跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/14 11:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:那梅琳
研究生(外文):Melinda Neumann
論文名稱:史瓦帝尼(舊名 史瓦濟蘭)Shiselweni地區使用生質燃料烹飪產生的室內空氣污染之研究
論文名稱(外文):Indoor air pollution emitted from cooking using biomass fuel in the Shiselweni Region of Eswatini (Swaziland)
指導教授:余國賓余國賓引用關係潘文驥潘文驥引用關係
指導教授(外文):Kuo-Pin YuWen-Chi Pan
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:國際衛生碩士學位學程
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:80
中文關鍵詞:N/A
外文關鍵詞:biomass fuelindoor air pollutionparticulate matterpolycyclic aromatic hydrocarbonscarbon monoxidebiomass fuelindoor air pollutionparticulate matterpolycyclic aromatic hydrocarbonscarbon monoxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Smoke emission from biomass fuels is an important source of indoor air pollution which contains pollutants that are detrimental to health. In Eswatini, 62.3% of the households still rely on solid fuel for cooking, especially wood (61.8%). However, a quantitative exposure assessment study is not available in Eswatini.
Therefore, this study aims to monitor carbon monoxide (CO) and carbon dioxide (CO2) concentration during cooking hours and to assess the cancer and non-cancer risk from the exposure of particulate bound polycyclic aromatic hydrocarbons (PAHs) during cooking hours for cooking personnel in households cooking indoor using biomass fuel in the Shiselweni region.
Real time monitoring of CO and CO2 and sampling of particulate matter was conducted in seventeen kitchens during cooking hours in the Shiselweni region among homesteads using different cooking methods; biomass in open fire, biomass stove, liquid petroleum gas stove and electric stove.
PM2.5, PM10 and CO were reported to exceed the indoor exposure guideline in homesteads using biomass fuel. The toxicity for PAHs was estimated using benzo[a]pyrene equivalent (BaPeq) concentrations. The order for BaPeq concentrations was open fire using biomass > biomass stove > electricity stove > liquid petroleum gas stove. The incremental lifetime cancer risk and the hazard quotient were calculated based on the evaluation of particulate PAHs intake concentration, which showed that biomass fuel users have a high risk of adverse health effects from PAHs exposure.
Table of Contents
Acknowledgement i
Abstract ii
List of Tables v
List of Figures v
Chapter 1. Introduction 1
1.1. Significance of the study 2
1.2. Main Objectives 4
1.2.1. Specific Objectives 4
Chapter 2. Literature review 5
2.1. Factors contributing to high pollutants during cooking 5
2.2 Hazardous compounds from cooking with biomass 7
2.2.1. Particulate matter 8
2.2.2. Carbon monoxide 9
2.2.3. PAHs 10
2.3. Adverse health effects resulting from exposure to biomass burning 11
2.3.1. Acute lower respiratory infection 12
2.3.2. Chronic obstructive pulmonary disease and chronic bronchitis 12
2.3.3. Tuberculosis 13
2.3.4. Lung cancer 13
2.3.5. Non-respiratory diseases 15
2.4. Previous studies in Eswatini 16
Chapter 3. Methodology 17
3.1. Study Setting 17
3.2. On-site sampling 17
3.3. Inclusion criteria 18
3.4. Real time monitoring 18
3.5. Particulate matter sampling 19
3.6. Filter paper weighing and particulate matter calculation 19
3.7. PM-bound PAHs analysis 20
3.7.1. Quality assurance and Quality Control 21
3.8. Calculation of BaPeq concentration 22
3.9. Cooking source emission strength 22
3.10. Health risk assessment 24
3.10.1 Incremental lifetime cancer risk 24
3.10.2 Hazard Quotient 25
3.11. Statistical analyses 26
Chapter 4. Results 27
4.1. Particulate matter, Carbon monoxide and Carbon dioxide emission 27
4.2. PM-bound PAHs emission from cooking activities in household kitchens 29
4.3. The sum of BaPeq concentrations of PAHs 31
4.4. Cancer risk 31
4.5. Non-cancer risk 32
4.6. Cooking source emission strength 32
4.7. Statistics analysis 34
Chapter 5. Discussion 35
5.1. Particulate Matter, Carbon Monoxide and Carbon dioxide 35
5.1.1. Particulate matter, carbon monoxide and carbon dioxide emitted across different cooking methods 36
5.1.2. Source emission strength of particulate matter, carbon monoxide and carbon dioxide 38
5.2. Particulate matter bound polycyclic aromatic hydrocarbons 38
5.3. BaPeq of particulate matter bound polycyclic aromatic hydrocarbons 40
5.4. Cancer risk from exposure to PM-bound PAHs during cooking 42
5.5. Non-cancer risk from exposure to PM-bound PAHs during cooking 43
5.6 Health effects 43
Chapter 6. Policy Implications 45
Capter 7. Limitations 47
Chapter 8. Conclusion 48
References 49
Tables 54
Figures 67
Appendix 77
1. The time profile of CO and CO2 concentration obtained from the 17 sites. 77
Sites a-c use electricity, d-f use LPG, g-k use stove (biomass) and l-q use open fire. 77
2. The time profile of PM2.5, PM 10, CO and CO2 concentration obtained from the first 3 sites. 80


List of Tables
Table 1: Summary of the health effects associated with biomass fuel 54
Table 2: Toxic equivalent factor, number of rings and cancer evidence of each PAH 58
Table 3.Characteristics of cooking area 59
Table 4.Sampling and cooking characteristics per site 60
Table 5. Carbon dioxide (CO2), carbon monoxide (CO) and particulate matter (PM) concentrations during cooking and non-cooking hours 62
Table 6. BaPeq derived from PM bound PAHs sampled during cooking and non –cooking hours, as well as ILCR and HQ derived from BaPeq concentrations during cooking 63
Table 7. Air exchange rate and pollutant used to calculate the air exchange rate among the sites 64
Table 8. Cooking source emission strength of the pollutants emitted during cooking hours 65
Table 9. Spearman’s rho correlation between BaPeqand PM, CO and CO2 65
Table 10. Indoor pollutants from cooking reported in similar studies 66

List of Figures
Figure 1. Location and type of fuel used for cooking in the sampling sites 67
Figure 2. Cooking in an open fire on site 3 68
Figure 3. Starting the fire using a plastic bag on site 9 68
Figure 4. Cooking using LPG on site 13 69
Figure 5. Two plate LPG stove on site 17 69
Figure 6. Cooking using four plate electricity on site 5 70
Figure 7. two plate electricity stove on site 10 70
Figure 8. Monitoring and sampling equipment in site 1 kitchen 71
Figure 9. Filter papers in the dry box 71
Figure 10. Filter paper placed against the air ionizer 71
Figure 11.Filter paper weighing 72
Figure 12. Filter paper after sampling 72
Figure 13. Site 3 constructed from stick and mud walls and thatched roof 72
Figure 14. Site 16 constructed from cement block walls and corrugated iron roof 73
Figure 15.WHO recommended guideline for indoor particultate matter and carbon monoxide cut-off 73
Figure 16. The distribution of individual particulate bound PAHs emission sampled before the onset of cooking 74
Figure 17. Particulate LM-PAHs (2 and 3 rings), MM-PAHs (4 rings) and HM-PAHs (more than 4 rings) sampled before the onset of cooking 74
Figure 18. The distribution of individual particulate bound PAHs emission sampled during cooking hours 75
Figure 19. Particulate LM-PAHs (2 and 3 rings), MM-PAHs (4 rings) and HM-PAHs (more than 4 rings) sampled during cooking activity hours 75
Figure 20. Chimney position on Site 11 (a) and site 4 (b) 76
Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107-123.
Abdullahi, K. L., Delgado-Saborit, J. M., & Harrison, R. M. (2013). Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: A review. Atmospheric Environment, 71, 260-294.
Adams, K., Greenbaum, D. S., Shaikh, R., van Erp, A. M., & Russell, A. G. (2015). Particulate matter components, sources, and health: Systematic approaches to testing effects. Journal of the Air & Waste Management Association, 65(5), 544-558.
Asante-Duah, K. (2002). Public health risk assessment for human exposure to chemicals (2 ed.): Springer.
Atkinson, R., Kang, S., Anderson, H., Mills, I., & Walton, H. (2014). Epidemiological time series studies of PM2. 5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax, 69(7), 660-665.
Batterman, S. (2017). Review and extension of CO2-based methods to determine ventilation rates with application to school classrooms. International journal of environmental research and public health, 14(2), 145.
Behera, D., & Balamugesh, T. (2005). Indoor air pollution as a risk factor for lung cancer in women. JAPI, 53, 190-192.
Bhargava, A., Khanna, R., Bhargava, S., & Kumar, S. (2004). Exposure risk to carcinogenic PAHs in indoor-air during biomass combustion whilst cooking in rural India. Atmospheric Environment, 38(28), 4761-4767.
Bhattacharya, S., & Salam, P. A. (2002). Low greenhouse gas biomass options for cooking in the developing countries. Biomass and Bioenergy, 22(4), 305-317.
Boy, E., Bruce, N., & Delgado, H. (2002). Birth weight and exposure to kitchen wood smoke during pregnancy in rural Guatemala. Environmental health perspectives, 110(1), 109-114.
Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., . . . Smith Jr, S. C. (2004). Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation, 109(21), 2655-2671.
Bruce, N., Dherani, M., Liu, R., Hosgood, H. D., Sapkota, A., Smith, K. R., . . . Pope, D. (2015). Does household use of biomass fuel cause lung cancer? A systematic review and evaluation of the evidence for the GBD 2010 study. Thorax, 70(5), 433-441.
Bruce, N., Perez-Padilla, R., & Albalak, R. (2000). Indoor air pollution in developing countries: a major environmental and public health challenge. Bulletin of the World Health organization, 78, 1078-1092.
Budya, H., & Arofat, M. Y. (2011). Providing cleaner energy access in Indonesia through the megaproject of kerosene conversion to LPG. Energy Policy, 39(12), 7575-7586.
Chen, B., Hong, C., Pandey, M. R., & Smith, K. R. (1990). Indoor air pollution in developing countries.
Collins, J., Brown, J., Alexeeff, G., & Salmon, A. (1998). Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regulatory toxicology and pharmacology, 28(1), 45-54.
Diggs, D. L., Harris, K. L., Rekhadevi, P. V., & Ramesh, A. (2012). Tumor microsomal metabolism of the food toxicant, benzo (a) pyrene, in Apc Min mouse model of colon cancer. Tumor Biology, 33(4), 1255-1260.
EPA, U. (1997). Exposure factors handbook. 1(United States Environmental Protection Agency, OH, USA ).
Ezzati, M., & Kammen, D. M. (2001). Indoor air pollution from biomass combustion and acute respiratory infections in Kenya: an exposure-response study. The Lancet, 358(9282), 619-624.
Fullana, A., Carbonell-Barrachina, A. A., & Sidhu, S. (2004). Comparison of volatile aldehydes present in the cooking fumes of extra virgin olive, olive, and canola oils. Journal of Agricultural and Food Chemistry, 52(16), 5207-5214.
Fullerton, D. G., Bruce, N., & Gordon, S. B. (2008). Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102(9), 843-851.
Hinds, W. C. (2012). Aerosol technology: properties, behaviour an d measurement of airborne particlers: John Wiley & Sons.
Hong, Y.-C., Lee, J.-T., Kim, H., & Kwon, H.-J. (2002). Air pollution: a new risk factor in ischemic stroke mortality. Stroke, 33(9), 2165-2169.
Hosier, R. H., & Dowd, J. (1987). Household fuel choice in Zimbabwe: an empirical test of the energy ladder hypothesis. Resources and energy, 9(4), 347-361.
Hoskins, J. A. (2010). Health effects due to indoor air pollution. In Survival and Sustainability (pp. 665-676): Springer.
Humans, I. W. G. o. t. E. o. C. R. t., & Organization, W. H. (1987). Overall evaluations of carcinogenicity: an updating of IARC monographs volumes 1 to 42 (Vol. 7): World Health Organization.
Kim, K.-H., Jahan, S. A., & Kabir, E. (2011). A review of diseases associated with household air pollution due to the use of biomass fuels. Journal of hazardous materials, 192(2), 425-431.
Kim, K.-H., Jahan, S. A., Kabir, E., & Brown, R. J. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment international, 60, 71-80.
Kim Oanh, N. T., Nghiem, L. H., & Phyu, Y. L. (2002). Emission of polycyclic aromatic hydrocarbons, toxicity, and mutagenicity from domestic cooking using sawdust briquettes, wood, and kerosene. Environmental science & technology, 36(5), 833-839.
Ko, Y.-C., Cheng, L. S.-C., Lee, C.-H., Huang, J.-J., Huang, M.-S., Kao, E.-L., . . . Lin, H.-J. (2000). Chinese food cooking and lung cancer in women nonsmokers. American journal of epidemiology, 151(2), 140-147.
Koppmann, R., Czapiewski, K. v., & Reid, J. (2005). A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmospheric Chemistry and Physics Discussions, 5(5), 10455-10516.
Kurmi, O. P., Lam, K. B. H., & Ayres, J. G. (2012). Indoor air pollution and the lung in low-and medium-income countries. In: Eur Respiratory Soc.
Kurmi, O. P., Semple, S., Simkhada, P., Smith, W. C. S., & Ayres, J. G. (2010). COPD and chronic bronchitis risk of indoor air pollution from solid fuel: a systematic review and meta-analysis. Thorax, 65(3), 221-228.
Lodge Jr, J. P. (1988). Methods of air sampling and analysis: CRC Press.
Lu, F., Xu, D., Cheng, Y., Dong, S., Guo, C., Jiang, X., & Zheng, X. (2015). Systematic review and meta-analysis of the adverse health effects of ambient PM2. 5 and PM10 pollution in the Chinese population. Environmental research, 136, 196-204.
MacCarty, N., Ogle, D., Still, D., Bond, T., Roden, C., & Willson, B. (2007). Laboratory comparison of the global-warming potential of six categories of biomass cooking stoves. Aprovecho Research Center, 6.
Machisa, M., Wichmann, J., & Nyasulu, P. S. (2013). Biomass fuel use for household cooking in Swaziland: is there an association with anaemia and stunting in children aged 6–36 months? Transactions of the Royal Society of Tropical Medicine and Hygiene, 107(9), 535-544.
Majdan, M., Svaro, M., Bodo, J., Taylor, M., & Muendo, R. M. (2015). Assessment of the biomass related indoor air pollution in Kwale district in Kenya using short term monitoring. African health sciences, 15(3), 972-981.
Mbanya, V. N., & Sridhar, M. K. (2017). PM10 Emissions from Cooking Fuels in Nigerian Households and Their Impact on Women and Children. Health, 9(13), 1721.
McCracken, J. P., Smith, K. R., Díaz, A., Mittleman, M. A., & Schwartz, J. (2007). Chimney stove intervention to reduce long-term wood smoke exposure lowers blood pressure among Guatemalan women. Environmental health perspectives, 115(7), 996-1001.
MICS, C. S. O. a. U. (2014). Swaziland Multiple Indicator Cluster Survey 2014, Final Report. Mbabane, Swaziland.
Mishra, V., Dai, X., Smith, K. R., & Mika, L. (2004). Maternal exposure to biomass smoke and reduced birth weight in Zimbabwe. Annals of epidemiology, 14(10), 740-747.
Mishra, V. K., Retherford, R. D., & Smith, K. R. (1999). Biomass cooking fuels and prevalence of tuberculosis in India. International Journal of infectious diseases, 3(3), 119-129.
Mu, L., Liu, L., Niu, R., Zhao, B., Shi, J., Li, Y., . . . Chang, S.-C. (2013). Indoor air pollution and risk of lung cancer among Chinese female non-smokers. Cancer Causes & Control, 24(3), 439-450.
Naeher, L., Leaderer, B. P., & Smith, K. R. (2000). Particulate matter and carbon monoxide in highland Guatemala: indoor and outdoor levels from traditional and improved wood stoves and gas stoves. Indoor air, 10(3), 200-205.
Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simpson, C. D., Koenig, J. Q., & Smith, K. R. (2007). Woodsmoke health effects: a review. Inhalation toxicology, 19(1), 67-106.
Nisbet, I. C., & Lagoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory toxicology and pharmacology, 16(3), 290-300.
Norman, R., Barnes, B., Mathee, A., Bradshaw, D., & Collaboration, S. A. C. R. A. (2007). Estimating the burden of disease attributable to indoor air pollution from household use of solid fuels in South Africa in 2000. South African Medical Journal, 97(8), 764-771.
Orecchio, S. (2011). Polycyclic aromatic hydrocarbons (PAHs) in indoor emission from decorative candles. Atmospheric Environment, 45(10), 1888-1895.
Pilishvili, T., Loo, J. D., Schrag, S., Stanistreet, D., Christensen, B., Yip, F., . . . Bruce, N. (2016). Effectiveness of six improved cookstoves in reducing household air pollution and their acceptability in rural Western Kenya. PloS one, 11(11), e0165529.
Pokhrel, A. K., Smith, K. R., Khalakdina, A., Deuja, A., & Bates, M. N. (2005). Case–control study of indoor cooking smoke exposure and cataract in Nepal and India. International journal of epidemiology, 34(3), 702-708.
Prakash, K. O., Huma, A. P., Hubert, L. K.-B., Tom, S., & G, A. J. (2012a). Lung cancer risk and solid fuel smoke exposure: a systematic review and meta-analysis. European Respiratory Journal, 40(5), 1228-1237.
Prakash, K. O., Huma, A. P., Hubert, L. K. B., Tom, S., & G, A. J. (2012b). Lung cancer risk of solid fuel smoke exposure: a systematic review and meta-analysis. European Respiratory Journal, erj00995-02011.
Qu, C., Li, B., Wu, H., Wang, S., & Giesy, J. P. (2015). Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbons. Environmental geochemistry and health, 37(3), 587-601.
Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895-2921.
Samburova, V., Zielinska, B., & Khlystov, A. (2017). Do 16 polycyclic aromatic hydrocarbons represent PAH air toxicity? Toxics, 5(3), 17.
Santibañez, D. A., Ibarra, S., Matus, P., & Seguel, R. (2013). A five-year study of particulate matter (PM2. 5) and cerebrovascular diseases. Environmental Pollution, 181, 1-6.
Schwarze, P., Øvrevik, J., Låg, M., Refsnes, M., Nafstad, P., Hetland, R., & Dybing, E. (2006). Particulate matter properties and health effects: consistency of epidemiological and toxicological studies. Human & experimental toxicology, 25(10), 559-579.
Sezer, H., Akkurt, İ., Guler, N., Marakoğlu, K., & Berk, S. (2006). A case-control study on the effect of exposure to different substances on the development of COPD. Annals of epidemiology, 16(1), 59-62.
Shen, H., Tao, S., Liu, J., Huang, Y., Chen, H., Li, W., . . . Lin, N. (2014). Global lung cancer risk from PAH exposure highly depends on emission sources and individual susceptibility. Scientific reports, 4, 6561.
Siddiqui, A. R., Lee, K., Gold, E. B., & Bhutta, Z. (2005). Eye and respiratory symptoms among women exposed to wood smoke emitted from indoor cooking: a study from southern Pakistan. Energy for Sustainable Development, 9(3), 58-66.
Sidhu, M. K., Ravindra, K., Mor, S., & John, S. (2017). Household air pollution from various types of rural kitchens and its exposure assessment. Science of the Total Environment, 586, 419-429.
Singh, A., Tuladhar, B., Bajracharya, K., & Pillarisetti, A. (2012). Assessment of effectiveness of improved cook stoves in reducing indoor air pollution and improving health in Nepal. Energy for Sustainable Development, 16(4), 406-414.
Singh, D., Gadi, R., Mandal, T., Saud, T., Saxena, M., & Sharma, S. (2013). Emissions estimates of PAH from biomass fuels used in rural sector of Indo-Gangetic Plains of India. Atmospheric Environment, 68, 120-126.
Smith, K. R., Apte, M. G., Yuqing, M., Wongsekiarttirat, W., & Kulkarni, A. (1994). Air pollution and the energy ladder in Asian cities. Energy, 19(5), 587-600.
Smith, K. R., Samet, J. M., Romieu, I., & Bruce, N. (2000). Indoor air pollution in developing countries and acute lower respiratory infections in children. Thorax, 55(6), 518-532.
Sota, C. d. l., Lumbreras Martin, J., Mazorra Aguiar, J., Narros Sierra, A., Fernández, L., & Borge García, R. (2014). Effectiveness of improved cookstoves to reduce indoor air pollution in developing countries. The case of the cassamance natural subregion, western Africa.
Spengler, J. D., Samet, J. M., & McCarthy, J. F. (2001). Indoor air quality handbook.
Srogi, K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environmental Chemistry Letters, 5(4), 169-195.
STEPS, M. o. H. (2014). Non-communicable Disease Risk Factor Surveillance Report; WHO STEPS. WHO, Kingdom of Swaziland.
Sumpter, C., & Chandramohan, D. (2013). Systematic review and meta‐analysis of the associations between indoor air pollution and tuberculosis. Tropical medicine & international health, 18(1), 101-108.
Sun, S., Schiller, J. H., & Gazdar, A. F. (2007). Lung cancer in never smokers—a different disease. Nature Reviews Cancer, 7(10), 778.
Titcombe, M. E., & Simcik, M. (2011). Personal and indoor exposure to PM 2.5 and polycyclic aromatic hydrocarbons in the southern highlands of Tanzania: a pilot-scale study. Environmental monitoring and assessment, 180(1-4), 461-476.
Tiwari, M., Sahu, S. K., & Pandit, G. G. (2015). Inhalation risk assessment of PAH exposure due to combustion aerosols generated from household fuels. Aerosol Air Qual. Res, 15(2), 582-590.
Torres-Duque, C., Maldonado, D., Pérez-Padilla, R., Ezzati, M., & Viegi, G. (2008). Biomass fuels and respiratory diseases: a review of the evidence. Proceedings of the American Thoracic Society, 5(5), 577-590.
U.S.EPA, U. S. E. P. A. (2009). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). Washington, DC, USA.
USEPA. (2017). RIS Toxicological Review of Benzo[a]pyrene (Final Report). Retrieved from Washington, DC:
USEPA, C. R. (1996). Proposed guidelines for carcinogen risk assessment. Federal Register, 61(79), 17960-18011.
Vahlne, N., & Ahlgren, E. O. (2014). Policy implications for improved cook stove programs—a case study of the importance of village fuel use variations. Energy Policy, 66, 484-495.
van der Kroon, B., Brouwer, R., & Van Beukering, P. J. (2013). The energy ladder: Theoretical myth or empirical truth? Results from a meta-analysis. Renewable and Sustainable Energy Reviews, 20, 504-513.
Viau, C., Hakizimana, G., & Bouchard, M. (2000). Indoor exposure to polycyclic aromatic hydrocarbons and carbon monoxide in traditional houses in Burundi. International archives of occupational and environmental health, 73(5), 331-338.
Von Schirnding, Y., Bruce, N., Smith, K., Ballard-Tremeer, G., Ezzati, M., & Lvovsky, K. (2002). Addressing the Impact of Household Energy and Indoor Air Pollution on the Health of Poor: Implications for Policy Action and Intervention Measures: World Health Organization Geneva.
WHO, W. H. O. (2006). WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide-Global update 2005-Summary of risk assessment, 2006. Geneva: WHO.
WHO, W. H. O. (2010). WHO guidelines for indoor air quality: selected pollutants. (9289002131).
Williams, A., Jones, J., Ma, L., & Pourkashanian, M. (2012). Pollutants from the combustion of solid biomass fuels. Progress in Energy and Combustion Science, 38(2), 113-137.
You, Y., Niu, C., Zhou, J., Liu, Y., Bai, Z., Zhang, J., . . . Zhang, N. (2012). Measurement of air exchange rates in different indoor environments using continuous CO2 sensors. Journal of Environmental Sciences, 24(4), 657-664.
Yu, K.-P., Yang, K. R., Chen, Y. C., Gong, J. Y., Chen, Y. P., Shih, H.-C., & Lung, S.-C. C. (2015). Indoor air pollution from gas cooking in five Taiwanese families. Building and Environment, 93, 258-266.
Zhong, L., Goldberg, M. S., Parent, M.-É., & Hanley, J. A. (1999). Risk of developing lung cancer in relation to exposure to fumes from Chinese-style cooking. Scandinavian journal of work, environment & health, 309-316.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊