|
1. Hull, C.W., Apparatus for production of three-dimensional objects by stereolithography. 1986, Google Patents. 2. Nakamura, M., et al., Biomatrices and biomaterials for future developments of bioprinting and biofabrication. 2010. 2(1): p. 014110. 3. Ozbolat, I.T., W. Peng, and V.J.D.d.t. Ozbolat, Application areas of 3D bioprinting. 2016. 21(8): p. 1257-1271. 4. Ingber, D.E., et al., Tissue engineering and developmental biology: going biomimetic. Tissue engineering, 2006. 12(12): p. 3265-3283. 5. Kasza, K.E., et al., The cell as a material. Current opinion in cell biology, 2007. 19(1): p. 101-107. 6. Kelm, J.M., et al., A novel concept for scaffold-free vessel tissue engineering: self-assembly of microtissue building blocks. Journal of biotechnology, 2010. 148(1): p. 46-55. 7. Tasoglu, S. and U. Demirci, Bioprinting for stem cell research. Trends in biotechnology, 2013. 31(1): p. 10-19. 8. Guillemot, F., et al., Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomedicine, 2010. 5(3): p. 507-515. 9. Chang, C.C., et al., Direct‐write bioprinting three‐dimensional biohybrid systems for future regenerative therapies. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011. 98(1): p. 160-170. 10. Duan, B., et al., 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of biomedical materials research Part A, 2013. 101(5): p. 1255-1264. 11. Cui, X., et al., Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering Part A, 2012. 18(11-12): p. 1304-1312. 12. Shepherd, B.R., et al., Engineered liver tissues, arrays thereof, and methods of making the same. 2015, Google Patents. 13. Peng, W., D. Unutmaz, and I.T. Ozbolat, Bioprinting towards physiologically relevant tissue models for pharmaceutics. Trends in biotechnology, 2016. 34(9): p. 722-732. 14. Bose, S., M. Roy, and A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds. Trends in biotechnology, 2012. 30(10): p. 546-554. 15. Neufurth, M., et al., Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Biomaterials, 2014. 35(31): p. 8810-8819. 16. Rezwan, K., et al., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006. 27(18): p. 3413-3431. 17. Gaharwar, A.K., N.A. Peppas, and A. Khademhosseini, Nanocomposite hydrogels for biomedical applications. Biotechnology and bioengineering, 2014. 111(3): p. 441-453. 18. Hynes, R.O. and A. Naba, Overview of the matrisome—an inventory of extracellular matrix constituents and functions. Cold Spring Harbor perspectives in biology, 2012. 4(1): p. a004903. 19. Murphy, S.V. and A. Atala, 3D bioprinting of tissues and organs. Nature biotechnology, 2014. 32(8): p. 773. 20. Annabi, N., et al., 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine. Advanced materials, 2014. 26(1): p. 85-124. 21. Thiele, J., et al., 25th anniversary article: designer hydrogels for cell cultures: a materials selection guide. Advanced materials, 2014. 26(1): p. 125-148. 22. Gómez-Guillén, M., et al., Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food hydrocolloids, 2011. 25(8): p. 1813-1827. 23. Lee, K.Y. and D.J. Mooney, Hydrogels for tissue engineering. Chemical reviews, 2001. 101(7): p. 1869-1880. 24. Yue, K., et al., Structural analysis of photocrosslinkable methacryloyl-modified protein derivatives. Biomaterials, 2017. 139: p. 163-171. 25. Liu, Y. and M.B. Chan-Park, A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Biomaterials, 2010. 31(6): p. 1158-1170. 26. Van den Steen, P.E., et al., Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Critical reviews in biochemistry and molecular biology, 2002. 37(6): p. 375-536. 27. Duconseille, A., et al., Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocolloids, 2015. 43: p. 360-376. 28. Kuo, C.-Y., et al., Development of a 3D printed, bioengineered placenta model to evaluate the role of trophoblast migration in preeclampsia. ACS Biomaterials Science & Engineering, 2016. 2(10): p. 1817-1826. 29. Van Den Bulcke, A.I., et al., Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 2000. 1(1): p. 31-38. 30. Kaemmerer, E., et al., Gelatine methacrylamide-based hydrogels: an alternative three-dimensional cancer cell culture system. Acta biomaterialia, 2014. 10(6): p. 2551-2562. 31. Aubin, H., et al., Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials, 2010. 31(27): p. 6941-6951. 32. Benton, J.A., et al., Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function. Tissue Engineering Part A, 2009. 15(11): p. 3221-3230. 33. Song, J., E. Saiz, and C.R. Bertozzi, A new approach to mineralization of biocompatible hydrogel scaffolds: an efficient process toward 3-dimensional bonelike composites. Journal of the American Chemical Society, 2003. 125(5): p. 1236-1243. 34. Gkioni, K., et al., Mineralization of hydrogels for bone regeneration. Tissue Engineering Part B: Reviews, 2010. 16(6): p. 577-585. 35. Fang, X., et al., Biomimetic gelatin methacrylamide hydrogel scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2016. 4(6): p. 1070-1080. 36. Sadat-Shojai, M., M.T. Khorasani, and A. Jamshidi, 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications. Mater Sci Eng C Mater Biol Appl, 2015. 49: p. 835-843. 37. Paul, A., et al., Nanoengineered biomimetic hydrogels for guiding human stem cell osteogenesis in three dimensional microenvironments. Journal of Materials Chemistry B, 2016. 4(20): p. 3544-3554. 38. Heo, D.N., et al., Enhanced bone regeneration with a gold nanoparticle–hydrogel complex. Journal of Materials Chemistry B, 2014. 2(11): p. 1584-1593. 39. Dou, Q., et al., Dual‐responsive reversible photo/thermogelling polymers exhibiting high modulus change. Journal of Polymer Science Part A: Polymer Chemistry, 2016. 54(18): p. 2837-2844. 40. Balasundaram, G., M. Sato, and T.J. Webster, Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD. Biomaterials, 2006. 27(14): p. 2798-2805. 41. Vallet-Regi, M. and J.M. González-Calbet, Calcium phosphates as substitution of bone tissues. Progress in solid state chemistry, 2004. 32(1-2): p. 1-31. 42. Lung, C.Y.K., et al., Effect of silanization of hydroxyapatite fillers on physical and mechanical properties of a bis-GMA based resin composite. Journal of the mechanical behavior of biomedical materials, 2016. 54: p. 283-294. 43. Khan, W.S., et al., An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: how far are we? Stem cells international, 2012. 2012. 44. Pou, A.M., Update on new biomaterials and their use in reconstructive surgery. Current opinion in otolaryngology & head and neck surgery, 2003. 11(4): p. 240-244. 45. Hench, L.L., The story of Bioglass. J Mater Sci Mater Med, 2006. 17(11): p. 967-78. 46. Gerhardt, L.-C. and A.R. Boccaccini, Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials, 2010. 3(7): p. 3867-3910. 47. Hench, L.L., et al., Glass and medicine. International Journal of Applied Glass Science, 2010. 1(1): p. 104-117. 48. Vallet-Regí, M., Ceramics for medical applications. Journal of the Chemical Society, Dalton Transactions, 2001(2): p. 97-108. 49. Hench, L.L., Bioceramics: from concept to clinic. Journal of the american ceramic society, 1991. 74(7): p. 1487-1510. 50. Hench, L.L., Genetic design of bioactive glass. Journal of the European Ceramic Society, 2009. 29(7): p. 1257-1265. 51. Xynos, I.D., et al., Gene‐expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. Journal of Biomedical Materials Research Part A, 2001. 55(2): p. 151-157. 52. Shirtliff, V. and L. Hench, Bioactive materials for tissue engineering, regeneration and repair. Journal of materials science, 2003. 38(23): p. 4697-4707. 53. Jones, J.R., E. Gentleman, and J. Polak, Bioactive glass scaffolds for bone regeneration. Elements, 2007. 3(6): p. 393-399. 54. Rahaman, M.N., et al., Bioactive glass in tissue engineering. Acta Biomater, 2011. 7(6): p. 2355-73. 55. Li, R., A. Clark, and L. Hench, An investigation of bioactive glass powders by sol‐gel processing. Journal of Applied Biomaterials, 1991. 2(4): p. 231-239. 56. Hench, L.L., Sol-gel materials for bioceramic applications. Current Opinion in Solid State and Materials Science, 1997. 2(5): p. 604-610. 57. Aguiar, H., et al., Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. Journal of Non-Crystalline Solids, 2009. 355(8): p. 475-480. 58. Gil-Albarova, J., et al., The in vivo behaviour of a sol–gel glass and a glass-ceramic during critical diaphyseal bone defects healing. Biomaterials, 2005. 26(21): p. 4374-4382. 59. Yan, X., et al., The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials, 2006. 27(18): p. 3396-3403. 60. Chen, X., et al., Investigation on bio-mineralization of melt and sol–gel derived bioactive glasses. Applied Surface Science, 2008. 255(2): p. 562-564. 61. Pirayesh, H., J.A. Nychka, and S. Bose, Sol-Gel Synthesis of Bioactive Glass-Ceramic 45S5 and its in vitro Dissolution and Mineralization Behavior. Journal of the American Ceramic Society, 2013. 96(5): p. 1643-1650. 62. Avnir, D., et al., Recent bio-applications of sol–gel materials. Journal of Materials Chemistry, 2006. 16(11): p. 1013-1030. 63. Rezabeigi, E., P.M. Wood-Adams, and R.A. Drew, Synthesis of 45S5 Bioglass(R) via a straightforward organic, nitrate-free sol-gel process. Mater Sci Eng C Mater Biol Appl, 2014. 40: p. 248-52. 64. Faure, J., et al., A new sol-gel synthesis of 45S5 bioactive glass using an organic acid as catalyst. Mater Sci Eng C Mater Biol Appl, 2015. 47: p. 407-12. 65. Luz, G.M. and J.F. Mano, Preparation and characterization of bioactive glass nanoparticles prepared by sol–gel for biomedical applications. Nanotechnology, 2011. 22(49): p. 494014. 66. Lei, B., et al., Fabrication, structure and biological properties of organic acid-derived sol–gel bioactive glasses. Biomedical Materials, 2010. 5(5): p. 054103. 67. Belton, D.J., O. Deschaume, and C.C. Perry, An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. The FEBS journal, 2012. 279(10): p. 1710-1720. 68. Patwardhan, S.V., Biomimetic and bioinspired silica: recent developments and applications. Chemical Communications, 2011. 47(27): p. 7567-7582. 69. Zheng, K., et al., Aging Time and Temperature Effects on the Structure and Bioactivity of Gel‐Derived 45S5 Glass‐Ceramics. Journal of the American Ceramic Society, 2015. 98(1): p. 30-38. 70. ElBatal, H., et al., Characterization of some bioglass–ceramics. Materials Chemistry and Physics, 2003. 80(3): p. 599-609. 71. Meinel, L., et al., Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow. Annals of biomedical engineering, 2004. 32(1): p. 112-122. 72. Knight, M.N. and K.D. Hankenson, Mesenchymal stem cells in bone regeneration. Advances in wound care, 2013. 2(6): p. 306-316. 73. Marolt, D., M. Knezevic, and G. Vunjak-Novakovic, Bone tissue engineering with human stem cells. Stem cell research & therapy, 2010. 1(2): p. 10. 74. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-689. 75. Khetan, S., et al., Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nature materials, 2013. 12(5): p. 458. 76. Chaudhuri, O., et al., Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature materials, 2016. 15(3): p. 326. 77. Nichol, J.W., et al., Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 2010. 31(21): p. 5536-5544. 78. Lin, C.-H., et al., Antioxidant N-acetylcysteine and glutathione increase the viability and proliferation of MG63 cells encapsulated in the gelatin methacrylate/VA-086/blue light hydrogel system. Tissue Engineering Part C: Methods, 2016. 22(8): p. 792-800. 79. Sideridou, I.D. and M.M. Karabela, Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites. dental materials, 2009. 25(11): p. 1315-1324. 80. Kokubo, T. and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006. 27(15): p. 2907-15. 81. Yue, K., et al., Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials, 2015. 73: p. 254-271. 82. Kim, H.-M., et al., Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials, 2005. 26(21): p. 4366-4373. 83. Chatzistavrou, X., et al., Following bioactive glass behavior beyond melting temperature by thermal and optical methods. physica status solidi (a), 2004. 201(5): p. 944-951. 84. Fedorovich, N.E., et al., The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials, 2009. 30(3): p. 344-53. 85. Lin, S., et al., Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. Journal of Materials Chemistry, 2009. 19(9): p. 1276-1282. 86. Gonzalez-Oliver, C., P. Johnson, and P. James, Influence of water content on the rates of crystal nucleation and growth in lithia-silica and soda-lime-silica glasses. Journal of materials Science, 1979. 14(5): p. 1159-1169. 87. Brzoska, J., I.B. Azouz, and F. Rondelez, Silanization of solid substrates: a step toward reproducibility. Langmuir, 1994. 10(11): p. 4367-4373. 88. Ostad‐Movahed, S., et al., Comparing effects of silanized silica nanofiller on the crosslinking and mechanical properties of natural rubber and synthetic polyisoprene. Journal of applied polymer science, 2008. 109(2): p. 869-881. 89. Kim, Y. and B. Kim, Synthesis and properties of silanized waterborne polyurethane/graphene nanocomposites. Colloid and polymer Science, 2014. 292(1): p. 51-58. 90. Nakaramontri, Y., et al., The effect of surface functionalization of carbon nanotubes on properties of natural rubber/carbon nanotube composites. Polymer Composites, 2015. 36(11): p. 2113-2122. 91. Zheng, J., et al., Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration. Materials Science and Engineering: C, 2018. 89: p. 119-127. 92. Rowlands, A.S., P.A. George, and J.J. Cooper-White, Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. American Journal of Physiology-Cell Physiology, 2008. 295(4): p. C1037-C1044. 93. Xin, T., et al., Inorganic Strengthened Hydrogel Membrane as Regenerative Periosteum. ACS applied materials & interfaces, 2017. 9(47): p. 41168-41180.
|