(3.215.77.193) 您好!臺灣時間:2021/04/17 02:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃靖恩
研究生(外文):Jing-En Huang
論文名稱:溶膠凝膠法合成生物玻璃及應用生物玻璃與明膠複合材料包覆間葉幹細胞
論文名稱(外文):Synthesis of Bioglass and its Application for MSCs Encapsulation in GelMA/Bioglass Hydrogel
指導教授:林元敏
指導教授(外文):Yuan-Min Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:牙醫學系
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:71
中文關鍵詞:甲基丙烯酸酐化明膠生物玻璃溶膠凝膠法矽烷化間葉幹細胞骨再生硬骨生物列印
外文關鍵詞:GelMABioactive glassSol-gelSilanizationMesenchymal stem cellsBone regenerationBone bioprinting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Table of Contents
Acknowledgements i
中文摘要 ii
Abstract iii
Table of Contents iv
List of Figures vii
List of Tables x
List of Abbreviations xi
Chapter 1 Introduction 1
1.1 Bioprinting 1
1.2 Bone tissue engineering and Bioprinting 3
1.3 Polymer Selection 4
1.3.1 Ideal material properties for bioprinting 4
1.3.2 Gelatin 5
1.3.3 Gelatin Methacrylate 5
1.3.4 Gelatin Methacrylate for Bone tissue engineering 6
1.3.5 Mineralization by Adding Inorganic Phases 7
1.4 Bioactive Glass 9
1.4.1 The 45S5 Bioglass® 9
1.4.2 The fabrication of 45S5 Bioactive Glass 9
1.4.3 Citric acid as catalyst for sol-gel synthesis of Bioactive glass 10
1.5 Photocrossliked Bioink: 12
1.5.1 Cell Source 12
1.5.2 Silanization of the Bioactive glass 12
1.5.3 Photoinitiator 13
1.6 Research objective 14
Chapter 2 Materials and Methods 17
2.1 Preparing of the Bioactive glass 17
2.1.1 Synthesis of the gel-derived Bioactive glass 17
2.1.2 The melt-derived Bioactive glass 17
2.1.3 The Characterization of Bioactive glass 18
2.1.4 In vitro bioactivity tests 19
2.2 The inorganic/organic hydrogel composite 20
2.2.1 Synthesis of gelatin methacryloyl hydrogel 20
2.2.2 Silanization of the gel-derived 45S5 Bioactive Glass 20
2.2.3 Preparation of GelMA/BG composite hydrogels 21
2.2.4 Mechanical properties of the composites 21
2.2.5 Bioactivity of the composites 21
2.3 The in vitro biocompatibility and osteogenic property of cell-laden GelMA/Si-BG hydrogel composites 23
2.3.1 Cell culture 23
2.3.2 Cell-laden GelMA/Si-BG Hydrogel composites 23
2.3.3 Cell viability 23
2.3.4 In vitro osteogenic study 24
2.4 Statistical analysis 25
Chapter 3 Results 27
3.1 Preparing of the Bioactive glass 27
3.1.1 The Characterization of bioactive glass 27
3.1.2 The in vitro bioactivity of Bioactive glasses 28
3.1.3 The selection of gel-derived bioactive glasses from citric acid route 31
3.2 The GelMA-BG/Si-BG hydrogel composites 32
3.2.1 The silanization of the CA3dBG 32
3.2.2 The mechanical properties of GelMA/silanized BG hydrogel composites 33
3.2.3 The in vitro bioactivity of GelMA/silanized BG hydrogel composites 34
3.3 The MSCs-laden GelMA-BG/Si-BG hydrogel composites 35
3.3.1 Cell encapsulation in the GelMA/Si-HAp hydrogel 35
3.3.2 In vitro Osteogenesis evaluation of the cell-laden GelMA/Si-BG hydrogel 35
Chapter 4 Discussion 55
4.1 The gel-derived bioactive glass from citric acid route 55
4.1.2 Characterization of the 45S5 bioactive glasses derived from different aging time and catalyst 55
4.1.3 The mineralization behavior and in vitro bioactivity 57
4.2 The GelMA-BG/Si-BG hydrogel composites 59
4.2.1 The silanization of the BG 59
4.2.2 The GelMA/Si-BG hydrogel 59
4.2.3 The Cell-laden GelMA/Si-BG hydrogel 60
Chapter 5 Conclusion 63
Reference: 64
Appendix 71

List of Figures
Figure 1 The mechanism of the silanization on the silica [79] 16
Figure 2 High magnification (30000X) Scanning electron microscopy (SEM) micrograph of the 45S5 Bioactive glasses. (A) The gel-derived 45S5BG catalyzed by 2M nitric acid after aging for12 h. (B) The commercial melt-derived Activioss™ bioactive glass. (C) The gel-derived 45S5BG catalyzed by 5mM citric acid after aging for12 h. (D) The gel-derived 45S5BG catalyzed by 5mM citric acid after aging for 3d. 38
Figure 3 XRD patterns of the 45S5 Bioactive Glass. From the top to the bottom, the patterns are of the melt-derive Activioss™ bioactive glass, the gel-derived 45S5BG catalyzed by 5mM citric acid after aging for12 h, the gel-derived 45S5BG catalyzed by 5mM citric acid after aging for 3d and the gel-derived 45S5BG catalyzed by 2M nitric acid after aging for12 h, respectively. 39
Figure 4 SEM micrograph of the CA12h after soak in SBF in high magnification (scale bar = 100 nm). 40
Figure 5 SEM micrograph of the CA12h after soak in SBF in high magnification (scale bar = 100 nm). 41
Figure 6 The SEM picture and EDS analysis of the CA12h after immersion in SBF for 28 d. (A) The SEM microscope of the surface of the CA12h after immersion in SBF for 28 d. (B) EDS spectrum of the chosen region on the surface of immersed CA12h. The spectrum 1 table is the elements mapping of the chosen region. 42
Figure 7 The SEM picture and EDS analysis of the CA3d after immersion in SBF for 28 d. (A) The SEM microscope of the surface of the CA3d after immersion in SBF for 28 d. (B) EDS spectrum of the chosen region on the surface of immersed CA3d. The spectrum 1 table is the elements mapping of the chosen region. 43
Figure 8 The XRD of the CA3d after immersion in SBG for 28 days. 44
Figure 9 The XRD of the CA12h after immersion in SBG for 28 days. 44
Figure 10 The other possible crystal phases inside the immersion CA12h in SBF for 28 d. The XRD patterns was analyzed by EVA software. 45
Figure 11 FTIR spectrum of the CA12h after immersion in SBF from 0 to 28 day. 46
Figure 12 FTIR spectrum of the CA3D after immersion in SBF from 0 to 28 day. 46
Figure 13 The SEM microscopes (A,B) and XRD patterns comparing (C) of the silanized BG and original BG. 47
Figure 14 Si2p spectrum of X-ray photoelectron spectra of BG (red) and Si-BG (blue). Si 2p (Si-O) peak at 103.5 eV. The peak shifted to ~102.3 eV. 48
Figure 15 C1s spectrum of the X-ray photoelectron spectra of BG (red) and Si-BG (blue). Charge referenced to adventitious C1s, C-C peak at 284.8eV. C1s spectrum for contamination typically has C-C, C-O-C and O-C=O components. C-O peak at 286eV. C=O peak at 289eV. 48
Figure 16 The SEM/EDS of the GelMA-BG hydrogel composites. (A1)SEM picture of the 15% (w/v) GelMA without BG. (A2) The element mapping of the EDS on A1 region. (B1)SEM picture of the 15% (w/v) GelMA with 5% (w/v) BG. (B2) The element mapping of the EDS on B1 region. (B3) Illustration of the physical incorporation of the BG/GelMA. (C1) SEM picture of the 15% (w/v) GelMA with 5% (w/v) Si-BG. (C2) The element mapping of the EDS on C1 region. (C3) Illustration of the covalent incorporation of the Si-BG/GelMA. 49
Figure 18 The XRD patterns of the GelMA/Si-BG composite after immersion in SBF for 28 day (red) and GelMA/Si-BG composite after immersion in SBF (black). 50
Figure 17 The compressive modulus of the GelMA-BG/Si-BG, the * means significantly different by T-test result (p<0.05). The 15% (w/v) GelMA was used for all composite. 50
Figure 19 Live/dead cell viability assay of the MSC-laden GelMA-BG/Si-BG hydrogels on day 1. The concentration of MSCs in medium in medium was 106 cells/ml (A) 15% GelMA-0% BG. (B) 15% GelMA-1% BG (C) 15% GelMA-3% BG (D) 15% GelMA-5% BG (E) 15% GelMA-1% Si-BG (F) 15% GelMA-3% Si-BG (G) 15% GelMA-5% Si-BG 51
Figure 20 Live/dead cell viability assay of the MSC-laden GelMA-BG/Si-BG hydrogels on day 14. The concentration of MSCs in medium in medium was 106 cells/ml. (A) 15% GelMA-0% BG. (B) 15% GelMA-1% BG (C) 15% GelMA-3% BG (D) 15% GelMA-5% BG (E) 15% GelMA-1% Si-BG (F) 15% GelMA-3% Si-BG (G) 15% GelMA-5% Si-BG 52
Figure 21 Alizarin red staining at the 14th day. The concentration of MSCs in medium in medium was 106 cells/ml without osteogenic supplemental medium. (A) 15% GelMA-0% BG. (B) 15% GelMA-1% BG (C) 15% GelMA-3% BG (D) 15% GelMA-5% BG (E) 15% GelMA-1% Si-BG (F) 15% GelMA-3% Si-BG (G) 15% GelMA-5% Si-BG 53
Figure 22 Alizarin red staining at the 14th day. The concentration of MSCs in medium in medium was 106 cells/ml with osteogenic supplemental medium. (A) 15% GelMA-0% BG. (B) 15% GelMA-1% BG (C) 15% GelMA-3% BG (D) 15% GelMA-5% BG (E) 15% GelMA-1% Si-BG (F) 15% GelMA-3% Si-BG (G) 15% GelMA-5% Si-BG 54
Figure 23 ARS staining on 21st day. 71

List of Tables
Table 1 The comparison between the SBF and human blood plasma. 26
Table 2 The flowchart of the synthesis of the gel-derived 45S5 Bioactive glasses. 26
Table 3 Sample BET surface area and Pore size 37
1. Hull, C.W., Apparatus for production of three-dimensional objects by stereolithography. 1986, Google Patents.
2. Nakamura, M., et al., Biomatrices and biomaterials for future developments of bioprinting and biofabrication. 2010. 2(1): p. 014110.
3. Ozbolat, I.T., W. Peng, and V.J.D.d.t. Ozbolat, Application areas of 3D bioprinting. 2016. 21(8): p. 1257-1271.
4. Ingber, D.E., et al., Tissue engineering and developmental biology: going biomimetic. Tissue engineering, 2006. 12(12): p. 3265-3283.
5. Kasza, K.E., et al., The cell as a material. Current opinion in cell biology, 2007. 19(1): p. 101-107.
6. Kelm, J.M., et al., A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. Journal of biotechnology, 2010. 148(1): p. 46-55.
7. Tasoglu, S. and U. Demirci, Bioprinting for stem cell research. Trends in biotechnology, 2013. 31(1): p. 10-19.
8. Guillemot, F., et al., Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine, 2010. 5(3): p. 507-515.
9. Chang, C.C., et al., Direct‐write bioprinting three‐dimensional biohybrid systems for future regenerative therapies. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011. 98(1): p. 160-170.
10. Duan, B., et al., 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of biomedical materials research Part A, 2013. 101(5): p. 1255-1264.
11. Cui, X., et al., Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering Part A, 2012. 18(11-12): p. 1304-1312.
12. Shepherd, B.R., et al., Engineered liver tissues, arrays thereof, and methods of making the same. 2015, Google Patents.
13. Peng, W., D. Unutmaz, and I.T. Ozbolat, Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends in biotechnology, 2016. 34(9): p. 722-732.
14. Bose, S., M. Roy, and A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds. Trends in biotechnology, 2012. 30(10): p. 546-554.
15. Neufurth, M., et al., Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Biomaterials, 2014. 35(31): p. 8810-8819.
16. Rezwan, K., et al., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006. 27(18): p. 3413-3431.
17. Gaharwar, A.K., N.A. Peppas, and A. Khademhosseini, Nanocomposite hydrogels for biomedical applications. Biotechnology and bioengineering, 2014. 111(3): p. 441-453.
18. Hynes, R.O. and A. Naba, Overview of the matrisome—an inventory of extracellular matrix constituents and functions. Cold Spring Harbor perspectives in biology, 2012. 4(1): p. a004903.
19. Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nature biotechnology, 2014. 32(8): p. 773.
20. Annabi, N., et al., 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Advanced materials, 2014. 26(1): p. 85-124.
21. Thiele, J., et al., 25th anniversary article: designer hydrogels for cell cultures: a materials selection guide. Advanced materials, 2014. 26(1): p. 125-148.
22. Gómez-Guillén, M., et al., Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food hydrocolloids, 2011. 25(8): p. 1813-1827.
23. Lee, K.Y. and D.J. Mooney, Hydrogels for tissue engineering. Chemical reviews, 2001. 101(7): p. 1869-1880.
24. Yue, K., et al., Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives. Biomaterials, 2017. 139: p. 163-171.
25. Liu, Y. and M.B. Chan-Park, A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials, 2010. 31(6): p. 1158-1170.
26. Van den Steen, P.E., et al., Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Critical reviews in biochemistry and molecular biology, 2002. 37(6): p. 375-536.
27. Duconseille, A., et al., Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocolloids, 2015. 43: p. 360-376.
28. Kuo, C.-Y., et al., Development of a 3D printed, bioengineered placenta model to evaluate the role of trophoblast migration in preeclampsia. ACS Biomaterials Science & Engineering, 2016. 2(10): p. 1817-1826.
29. Van Den Bulcke, A.I., et al., Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 2000. 1(1): p. 31-38.
30. Kaemmerer, E., et al., Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system. Acta biomaterialia, 2014. 10(6): p. 2551-2562.
31. Aubin, H., et al., Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials, 2010. 31(27): p. 6941-6951.
32. Benton, J.A., et al., Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Engineering Part A, 2009. 15(11): p. 3221-3230.
33. Song, J., E. Saiz, and C.R. Bertozzi, A new approach to mineralization of biocompatible hydrogel scaffolds: an efficient process toward 3-dimensional bonelike composites. Journal of the American Chemical Society, 2003. 125(5): p. 1236-1243.
34. Gkioni, K., et al., Mineralization of hydrogels for bone regeneration. Tissue Engineering Part B: Reviews, 2010. 16(6): p. 577-585.
35. Fang, X., et al., Biomimetic gelatin methacrylamide hydrogel scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2016. 4(6): p. 1070-1080.
36. Sadat-Shojai, M., M.T. Khorasani, and A. Jamshidi, 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications. Mater Sci Eng C Mater Biol Appl, 2015. 49: p. 835-843.
37. Paul, A., et al., Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. Journal of Materials Chemistry B, 2016. 4(20): p. 3544-3554.
38. Heo, D.N., et al., Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. Journal of Materials Chemistry B, 2014. 2(11): p. 1584-1593.
39. Dou, Q., et al., Dual‐responsive reversible photo/thermogelling polymers exhibiting high modulus change. Journal of Polymer Science Part A: Polymer Chemistry, 2016. 54(18): p. 2837-2844.
40. Balasundaram, G., M. Sato, and T.J. Webster, Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials, 2006. 27(14): p. 2798-2805.
41. Vallet-Regi, M. and J.M. González-Calbet, Calcium phosphates as substitution of bone tissues. Progress in solid state chemistry, 2004. 32(1-2): p. 1-31.
42. Lung, C.Y.K., et al., Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite. Journal of the mechanical behavior of biomedical materials, 2016. 54: p. 283-294.
43. Khan, W.S., et al., An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: how far are we? Stem cells international, 2012. 2012.
44. Pou, A.M., Update on new biomaterials and their use in reconstructive surgery. Current opinion in otolaryngology & head and neck surgery, 2003. 11(4): p. 240-244.
45. Hench, L.L., The story of Bioglass. J Mater Sci Mater Med, 2006. 17(11): p. 967-78.
46. Gerhardt, L.-C. and A.R. Boccaccini, Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials, 2010. 3(7): p. 3867-3910.
47. Hench, L.L., et al., Glass and medicine. International Journal of Applied Glass Science, 2010. 1(1): p. 104-117.
48. Vallet-Regí, M., Ceramics for medical applications. Journal of the Chemical Society, Dalton Transactions, 2001(2): p. 97-108.
49. Hench, L.L., Bioceramics: from concept to clinic. Journal of the american ceramic society, 1991. 74(7): p. 1487-1510.
50. Hench, L.L., Genetic design of bioactive glass. Journal of the European Ceramic Society, 2009. 29(7): p. 1257-1265.
51. Xynos, I.D., et al., Gene‐expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. Journal of Biomedical Materials Research Part A, 2001. 55(2): p. 151-157.
52. Shirtliff, V. and L. Hench, Bioactive materials for tissue engineering, regeneration and repair. Journal of materials science, 2003. 38(23): p. 4697-4707.
53. Jones, J.R., E. Gentleman, and J. Polak, Bioactive glass scaffolds for bone regeneration. Elements, 2007. 3(6): p. 393-399.
54. Rahaman, M.N., et al., Bioactive glass in tissue engineering. Acta Biomater, 2011. 7(6): p. 2355-73.
55. Li, R., A. Clark, and L. Hench, An investigation of bioactive glass powders by sol‐gel processing. Journal of Applied Biomaterials, 1991. 2(4): p. 231-239.
56. Hench, L.L., Sol-gel materials for bioceramic applications. Current Opinion in Solid State and Materials Science, 1997. 2(5): p. 604-610.
57. Aguiar, H., et al., Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. Journal of Non-Crystalline Solids, 2009. 355(8): p. 475-480.
58. Gil-Albarova, J., et al., The in vivo behaviour of a sol–gel glass and a glass-ceramic during critical diaphyseal bone defects healing. Biomaterials, 2005. 26(21): p. 4374-4382.
59. Yan, X., et al., The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials, 2006. 27(18): p. 3396-3403.
60. Chen, X., et al., Investigation on bio-mineralization of melt and sol–gel derived bioactive glasses. Applied Surface Science, 2008. 255(2): p. 562-564.
61. Pirayesh, H., J.A. Nychka, and S. Bose, Sol-Gel Synthesis of Bioactive Glass-Ceramic 45S5 and its in vitro Dissolution and Mineralization Behavior. Journal of the American Ceramic Society, 2013. 96(5): p. 1643-1650.
62. Avnir, D., et al., Recent bio-applications of sol–gel materials. Journal of Materials Chemistry, 2006. 16(11): p. 1013-1030.
63. Rezabeigi, E., P.M. Wood-Adams, and R.A. Drew, Synthesis of 45S5 Bioglass(R) via a straightforward organic, nitrate-free sol-gel process. Mater Sci Eng C Mater Biol Appl, 2014. 40: p. 248-52.
64. Faure, J., et al., A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. Mater Sci Eng C Mater Biol Appl, 2015. 47: p. 407-12.
65. Luz, G.M. and J.F. Mano, Preparation and characterization of bioactive glass nanoparticles prepared by sol–gel for biomedical applications. Nanotechnology, 2011. 22(49): p. 494014.
66. Lei, B., et al., Fabrication, structure and biological properties of organic acid-derived sol–gel bioactive glasses. Biomedical Materials, 2010. 5(5): p. 054103.
67. Belton, D.J., O. Deschaume, and C.C. Perry, An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. The FEBS journal, 2012. 279(10): p. 1710-1720.
68. Patwardhan, S.V., Biomimetic and bioinspired silica: recent developments and applications. Chemical Communications, 2011. 47(27): p. 7567-7582.
69. Zheng, K., et al., Aging Time and Temperature Effects on the Structure and Bioactivity of Gel‐Derived 45S5 Glass‐Ceramics. Journal of the American Ceramic Society, 2015. 98(1): p. 30-38.
70. ElBatal, H., et al., Characterization of some bioglass–ceramics. Materials Chemistry and Physics, 2003. 80(3): p. 599-609.
71. Meinel, L., et al., Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Annals of biomedical engineering, 2004. 32(1): p. 112-122.
72. Knight, M.N. and K.D. Hankenson, Mesenchymal stem cells in bone regeneration. Advances in wound care, 2013. 2(6): p. 306-316.
73. Marolt, D., M. Knezevic, and G. Vunjak-Novakovic, Bone tissue engineering with human stem cells. Stem cell research & therapy, 2010. 1(2): p. 10.
74. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-689.
75. Khetan, S., et al., Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature materials, 2013. 12(5): p. 458.
76. Chaudhuri, O., et al., Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature materials, 2016. 15(3): p. 326.
77. Nichol, J.W., et al., Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010. 31(21): p. 5536-5544.
78. Lin, C.-H., et al., Antioxidant N-acetylcysteine and glutathione increase the viability and proliferation of MG63 cells encapsulated in the gelatin methacrylate/VA-086/blue light hydrogel system. Tissue Engineering Part C: Methods, 2016. 22(8): p. 792-800.
79. Sideridou, I.D. and M.M. Karabela, Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites. dental materials, 2009. 25(11): p. 1315-1324.
80. Kokubo, T. and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006. 27(15): p. 2907-15.
81. Yue, K., et al., Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015. 73: p. 254-271.
82. Kim, H.-M., et al., Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials, 2005. 26(21): p. 4366-4373.
83. Chatzistavrou, X., et al., Following bioactive glass behavior beyond melting temperature by thermal and optical methods. physica status solidi (a), 2004. 201(5): p. 944-951.
84. Fedorovich, N.E., et al., The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials, 2009. 30(3): p. 344-53.
85. Lin, S., et al., Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. Journal of Materials Chemistry, 2009. 19(9): p. 1276-1282.
86. Gonzalez-Oliver, C., P. Johnson, and P. James, Influence of water content on the rates of crystal nucleation and growth in lithia-silica and soda-lime-silica glasses. Journal of materials Science, 1979. 14(5): p. 1159-1169.
87. Brzoska, J., I.B. Azouz, and F. Rondelez, Silanization of solid substrates: a step toward reproducibility. Langmuir, 1994. 10(11): p. 4367-4373.
88. Ostad‐Movahed, S., et al., Comparing effects of silanized silica nanofiller on the crosslinking and mechanical properties of natural rubber and synthetic polyisoprene. Journal of applied polymer science, 2008. 109(2): p. 869-881.
89. Kim, Y. and B. Kim, Synthesis and properties of silanized waterborne polyurethane/graphene nanocomposites. Colloid and polymer Science, 2014. 292(1): p. 51-58.
90. Nakaramontri, Y., et al., The effect of surface functionalization of carbon nanotubes on properties of natural rubber/carbon nanotube composites. Polymer Composites, 2015. 36(11): p. 2113-2122.
91. Zheng, J., et al., Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration. Materials Science and Engineering: C, 2018. 89: p. 119-127.
92. Rowlands, A.S., P.A. George, and J.J. Cooper-White, Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. American Journal of Physiology-Cell Physiology, 2008. 295(4): p. C1037-C1044.
93. Xin, T., et al., Inorganic Strengthened Hydrogel Membrane as Regenerative Periosteum. ACS applied materials & interfaces, 2017. 9(47): p. 41168-41180.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔