跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 22:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃愉晴
研究生(外文):Yii Ching Ng
論文名稱:探討化學治療和放射治療對人類神經膠質母細胞瘤中免疫檢查點分子之調控機制
論文名稱(外文):Regulation of Expression of Immune Checkpoints in Glioblastoma Multiforme by Chemotherapy and Radiotherapy
指導教授:邱士華邱士華引用關係陳燕彰陳燕彰引用關係
指導教授(外文):Shih-Hwa ChiouYann-Jang Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生命科學系暨基因體科學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:61
中文關鍵詞:N/A
外文關鍵詞:GBMTMZCD86CTLA-4PI3K/AKT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Glioblastoma multiforme (GBM) is one the most lethal types of human brain cancers with high recurrence rate and resistance to conventional therapies due to its heterogeneous nature. Cancer immunotherapy has become a highlight in recent decade and inhibition of immune checkpoints has been shown to have successful outcomes in several cancers. In this present study, expression of CD86 was found to be regulated by TMZ treatment and radiation, and increased in a time-dependent manner in 05MG, U-87 MG and GL261 cells. Western blotting, IF and flow cytometry data demonstrated that inhibition of PI3K/AKT pathway by different inhibitors (LY294002, MK-2206 and PDTC) down-regulated the expression of CD86 induced by the treatments in 05MG cells. Notably, IF results also displayed a change in localization of CD86 expression from the cytoplasm at 0h to the cell surface membrane at 16h while addition of inhibitors reversed the phenomenon. In addition, relative proliferation rate of CD86 overexpressed 05MG cells was found to be greater as compared to that of the control. Cell surface expression of CD86 induced by TMZ treatment was also found to affect and elevate the cell surface CTLA-4 immune marker on Jurkat T cells. Besides, increase of CD86 expression was also observed in animal model under TMZ treatment. Therapy using TMZ along with anti-CTLA-4 antibody reduced the expression of CD86 and hampered tumor growth in GL261 syngeneic mouse model without compromising the physiological state of the mice. Taken together, this study demonstrates resistance of GBM to chemotherapy and radiotherapy may be attributed to the expression of CD86 through promotion of survival, growth and evasion from normal immune attack.
Contents
Acknowledgement i
Abstract iii
Contents iiii
List of Figures v
Chapter 1: Introduction 1
1.1 Glioblastoma multiforme (GBM) 2
1.2 Cancer immunotherapy 4
1.3 Immunomodulation in cancers and GBM 6
1.4 Immune checkpoints in GBM 8
Chapter 2: Motivation and Study Rationale 9
Chapter 3: Materials and Methods 10
3.1 Cell lines and cell culture 11
3.1.1 Cell lines 12
3.1.2 Cell culture 12
3.2 Temozolomide® (TMZ) treatment 12
3.2.1 Preparation of TMZ drug 12
3.2.2 Determination of IC50 13
3.2.3 TMZ treatment on GBM cancer cell lines 13
3.3 Radiation treatment 13
3.4 PI3K/AKT pathway inhibtion treatment 13
3.5 Gene delivery 14
3.6 Co-culture experiment 14
3.7 Reverse transcription polymerase chain reaction (RT-PCR) 14
3.8 Quantitative real time polymerase chain reaction (qRT-PCR) 15
3.9 Total cellular protein extraction 15
3.10 Western blotting 15
3.11 MTT cell viability/proliferation assay 16
3.12 Immunofluorescence (IF) staining 16
3.13 Flow cytometry 17
3.14 Animal model study 17
3.14.1 Generation of luciferase and GFP expressing GL261 17
3.14.2 GL261-Luc-GFP orthotopic transplantation and non-invasive imaging 17
3.14.2 Tail-vein injection (TVI) of drugs 18
3.15 Data analysis 18
Chapter 4: Results 19
4.1 Expression of CD86 is regulated by TMZ treatment in a time-dependent manner 20
4.2 Expression of CD86 is regulated by radiation treatment in a prompt and transient manner 20
4.3 Expression of CD86 is mediated through PI3K/AKT pathway 21
4.4 Overexpression of CD86 promotes cell proliferation in 05MG and enhances expression of CTLA-4 in Jurkat T cells 23
4.5 Combined therapy reduces the expression of CD86 and halts tumor growth in GL261 syngeneic mouse model 24
Chapter 5: Discussion and Conclusion 26
Chapter 6: References 29
Chapter 7: Figures 35
Chapter 8: Appendices 58

List of Figures
Figure 1: IC50 of 05MG, U-87 MG and GL261 cells. 36
Figure 2: Induction of CD86 and PD-L1 expressions in 05MG by TMZ treatment. 37
Figure 3: Induction of CD86 and PD-L1 expressions in U-87 MG by TMZ treatment. 38
Figure 4: Induction of CD86 and PD-L1 expressions in GL261 by TMZ treatment 39
Figure 5: Induction of CD86 and PD-L1 expressions in 05MG by radiation treatment. 40
Figure 6: Induction of CD86 and PD-L1 expressions in U-87 MG by radiation treatment. 41
Figure 7: Induction of CD86 and PD-L1 expressions in GL261 by radiation treatment. 42
Figure 8: Activation of PI3K/AKT pathway in 05MG under different treatments. 43
Figure 9: Activation of PI3K/AKT pathway in U-87 MG under different treatments. 44
Figure 10: Activation of PI3K/AKT pathway in GL261 under different treatments. 45
Figure 11: Inhibition of PI3K/AKT pathway by different inhibitors in 05MG. 46
Figure 12: TMZ treatment changed location of CD86 expression from the cytoplasm to the plasma membrane and addition of PI3K/AKT pathway inhibitors reversed the phenomenon and reduced CD86 expression level in 05MG. 47
Figure 13: MK-2206 reduced the cell surface expression of CD86 on 05MG. 49
Figure 14: PDTC reduced the cell surface expression of CD86 on 05MG. 50
Figure 15: Overexpression of CD86 enhanced 05MG proliferation rate. 51
Figure 16: CD86 induced by TMZ treatment on 05MG increased CTLA-4 mRNA level in Jurkat T cells. 52
Figure 17: Prior preparation of syngeneic animal model study. 53
Figure 18: Presence of tumor infiltrating CD3+CTLA-4+ T cells and Ki67+CD86+ GL261 tumor cells. 54
Figure 19: Drug treatment groups hampered tumor growth in vivo. 56
Figure 20: Combined therapy reduced the cell surface expression of CD86 on GL261 tumor cells in vivo. 57
1. Hanif, F., Muzaffar, K., Perveen, K., Malhi, S. M. & Simjee, S. U., Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pacific Journal of Cancer Prevention, 2017. 18(1): p. 3-9.
2. Rock, K., Mcardle, O., Forde, P., Dunne, M., Fitzpatrick, D., O’Neill, B., & Faul, C., A clinical review of treatment outcomes in glioblastoma multiforme—the validation in a non-trial population of the results of a randomised Phase III clinical trial: has a more radical approach improved survival? The British Journal of Radiology, 2012. 85: p. 729-733.
3. Louis, D.N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., Scheithauer, B. W. & Kleihues, P. , The 2007 WHO ClassiWcation of Tumours of the Central Nervous System. Acta Neuropathol, 2007. 114: p. 97-109.
4. Ohgaki, H.K., P., Genetic Pathways to Primary and Secondary Glioblastoma. The American Journal ofPathology, 2007. 170(5): p. 1446-1453.
5. Agnihotri, S., Burrell, K. E., Wolf, A., Jalali, S., Hawkins, C., Rutka, J. T. & Zadeh, G., Glioblastoma, a Brief Review of History, Molecular Genetics, Animal Models and Novel Therapeutic Strategies. Arch. Immunol. Ther. Exp., 2012. 61(1): p. 25-41.
6. Aldape, K., Zadeh, G. Mansouri, S., Reifenberger, G. & Deimling, A. v., Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol, 2015. 129(6): p. 829-848.
7. Davis, M.E., Glioblastoma: Overview of Disease and Treatment. Clin J Oncol Nurs., 2016. 20(5): p. 2-8.
8. Chang, J.E., Khuntia, D., Robins, H. I., Mehta, M. P., Radiotherapy and radiosensitizers in the treatment of glioblastoma multiforme. Clin Adv Hematol Oncol., 2007. 5(11): p. 907-915.
9. Thakkar, J.P., Dolecek, T. A., Horbinski, C., Ostrom, Q. T., Lightner, D. D., Barnholtz-Sloan, J. S. & Villano, J. L., Epidemiologic and Molecular Prognostic Review of Glioblastoma. Cancer Epidemiol Biomarkers Prev, 2014. 23(10): p. 1985-1996.
10. J., Z., Cancer Stem Cells and Chemoresistance: The Smartest Survives the Raid. Pharmacology and Therapeutics, 2016. 160: p. 145-158.
11. Kise, K., Kinugasa-Katayama, Y. & Takakura, N., Tumor microenvironment for cancer stem cells. Advanced Drug Delivery Reviews, 2016. 99: p. 197-205.
12. Chen, H.Y., Lin, L. T., Wang, M. L., Lee, S. H., Tsai, M. L., Tsai, C. C., Liu, W. H., Chen, T. C., Yang, Y. P., Lee, Y. Y., Chang, Y. L., Huang, P. I., Chen, Y. W., Lo, W. L., Chiou, S. H. & Chen, M. T., Musashi-1 regulates AKT-derived IL-6 autocrinal/paracrinal malignancy and chemoresistance in glioblastoma. Oncotarget, 2016. 7(27): p. 42485–42501.
13. Li, X., Wu, C., Chen, N., Gu, H., Yen, A., Cao, L., Wang, E., & Wang, L., PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget, 2016. 7(22): p. 33440-33450.
14. Balkwill, F.R., Capasso, M. & Hagemann, T., The tumor microenvironment at a glance. Journal of Cell Science, 2012. 125(23): p. 5591-5596.
15. Woensel, M.V., Mathivet, T., Wauthoz, N., Rosière, R., Garg, A. D., Agostinis, P., Mathieu, V., Kiss, R., Lefranc, F., Boon, L., Belmans, J., Gool, S. W. V., Gerhardt, H., Amighi, K., & Vleeschouwer, S. D., Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by Galectin-1 intranasal knock-down strategy. Scientific Reports, 2017. 7: p. 1-14.
16. Hardee, M.E., Marciscano, A. E., Medina-Ramirez, C. M., Zagzag, D., Narayana, A., Lonning, S. M. & Barcellos-Hoff, M. H. , Resistance of glioblastoma initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting Resistance of glioblastoma initiating cells to radiation mediated transforming growth factor-β (TGFβ ). Cancer Research, 2012. 72: p. 4119-4129.
17. Oiseth, S.J.A., M. S., Cancer immunotherapy: a brief review of the history, possibilities, and challenges ahead. J Cancer Metastasis Treat, 2017. 3: p. 250-261.
18. Krummel, M.F.A., J. P., CD28 and CTLA-4 Have Opposing Effects on the Response of T ceils to Stimulation. Journal of Experimental Medicine, 1995. 182: p. 459-465.
19. Buchbinder, E.I.D., A., CTLA-4 and PD-1 Pathways Similarities, Differences, and Implications of Their Inhibition. American Journal of Clinical Oncology, 2016. 39(98-106).
20. Yearley, J.H., Gibson, C., Yu, N., Moon, C., Murphy, E., Juco, J., Lunceford, J., Cheng, J., Chow, L. Q. M., Seiwert, T. Y., Handa, M., Tomassini, J. E. & McClanahan, T., PD-L2 Expression in Human Tumors: Relevance to Anti-PD-1 Therapy in Cancer. Clinical Cancer Research, 2017. 23(12): p. 3158-3167.
21. Iwai, Y., Hamanishi, J., Chamoto, K. & Honjo, T., Cancer immunotherapies targeting the PD-1 signaling pathway. Journal of Biomedical Science, 2017. 24(1).
22. Burstein, H.J., Krilov, L., Aragon-Ching, J. B., Baxter, N. N., Chiorean, E. G., Chow, W. A., Groot, J. F. D., Devine, S. M., DuBois, S. G., El-Deiry, W. S., Epstein, A. S., Heymach, J., Jones, J. A., Mayer, D. K., Miksad, R. A., Pennell, N. A., Sabel, M. S., Schilsky, R. L., Schuchter, L. M., Tung, N., Winkfield, K. M., Wirth, L. J. & Dizon, D. S., Clinical Cancer Advances 2017: Annual Report on Progress Against Cancer From the American SocietyofClinical Oncology. Journal of Clinical Oncology, 2017. 35(12): p. 1341-1367.
23. Haslam, A.P., V., Estimation of the Percentage of US Patients With Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs. JAMA Network Open, 2019. 2(5).
24. Hanahan, D.W., R. A., Hallmarks of Cancer: The Next Generation. Cell, 2011. 144(5): p. 646-674.
25. Yang, L., Pang, Y. & Moses, H. L., TGF-b and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends in Immunology, 2010. 31(6): p. 220-227.
26. Shields, J.D., Kourtis, I. C., Tomei, A. A., Roberts, J. M. & Swartz, M. A., Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science, 2010. 328: p. 749-752.
27. Mougiakakos, D., Choudhury, A., Lladser, A., Kiessling, R. & Johansson, C. C., Regulatory T cells in cancer. Advances in Cancer Research, 2010. 107: p. 57-117.
28. Ostrand-Rosenberg, S.S., P., Myeloid-derived suppressor cells: linking inflammation and cancer. The Journal of Immunology, 2009. 182(8): p. 4499-4506.
29. Janco, J.M.T., Lamichhane, P., Karyampudi, L. & Knutson, K. L., Tumor-Infiltrating Dendritic Cells in Cancer Pathogenesis. The Journal of Immunology, 2015. 194(7): p. 2985-2991.
30. Shi, Y., Ping, Y. F., Zhou, W., He, Z. C., Chen, C., Bian, B. S. J., Zhang, L., Chen, L., Lan, X., Zhang, X. C., Zhou, K., Liu, Q., Long, H., Fu, T. W., Zhang, X. N., Cao, M. F., Huang, Z., Fang, X., Wang, X., Feng, H., Yao, X. H., Yu, S. C., Cui, Y. H., Zhang, X., Rich, J. N., Bao, S. & Bian, X. W., Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nature Communications, 2017. 8:15080.
31. Ostuni, R., Kratochvill, F., Murray, P. J. & Natoli, G., Macrophages and cancer: from mechanisms to therapeutic implications. Trends in Immunology, 2015. 36(4): p. 229-239.
32. Chen, Z.H., D., Immune Microenvironment in Glioblastoma Subtypes. Frontiers in Immunology, 2018. 9.
33. Charles, N.A., Holland, E. C., Gilbertson, R., Glass, R. & Kettenmann, H. , The brain tumor microenvironment. Glia, 2012. 60(3): p. 502-513.
34. Han, S., Ma, E., Wang, X., Yu, C., Dong, T., Zhan, W., Wei, X., Liang, G. & Feng, S., Rescuing defective tumor‑infiltrating T‑cell proliferation in glioblastoma patients. Oncology Letters, 2016. 12: p. 2924-2929.
35. Grinberg-Bleyer, Y., Oh, H., Desrichard, A., Bhatt, D. M., Caron, R., Chan, T. A., Schmid, R. M., Klein, U., Hayden, M. S. & Ghosh, S., NF-kB c-Rel Is Crucial for the Regulatory T Cell Immune Checkpoint in Cancer. Cell, 2017. 170(6): p. 1096-1108.
36. Curiel, T.J., Regulatory T cells and treatment of cancer. Current Opinion in Immunology, 2008. 20(2): p. 241-246.
37. Perkins, N.D., The diverse and complex roles of NF‑κB subunits in cancer. Nature Reviews Cancer, 2012. 12(2): p. 121-132.
38. Crane, C.A., Ahn, B. J., Han, S. J. & Parsa, A. T., Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and expansion of regulatory T cells: implications for immunotherapy. Neuro-Oncology 2012. 14(5): p. 584-595.
39. Romani, M., Pistillo, M. P., Carosio, R., Morabito, A. & Banelli, B., Immune Checkpoints and Innovative Therapies in Glioblastoma. Frontiers in Oncology, 2018. 8(464).
40. Nduom, E.K., Wei, J., Yaghi, N. K., Huang, N., Kong, L. Y., Gabrusiewicz, K., Ling, X., Zhou, S., Ivan, C., Chen, J. Q., Burks, J. K., Fuller, G. N., Calin, G. A., Conrad, C. A., Creasy, C., Ritthipichai, K., Radvanyi, L. & Heimberger, A. B., PD-L1 expression and prognostic impact in glioblastoma. Neuro-Oncology, 2015. 18(2): p. 195-205.
41. Woroniecka, K., Chongsathidkiet, P., Rhodin, K., Kemeny, H., Dechant, C., Farber, S. H., Elsamadicy, A. A., Cui, X., Koyama, S., Jackson, C., Hansen, L. J., Johanns, T. M., Sanchez-Perez, L., Chandramohan, V., Yu, Y. R. A., Bigner, D. D., Giles, A., Healy, P., Dranoff, G., Weinhold, K. J., Dunn, G. P. & Fecci, P. E., T-Cell Exhaustion Signatures Vary with Tumor Type and Are Severe in Glioblastoma. Clinical Cancer Research, 2018. 24(17): p. 4175-4186.
42. Kumari, S., Ahsan, S. M., Kumar, J. M., Kondapi, A. K. & Rao, N. M., Overcoming blood brain barrier with a dual purpose Temozolomide loaded Lactoferrin nanoparticles for combating glioma (SERP-17-12433). Scientific Reports, 2017. 7(1).
43. Liu, H.L., Huang, C. Y., Chen, J. Y., Wang, H. Y. J., Chen, P. Y. & Wei, K. C., Pharmacodynamic and Therapeutic Investigation of Focused UltrasoundInduced Blood-Brain Barrier Opening for Enhanced Temozolomide Delivery in Glioma Treatment. PLoS ONE, 2014. 9(12).
44. Sato, H., Niimi, A., Yasuhara, T., Permata, T. B. M., Hagiwara, Y., Isono, M., Nuryadi, E., Sekine, R., Oike, T., Kakoti, S., Yoshimoto, Y., Held, K. D., Suzuki, Y., Kono, K., Miyagawa, K., Nakano, T. & Shibata, A., DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells Nature Communications, 2017. 8.
45. Zheng, Q., Diao, S., Wang, Q., Zhu, C., Sun, X., Yin, B., Zhang, X. & Meng, X., IL-17A promotes cell migration and invasion of glioblastoma cells via activation of PI3K/AKT signaling pathway. Journal of Cellular and Molecular Medicine, 2019. 23(1): p. 357-369.
46. Koorella, C., Nair, J. R., Murray, M. E., Carlson, L. M., Watkins, S. K. & Lee, K. P., Novel Regulation of CD80/CD86-induced Phosphatidylinositol 3-Kinase Signaling by NOTCH1 Protein in Interleukin-6 and Indoleamine 2,3-Dioxygenase Production by Dendritic Cells. The Journal of Biological Chemistry, 2014. 289(11): p. 7747-7762.
47. Kin, N., W. & Sanders, V. M., CD86 Stimulation on a B Cell Activates the Phosphatidylinositol 3-Kinase/Akt and Phospholipase Cγ2/Protein Kinase Cαβ Signaling Pathways. The Journal of Immunology, 2006. 176(11): p. 6727-6735.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊