uemura, T.; Kitagawa, S., Prussian Blue Nanoparticles Protected by Poly(vinylpyrrolidone). JACS 2003, 125, 7814-7815. 49.Grundl, T.; Delwiche, J., Kinetics of ferric oxyhydroxide precipitation. J. Contam. Hydrol. 1993, 14, 71-87. 50.Ware, W. R., OXYGEN QUENCHING OF FLUORESCENCE IN SOLUTION: AN EXPERIMENTAL STUDY OF THE DIFFUSION PROCESS. J. Phys. Chem. A 1962, 66, 455-458. 51.Deng, J.; Yu, P.; Wang, Y.; Mao, L., Real-time Ratiometric Fluorescent Assay for Alkaline Phosphatase Activity with Stimulus Responsive Infinite Coordination Polymer Nanoparticles. Anal. Chem. 2015, 87, 3080-3086. 52.Qian, Z.; Chai, L.; Tang, C.; Huang, Y.; Chen, J.; Feng, H., Carbon Quantum Dots-Based Recyclable Real-Time Fluorescence Assay for Alkaline Phosphatase with Adenosine Triphosphate as Substrate. Anal. Chem. 2015, 87, 2966-2973. 53.Gao, Z.; Deng, K.; Wang, X.-D.; Miró, M.; Tang, D., High-Resolution Colorimetric Assay for Rapid Visual Readout of Phosphatase Activity Based on Gold/Silver Core/Shell Nanorod. ACS Appl. Mater. Interfaces 2014, 6, 18243-18250. 54.Zhao, W.; Chiuman, W.; Lam, J. C. F.; Brook, M. A.; Li, Y., Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Chem. Commun. 2007, 3729-3731. 55.Li, C. M.; Zhen, S. J.; Wang, J.; Li, Y. F.; Huang, C. Z., A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range. Biosens. Bioelectron. 2013, 43, 366-371. 56.Xuan, Z.; Li, M.; Rong, P.; Wang, W.; Li, Y.; Liu, D., Plasmonic ELISA based on the controlled growth of silver nanoparticles. Nanoscale 2016, 8, 17271-17277. 57.Gao, Z.; Xu, M.; Hou, L.; Chen, G.; Tang, D., Irregular-shaped platinum nanoparticles as peroxidase mimics for highly efficient colorimetric immunoassay. Anal. Chim. Acta 2013, 776, 79-86. 58.Dong, H.; Li, C.-M.; Zhang, Y.-F.; Cao, X.-D.; Gan, Y., Screen-printed microfluidic device for electrochemical immunoassay. Lab Chip 2007, 7, 1752-1758. 59.Liu, X.; Huo, Q., A washing-free and amplification-free one-step homogeneous assay for protein detection using gold nanoparticle probes and dynamic light scattering. J. Immunol. Methods 2009, 349, 38-44.
(二) 1.Zheng, J.; Nicovich, P. R.; Dickson, R. M., Highly Fluorescent Noble-Metal Quantum Dots. Annu. Rev. Phys. Chem. 2007, 58, 409-431. 2.Chen, S.; Ingram, R. S.; Hostetler, M. J.; Pietron, J. J.; Murray, R. W.; Schaaff, T. G.; Khoury, J. T.; Alvarez, M. M.; Whetten, R. L., Gold Nanoelectrodes of Varied Size: Transition to Molecule-Like Charging. Science 1998, 280, 2098-2101. 3.Lu, Y.; Chen, W., Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 2012, 41, 3594-3623. 4.Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X., Horseradish Peroxidase Functionalized Fluorescent Gold Nanoclusters for Hydrogen Peroxide Sensing. Anal. Chem. 2011, 83, 1193-1196. 5.Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L., Gold-Nanocluster-Based Fluorescent Sensors for Highly Sensitive and Selective Detection of Cyanide in Water. Adv. Funct. Mater. 2010, 20, 951-956. 6.Lin, C.-A. J.; Yang, T.-Y.; Lee, C.-H.; Huang, S. H.; Sperling, R. A.; Zanella, M.; Li, J. K.; Shen, J.-L.; Wang, H.-H.; Yeh, H.-I.; Parak, W. J.; Chang, W. H., Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. ACS Nano 2009, 3, 395-401. 7.Xie, J.; Zheng, Y.; Ying, J. Y., Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. JACS 2009, 131, 888-889. 8.Li, L.; Liu, H.; Shen, Y.; Zhang, J.; Zhu, J.-J., Electrogenerated Chemiluminescence of Au Nanoclusters for the Detection of Dopamine. Anal. Chem. 2011, 83, 661-665. 9.Chan, P.-H.; Chen, Y.-C., Human Serum Albumin Stabilized Gold Nanoclusters as Selective Luminescent Probes for Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus. Anal. Chem. 2012, 84, 8952-8956. 10.Santhosh, M.; Chinnadayyala, S. R.; Singh, N. K.; Goswami, P., Human serum albumin-stabilized gold nanoclusters act as an electron transfer bridge supporting specific electrocatalysis of bilirubin useful for biosensing applications. Bioelectrochemistry 2016, 111, 7-14. 11.Chen, T.-H.; Tseng, W.-L., (Lysozyme Type VI)-Stabilized Au8 Clusters: Synthesis Mechanism and Application for Sensing of Glutathione in a Single Drop of Blood. Small 2012, 8, 1912-1919. 12.Li, J.; Zhu, J.-J.; Xu, K., Fluorescent metal nanoclusters: From synthesis to applications. TrAC, Trends Anal. Chem. 2014, 58, 90-98. 13.Habeeb Muhammed, M. A.; Ramesh, S.; Sinha, S. S.; Pal, S. K.; Pradeep, T., Two distinct fluorescent quantum clusters of gold starting from metallic nanoparticles by pH-dependent ligand etching. Nano Research 2008, 1, 333-340. 14.Huang, C.-C.; Yang, Z.; Lee, K.-H.; Chang, H.-T., Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II). Angew. Chem. Int. Ed. 2007, 46, 6824-6828. 15.Alivisatos, A. P., Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, 933-937. 16.Brack, M., The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 1993, 65, 677-732. 17.Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H., A unified view of ligand-protected gold clusters as superatom complexes. PNAS 2008, 105, 9157-9162. 18.Shichibu, Y.; Negishi, Y.; Tsunoyama, H.; Kanehara, M.; Teranishi, T.; Tsukuda, T., Extremely High Stability of Glutathionate-Protected Au25 Clusters Against Core Etching. Small 2007, 3, 835-839. 19.Chen, Y.-M.; Cheng, T.-L.; Tseng, W.-L., Fluorescence turn-on detection of iodide, iodate and total iodine using fluorescein-5-isothiocyanate-modified gold nanoparticles. Analyst 2009, 134, 2106-2112. 20.Deng, J.; Yu, P.; Wang, Y.; Mao, L., Real-time Ratiometric Fluorescent Assay for Alkaline Phosphatase Activity with Stimulus Responsive Infinite Coordination Polymer Nanoparticles. Anal. Chem. 2015, 87, 3080-3086. 21.Ma, J.-L.; Yin, B.-C.; Wu, X.; Ye, B.-C., Copper-Mediated DNA-Scaffolded Silver Nanocluster On–Off Switch for Detection of Pyrophosphate and Alkaline Phosphatase. Anal. Chem. 2016, 88, 9219-9225. 22.Qian, Z.; Chai, L.; Tang, C.; Huang, Y.; Chen, J.; Feng, H., Carbon Quantum Dots-Based Recyclable Real-Time Fluorescence Assay for Alkaline Phosphatase with Adenosine Triphosphate as Substrate. Anal. Chem. 2015, 87, 2966-2973. 23.Gao, Z.; Deng, K.; Wang, X.-D.; Miró, M.; Tang, D., High-Resolution Colorimetric Assay for Rapid Visual Readout of Phosphatase Activity Based on Gold/Silver Core/Shell Nanorod. ACS Appl. Mater. Interfaces 2014, 6, 18243-18250. 24.Zhao, W.; Chiuman, W.; Lam, J. C. F.; Brook, M. A.; Li, Y., Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Chem. Commun. 2007, 3729-3731. 25.Li, C. M.; Zhen, S. J.; Wang, J.; Li, Y. F.; Huang, C. Z., A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range. Biosens. Bioelectron. 2013, 43, 366-371. 26.Xuan, Z.; Li, M.; Rong, P.; Wang, W.; Li, Y.; Liu, D., Plasmonic ELISA based on the controlled growth of silver nanoparticles. Nanoscale 2016, 8, 17271-17277. 27.Gao, Z.; Xu, M.; Hou, L.; Chen, G.; Tang, D., Irregular-shaped platinum nanoparticles as peroxidase mimics for highly efficient colorimetric immunoassay. Anal. Chim. Acta 2013, 776, 79-86. 28.Dong, H.; Li, C.-M.; Zhang, Y.-F.; Cao, X.-D.; Gan, Y., Screen-printed microfluidic device for electrochemical immunoassay. Lab Chip 2007, 7, 1752-1758.
|