|
Arvidsson, A., Franke-Stenport, V., Andersson, M., Kjellin, P., Sul, Y. T., and Wennerberg, A. (2007). Formation of calcium phosphates on titanium implants with four different bioactive surface preparations. An in vitro study. Journal of Materials Science: Materials in Medicine, 18(10), 1945-1954.
Aziz-Kerrzo, M., Conroy, K. G., Fenelon, A. M., Farrell, S. T., and Breslin, C. B. (2001). Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials, 22(12), 1531-1539.
Bai, Y., Hao, Y. L., Li, S. J., Hao, Y. Q., Yang, R., and Prima, F. (2013). Corrosion behavior of biomedical Ti–24Nb–4Zr–8Sn alloy in different simulated body solutions. Materials Science and Engineering: C, 33(4), 2159-2167.
Bai, Y., Park, I. S., Park, H. H., Lee, M. H., Bae, T. S., Duncan, W., and Swain, M. (2011). The effect of annealing temperatures on surface properties, hydroxyapatite growth and cell behaviors of TiO2 nanotubes. Surface and Interface Analysis, 43(6), 998-1005.
Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science, 46(6), 559-632
Bartuli, C., T. Valente and Tului, M. (2002). Plasma spray deposition and high temperature characterization of ZrB2–SiC protective coatings. Surface and Coatings Technology 155(2-3): 260-273.
Bartuli, C., Valente, T., and Tului, M. (2002). Plasma spray deposition and high temperature characterization of ZrB2–SiC protective coatings. Surface and Coatings Technology, 155(2-3), 260-273.
Blokhuis, T. J., Termaat, M. F., den Boer, F. C., Patka, P., Bakker, F. C., and Henk, J. T. M. (2000). Properties of calcium phosphate ceramics in relation to their in vivo behavior. Journal of Trauma and Acute Care Surgery, 48(1), 179.
Brammer, K. S., Oh, S., Cobb, C. J., Bjursten, L. M., van der Heyde, H., and Jin, S. (2009). Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomaterialia, 5(8), 3215-3223.
Brånemark, R., Öhrnell, L. O., Nilsson, P., and Thomsen, P. (1997). Biomechanical characterization of osseointegration during healing: an experimental in vivo study in the rat. Biomaterials, 18(14), 969-978.
Campanelli, L. C., Bortolan, C. C., da Silva, P. S. C. P., Bolfarini, C., and Oliveira, N. T. C. (2017). Effect of an amorphous titania nanotubes coating on the fatigue and corrosion behaviors of the biomedical Ti-6Al-4V and Ti-6Al-7Nb alloys. Journal of the Mechanical Behavior of Biomedical Materials, 65, 542-551.
Chen, C. C., Chen, J. H., Chao, C. G., and Say, W. C. (2005). Electrochemical characteristics of surface of titanium formed by electrolytic polishing and anodizing. Journal of Materials Science, 40(15), 4053-4059.
Dabrowski, B., Swieszkowski, W., Godlinski, D., and Kurzydlowski, K. J. (2010). Highly porous titanium scaffolds for orthopaedic applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 95(1), 53-61.
Das, K., Bose, S., and Bandyopadhyay, A. (2009). TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell–materials interaction. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 90(1), 225-237.
Elias, C. N., and Meirelles, L. (2010). Improving osseointegration of dental implants. Expert review of Medical Devices, 7(2), 241-256.
Ellingsen, J. E., Thomsen, P., and Lyngstadaas, S. P. (2006). Advances in dental implant materials and tissue regeneration. Periodontology 2000, 41(1), 136-156.
Ercan, B. and Webster, T. J. (2010). The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces. Biomaterials, 31(13), 3684-3693.
Feng, B., Weng, J., Yang, B. C., Qu, S. X., and Zhang, X. D. (2003). Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials, 24(25), 4663-4670.
Feng, B., Chen, J. Y., Qi, S. K., He, L., Zhao, J. Z., and Zhang, X. D. (2002). Characterization of surface oxide films on titanium and bioactivity. Journal of Materials Science: Materials in Medicine, 13(5), 457-464.
Fuke, I., V. Prabhu and Baek, S. (2005). Computational model for predicting coating thickness in electron beam physical vapor deposition. Journal of Manufacturing Processes 7(2), 140-152.
Güleryüz, H., and Çimenoğlu, H. (2004). Effect of thermal oxidation on corrosion and corrosion–wear behaviour of a Ti–6Al–4V alloy. Biomaterials, 25(16), 3325-3333.
Geetha, M., Singh, A. K., Asokamani, R., and Gogia, A. K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Progress in Materials Science, 54(3), 397-425.
Gittens, R. A., McLachlan, T., Olivares-Navarrete, R., Cai, Y., Berner, S., Tannenbaum, R., Schwartz, Z., Sandhage, K. H., and Boyan, B. D. (2011). The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials, 32(13), 3395-3403.
Hahn, H., and Palich, W. (1970). Preliminary evaluation of porous metal surfaced titanium for orthopedic implants. Journal of Biomedical Materials Research, 4(4), 571-577.
Hallab, N. J., Bundy, K. J., O'Connor, K., Moses, R. L., and Jacobs, J. J. (2001). Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion. Tissue Engineering, 7(1), 55-71.
Hanawa, T. (2011). A comprehensive review of techniques for biofunctionalization of titanium. Journal of Periodontal and Implant Science, 41(6), 263-272.
Harris, L. D., Kim, B. S., and Mooney, D. J. (1998). Open pore biodegradable matrices formed with gas foaming. Journal of Biomedical Materials Research: An Official Journal of the Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 42(3), 396-402.
Heinl, P., Müller, L., Körner, C., Singer, R. F., and Müller, F. A. (2008). Cellular Ti–6Al–4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting. Acta Biomaterialia, 4(5), 1536-1544.
Hirschhorn, J. S., McBeath, A. A., and Dustoor, M. R. (1971). Porous titanium surgical implant materials. Journal of Biomedical Materials Research, 5(6), 49-67.
Hong, C., Du, J., Liang, J., Zhang, X., and Han, J. (2011). Functionally graded porous ceramics with dense surface layer produced by freeze-casting. Ceramics International, 37(8), 3717-3722.
Hosoki, M., Nishigawa, K., Miyamoto, Y., Ohe, G., and Matsuka, Y. (2016). Allergic contact dermatitis caused by titanium screws and dental implants. Journal of Prosthodontic Research, 60(3), 213-219.
Huo, K., Gao, B., Fu, J., Zhao, L., and Chu, P. K. (2014). Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays. RSC Advances, 4(33), 17300-17324.
Jakubowicz, J., Adamek, G., and Dewidar, M. (2013). Titanium foam made with saccharose as a space holder. Journal of Porous Materials, 20(5), 1137-1141.
Kennedy, S. B., Washburn, N. R., Simon Jr, C. G., and Amis, E. J. (2006). Combinatorial screen of the effect of surface energy on fibronectin-mediated osteoblast adhesion, spreading and proliferation. Biomaterials, 27(20), 3817-3824.
Kohles, S. S., Roberts, J. B., Upton, M. L., Wilson, C. G., Bonassar, L. J., and Schlichting, A. L. (2001). Direct perfusion measurements of cancellous bone anisotropic permeability. Journal of Biomechanics, 34(9), 1197-1202.
Kokubo, T., and Takadama, H. (2006). How useful is SBF in predicting in vivo bone bioactivity?. Biomaterials, 27(15), 2907-2915.
Lavenus, S., Trichet, V., Le Chevalier, S., Hoornaert, A., Louarn, G., and Layrolle, P. (2012). Cell differentiation and osseointegration influenced by nanoscale anodized titanium surfaces. Nanomedicine, 7(7), 967-980.
Leong, K. F., Cheah, C. M., and Chua, C. K. (2003). Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials, 24(13), 2363-2378.
Li, Y., Wong, C., Xiong, J., Hodgson, P., and Wen, C. (2010). Cytotoxicity of titanium and titanium alloying elements. Journal of Dental Research, 89(5), 493-497.
Liao, C. J., Chen, C. F., Chen, J. H., Chiang, S. F., Lin, Y. J., and Chang, K. Y. (2002). Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 59(4), 676-681.
Liu, X., Rahaman, M. N., and Fu, Q. (2013). Bone regeneration in strong porous bioactive glass (13-93) scaffolds with an oriented microstructure implanted in rat calvarial defects. Acta Biomaterialia, 9(1), 4889-4898.
Long, M. and Rack, H. J. (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621-1639.
Luo, B., Yang, H., Liu, S., Fu, W., Sun, P., Yuan, M., Zhang, Y. and Liu, Z., (2008). Fabrication and characterization of self-organized mixed oxide nanotube arrays by electrochemical anodization of Ti–6Al–4V alloy. Materials Letters, 62(30), 4512-4515.
Mooney, D. J., Baldwin, D. F., Suh, N. P., Vacanti, J. P., and Langer, R. (1996). Novel approach to fabricate porous sponges of poly (D, L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials, 17(14), 1417-1422.
Nag, S., Banerjee, R., and Fraser, H. L. (2005). Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–15Mo biocompatible alloys. Materials Science and Engineering: C, 25(3), 357-362.
Oh, S., Brammer, K. S., Li, Y. J., Teng, D., Engler, A. J., Chien, S., and Jin, S. (2009). Stem cell fate dictated solely by altered nanotube dimension. Proceedings of the National Academy of Sciences, 106(7), 2130-2135.
Oh, S., Daraio, C., Chen, L. H., Pisanic, T. R., Finones, R. R., and Jin, S. (2006). Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 78(1), 97-103.
Okazaki, Y., Rao, S., Ito, Y., and Tateishi, T. (1998). Corrosion resistance, mechanical properties, corrosion fatigue strength and cytocompatibility of new Ti alloys without Al and V. Biomaterials, 19(13), 1197-1215.
Park, J., Bauer, S., von der Mark, K., and Schmuki, P. (2007). Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano letters, 7(6), 1686-1691.
Park, J., Bauer, S., Schlegel, K. A., Neukam, F. W., von der Mark, K., and Schmuki, P. (2009). TiO2 nanotube surfaces: 15 nm—an optimal length scale of surface topography for cell adhesion and differentiation. Small, 5(6), 666-671.
Pasche, S., Vörös, J., Griesser, H. J., Spencer, N. D., and Textor, M. (2005). Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces. The Journal of Physical Chemistry B, 109(37), 17545-17552.
Perng, C.K., Kao, C.L., Yang, Y.P., Lin, H.T., Lin, W.B., Chu, Y.R., Wang, H.J., Ma, H., Ku, H.H. and Chiou, S.H., (2008). Culturing adult human bone marrow stem cells on gelatin scaffold with pNIPAAm as transplanted grafts for skin regeneration. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 84(3), 622-630.
Popat, K. C., Leoni, L., Grimes, C. A., and Desai, T. A. (2007). Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials, 28(21), 3188-3197.
Rammelt, S., Illert, T., Bierbaum, S., Scharnweber, D., Zwipp, H., and Schneiders, W. (2006). Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials, 27(32), 5561-5571.
Rao, S., Ushida, T., Tateishi, T., Okazaki, Y., and Asao, S. (1996). Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells. Biomedical Materials and Engineering, 6(2), 79-86.
Ryan, G., Pandit, A., and Apatsidis, D. P. (2006). Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials, 27(13), 2651-2670.
Saji, V. S., Choe, H. C., and Brantley, W. A. (2009). An electrochemical study on self-ordered nanoporous and nanotubular oxide on Ti–35Nb–5Ta–7Zr alloy for biomedical applications. Acta Biomaterialia, 5(6), 2303-2310.
Salou, L., Hoornaert, A., Louarn, G., and Layrolle, P. (2015). Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. Acta Biomaterialia, 11, 494-502.
Scotchford, C. A., Gilmore, C. P., Cooper, E., Leggett, G. J., and Downes, S. (2002). Protein adsorption and human osteoblast‐like cell attachment and growth on alkylthiol on gold self‐assembled monolayers. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 59(1), 84-99.
Setzer, B., Bächle, M., Metzger, M. C., and Kohal, R. J. (2009). The gene-expression and phenotypic response of hFOB 1.19 osteoblasts to surface-modified titanium and zirconia. Biomaterials, 30(6), 979-990.
Shi, L., Wang, L., Duan, Y., Lei, W., Wang, Z., Li, J., Fan, X., Li, X., Li, S., and Guo, Z. (2013). The improved biological performance of a novel low elastic modulus implant. PLoS One, 8(2), e55015.
Shirkhanzadeh, M. (1992). Electrochemical preparation of protective oxide coatings on titanium surgical alloys. Journal of Materials Science: Materials in Medicine, 3(5), 322-325.
Sing, S. L., An, J., Yeong, W. Y., and Wiria, F. E. (2016). Laser and electron‐beam powder‐bed additive manufacturing of metallic implants: A review on processes, materials and designs. Journal of Orthopaedic Research, 34(3), 369-385.
Song, H. J., Park, S. H., Jeong, S. H., and Park, Y. J. (2009). Surface characteristics and bioactivity of oxide films formed by anodic spark oxidation on titanium in different electrolytes. Journal of Materials Processing Technology, 209(2), 864-870.
Sunny, M. C., and Sharma, C. P. (1991). Titanium-protein interaction: changes with oxide layer thickness. Journal of Biomaterials Applications, 6(1), 89-98.
Takadama, H., Kim, H. M., Kokubo, T., and Nakamura, T. (2001). TEM‐EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 57(3), 441-448.
Taniguchi, N., Fujibayashi, S., Takemoto, M., Sasaki, K., Otsuki, B., Nakamura, T., Matsushita, T., Kokubo, T., and Matsuda, S. (2016). Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Materials Science and Engineering: C, 59, 690-701.
Thomsen, P., Malmström, J., Emanuelsson, L., Rene, M., and Snis, A. (2009). Electron beam‐melted, free‐form‐fabricated titanium alloy implants: Material surface characterization and early bone response in rabbits. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 90(1), 35-44.
Van Bael, S., Chai, Y.C., Truscello, S., Moesen, M., Kerckhofs, G., Van Oosterwyck, H., Kruth, J.P. and Schrooten, J., (2012). The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomaterialia, 8(7), 2824-2834.
Van Bael, S., Kerckhofs, G., Moesen, M., Pyka, G., Schrooten, J., and Kruth, J. P. (2011). Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures. Materials Science and Engineering: A, 528(24), 7423-7431.
Variola, F., Brunski, J. B., Orsini, G., de Oliveira, P. T., Wazen, R., and Nanci, A. (2011). Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale, 3(2), 335-353.
Verrier, S., Peroglio, M., Voisard, C., Lechmann, B., and Alini, M. (2011). The osteogenic differentiation of human osteoprogenitor cells on anodic-plasma-chemical treated Ti6Al7Nb. Biomaterials, 32(3), 672-680.
Walker, P. R., LeBlanc, J., and Sikorska, M. (1989). Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry, 28(9), 3911-3915.
Wang, X., Li, Y., Hodgson, P., and Wen, C. (2007). Nano-and macro-scale characterisation of the mechanical properties of bovine bone. Materials Forum Institute of Materials Engineering Australasia, 31, 156-159.
Wang, X., Xu, S., Zhou, S., Xu, W., Leary, M., Choong, P., Qian, M., Brandt, M. and Xie, Y.M., (2016). Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials, 83,127-141.
Weber, J. N., and White, E. W. (1972). Carbon-metal graded composites for permanent osseous attachment of non-porous metals. Materials Research Bulletin, 7(9), 1005-1016.
Webster, T. J., Ergun, C., Doremus, R. H., Siegel, R. W., and Bizios, R. (2000). Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 51(3), 475-483.
Woodfield, T. B., Malda, J., De Wijn, J., Peters, F., Riesle, J., and van Blitterswijk, C. A. (2004). Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials, 25(18), 4149-4161.
Wu, S.H., Li, Y., Zhang, Y.Q., Li, X.K., Yuan, C.F., Hao, Y.L., Zhang, Z.Y. and Guo, Z., (2013). Porous titanium‐6 aluminum‐4 vanadium cage has better osseointegration and less micromotion than a poly‐ether‐ether‐ketone cage in sheep vertebral fusion. Artificial Organs, 37(12), E191-E201.
Yang, J., Cai, H., Lv, J., Zhang, K., Leng, H., Sun, C., Wang, Z. and Liu, Z., (2014). In vivo study of a self-stabilizing artificial vertebral body fabricated by electron beam melting. Spine, 39(8), E486-E492.
Yu, W. Q., Zhang, Y. L., Jiang, X. Q., and Zhang, F. Q. (2010). In vitro behavior of MC3T3‐E1 preosteoblast with different annealing temperature titania nanotubes. Oral Diseases, 16(7), 624-630.
Zhao, G., Schwartz, Z., Wieland, M., Rupp, F., Geis‐Gerstorfer, J., Cochran, D. L., and Boyan, B. D. (2005). High surface energy enhances cell response to titanium substrate microstructure. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 74(1), 49-58.
|