|
References
1. Hanna, J. H., Saha, K., and Jaenisch, R. (2010) Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues. Cell 143, 508-525 2. Jaenisch, R., and Young, R. (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567-582 3. Evans, M. J., and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156 4. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147 5. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., and Bongso, A. (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18, 399-404 6. Smith, K. P., Luong, M. X., and Stein, G. S. (2009) Pluripotency: toward a gold standard for human ES and iPS cells. J Cell Physiol 220, 21-29 7. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R., and Young, R. A. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947-956 8. Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J., Leong, B., Liu, J., Wong, K. Y., Sung, K. W., Lee, C. W., Zhao, X. D., Chiu, K. P., Lipovich, L., Kuznetsov, V. A., Robson, P., Stanton, L. W., Wei, C. L., Ruan, Y., Lim, B., and Ng, H. H. (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38, 431-440 9. Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676 10. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872 11. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, II, and Thomson, J. A. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920 12. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S. (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26, 101-106 13. Tzatzalos, E., Abilez, O. J., Shukla, P., and Wu, J. C. (2016) Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies. Adv Drug Deliv Rev 96, 234-244 14. Ebert, A. D., Liang, P., and Wu, J. C. (2012) Induced pluripotent stem cells as a disease modeling and drug screening platform. J Cardiovasc Pharmacol 60, 408-416 15. Rizzino, A., and Wuebben, E. L. (2016) Sox2/Oct4: A delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochim Biophys Acta 1859, 780-791 16. Loh, K. M., and Lim, B. (2011) A precarious balance: pluripotency factors as lineage specifiers. Cell Stem Cell 8, 363-369 17. Thomson, M., Liu, S. J., Zou, L. N., Smith, Z., Meissner, A., and Ramanathan, S. (2011) Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell 145, 875-889 18. Wang, Z., Oron, E., Nelson, B., Razis, S., and Ivanova, N. (2012) Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10, 440-454 19. Ring, K. L., Tong, L. M., Balestra, M. E., Javier, R., Andrews-Zwilling, Y., Li, G., Walker, D., Zhang, W. R., Kreitzer, A. C., and Huang, Y. (2012) Direct reprogramming of mouse and human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem Cell 11, 100-109 20. Lee, B. K., Shen, W., Lee, J., Rhee, C., Chung, H., Kim, K. Y., Park, I. H., and Kim, J. (2015) Tgif1 Counterbalances the Activity of Core Pluripotency Factors in Mouse Embryonic Stem Cells. Cell Rep 13, 52-60 21. Cole, M. F., Johnstone, S. E., Newman, J. J., Kagey, M. H., and Young, R. A. (2008) Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 22, 746-755 22. Chitilian, J. M., Thillainadesan, G., Manias, J. L., Chang, W. Y., Walker, E., Isovic, M., Stanford, W. L., and Torchia, J. (2014) Critical components of the pluripotency network are targets for the p300/CBP interacting protein (p/CIP) in embryonic stem cells. Stem Cells 32, 204-215 23. Yu, H. B., Kunarso, G., Hong, F. H., and Stanton, L. W. (2009) Zfp206, Oct4, and Sox2 are integrated components of a transcriptional regulatory network in embryonic stem cells. J Biol Chem 284, 31327-31335 24. Zappone, M. V., Galli, R., Catena, R., Meani, N., De Biasi, S., Mattei, E., Tiveron, C., Vescovi, A. L., Lovell-Badge, R., Ottolenghi, S., and Nicolis, S. K. (2000) Sox2 regulatory sequences direct expression of a (beta)-geo transgene to telencephalic neural stem cells and precursors of the mouse embryo, revealing regionalization of gene expression in CNS stem cells. Development 127, 2367-2382 25. Ellis, P., Fagan, B. M., Magness, S. T., Hutton, S., Taranova, O., Hayashi, S., McMahon, A., Rao, M., and Pevny, L. (2004) SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26, 148-165 26. Avilion, A. A., Nicolis, S. K., Pevny, L. H., Perez, L., Vivian, N., and Lovell-Badge, R. (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17, 126-140 27. Graham, V., Khudyakov, J., Ellis, P., and Pevny, L. (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39, 749-765 28. Perez-Iratxeta, C., Palidwor, G., Porter, C. J., Sanche, N. A., Huska, M. R., Suomela, B. P., Muro, E. M., Krzyzanowski, P. M., Hughes, E., Campbell, P. A., Rudnicki, M. A., and Andrade, M. A. (2005) Study of stem cell function using microarray experiments. FEBS Lett 579, 1795-1801 29. Sato, N., Sanjuan, I. M., Heke, M., Uchida, M., Naef, F., and Brivanlou, A. H. (2003) Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol 260, 404-413 30. Ramalho-Santos, M., Yoon, S., Matsuzaki, Y., Mulligan, R. C., and Melton, D. A. (2002) "Stemness": transcriptional profiling of embryonic and adult stem cells. Science 298, 597-600 31. Assou, S., Le Carrour, T., Tondeur, S., Strom, S., Gabelle, A., Marty, S., Nadal, L., Pantesco, V., Reme, T., Hugnot, J. P., Gasca, S., Hovatta, O., Hamamah, S., Klein, B., and De Vos, J. (2007) A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells 25, 961-973 32. Assou, S., Cerecedo, D., Tondeur, S., Pantesco, V., Hovatta, O., Klein, B., Hamamah, S., and De Vos, J. (2009) A gene expression signature shared by human mature oocytes and embryonic stem cells. BMC Genomics 10, 10 33. Chin, M. H., Mason, M. J., Xie, W., Volinia, S., Singer, M., Peterson, C., Ambartsumyan, G., Aimiuwu, O., Richter, L., Zhang, J., Khvorostov, I., Ott, V., Grunstein, M., Lavon, N., Benvenisty, N., Croce, C. M., Clark, A. T., Baxter, T., Pyle, A. D., Teitell, M. A., Pelegrini, M., Plath, K., and Lowry, W. E. (2009) Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5, 111-123 34. Desbordes, S. C., Placantonakis, D. G., Ciro, A., Socci, N. D., Lee, G., Djaballah, H., and Studer, L. (2008) High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell 2, 602-612 35. Xu, Y., Zhu, X., Hahm, H. S., Wei, W., Hao, E., Hayek, A., and Ding, S. Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci U S A 107, 8129-8134 36. Gonzalez, R., Jennings, L. L., Knuth, M., Orth, A. P., Klock, H. E., Ou, W., Feuerhelm, J., Hull, M. V., Koesema, E., Wang, Y., Zhang, J., Wu, C., Cho, C. Y., Su, A. I., Batalov, S., Chen, H., Johnson, K., Laffitte, B., Nguyen, D. G., Snyder, E. Y., Schultz, P. G., Harris, J. L., and Lesley, S. A. Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency. Proc Natl Acad Sci U S A 107, 3552-3557 37. Chia, N. Y., Chan, Y. S., Feng, B., Lu, X., Orlov, Y. L., Moreau, D., Kumar, P., Yang, L., Jiang, J., Lau, M. S., Huss, M., Soh, B. S., Kraus, P., Li, P., Lufkin, T., Lim, B., Clarke, N. D., Bard, F., and Ng, H. H. A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature 468, 316-320 38. Chia, N. Y., Chan, Y. S., Feng, B., Lu, X., Orlov, Y. L., Moreau, D., Kumar, P., Yang, L., Jiang, J., Lau, M. S., Huss, M., Soh, B. S., Kraus, P., Li, P., Lufkin, T., Lim, B., Clarke, N. D., Bard, F., and Ng, H. H. (2010) A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature 468, 316-320 39. Xu, Y., Zhu, X., Hahm, H. S., Wei, W., Hao, E., Hayek, A., and Ding, S. (2010) Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci U S A 107, 8129-8134 40. Gonzalez, R., Jennings, L. L., Knuth, M., Orth, A. P., Klock, H. E., Ou, W., Feuerhelm, J., Hull, M. V., Koesema, E., Wang, Y., Zhang, J., Wu, C., Cho, C. Y., Su, A. I., Batalov, S., Chen, H., Johnson, K., Laffitte, B., Nguyen, D. G., Snyder, E. Y., Schultz, P. G., Harris, J. L., and Lesley, S. A. (2010) Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency. Proc Natl Acad Sci U S A 107, 3552-3557 41. Poon, A., Zhang, Y., Chandrasekaran, A., Phanthong, P., Schmid, B., Nielsen, T. T., and Freude, K. K. (2017) Modeling neurodegenerative diseases with patient-derived induced pluripotent cells: Possibilities and challenges. N Biotechnol 39, 190-198 42. Nagoshi, N., and Okano, H. (2018) iPSC-derived neural precursor cells: potential for cell transplantation therapy in spinal cord injury. Cell Mol Life Sci 75, 989-1000 43. Yagi, T., Ito, D., Okada, Y., Akamatsu, W., Nihei, Y., Yoshizaki, T., Yamanaka, S., Okano, H., and Suzuki, N. (2011) Modeling familial Alzheimer's disease with induced pluripotent stem cells. Hum Mol Genet 20, 4530-4539 44. Kondo, T., Asai, M., Tsukita, K., Kutoku, Y., Ohsawa, Y., Sunada, Y., Imamura, K., Egawa, N., Yahata, N., Okita, K., Takahashi, K., Asaka, I., Aoi, T., Watanabe, A., Watanabe, K., Kadoya, C., Nakano, R., Watanabe, D., Maruyama, K., Hori, O., Hibino, S., Choshi, T., Nakahata, T., Hioki, H., Kaneko, T., Naitoh, M., Yoshikawa, K., Yamawaki, S., Suzuki, S., Hata, R., Ueno, S., Seki, T., Kobayashi, K., Toda, T., Murakami, K., Irie, K., Klein, W. L., Mori, H., Asada, T., Takahashi, R., Iwata, N., Yamanaka, S., and Inoue, H. (2013) Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell 12, 487-496 45. Oh, C. K., Sultan, A., Platzer, J., Dolatabadi, N., Soldner, F., McClatchy, D. B., Diedrich, J. K., Yates, J. R., 3rd, Ambasudhan, R., Nakamura, T., Jaenisch, R., and Lipton, S. A. (2017) S-Nitrosylation of PINK1 Attenuates PINK1/Parkin-Dependent Mitophagy in hiPSC-Based Parkinson's Disease Models. Cell Rep 21, 2171-2182 46. Heman-Ackah, S. M., Manzano, R., Hoozemans, J. J. M., Scheper, W., Flynn, R., Haerty, W., Cowley, S. A., Bassett, A. R., and Wood, M. J. A. (2017) Alpha-synuclein induces the unfolded protein response in Parkinson's disease SNCA triplication iPSC-derived neurons. Hum Mol Genet 26, 4441-4450 47. Madill, M., McDonagh, K., Ma, J., Vajda, A., McLoughlin, P., O'Brien, T., Hardiman, O., and Shen, S. (2017) Amyotrophic lateral sclerosis patient iPSC-derived astrocytes impair autophagy via non-cell autonomous mechanisms. Mol Brain 10, 22 48. Sun, X., Song, J., Huang, H., Chen, H., and Qian, K. (2018) Modeling hallmark pathology using motor neurons derived from the family and sporadic amyotrophic lateral sclerosis patient-specific iPS cells. Stem Cell Res Ther 9, 315 49. Zhang, N., Bailus, B. J., Ring, K. L., and Ellerby, L. M. (2016) iPSC-based drug screening for Huntington's disease. Brain Res 1638, 42-56 50. Xu, X., Tay, Y., Sim, B., Yoon, S. I., Huang, Y., Ooi, J., Utami, K. H., Ziaei, A., Ng, B., Radulescu, C., Low, D., Ng, A. Y. J., Loh, M., Venkatesh, B., Ginhoux, F., Augustine, G. J., and Pouladi, M. A. (2017) Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells. Stem Cell Reports 8, 619-633 51. Bordoni, M., Rey, F., Fantini, V., Pansarasa, O., Di Giulio, A. M., Carelli, S., and Cereda, C. (2018) From Neuronal Differentiation of iPSCs to 3D Neuro-Organoids: Modelling and Therapy of Neurodegenerative Diseases. Int J Mol Sci 19 52. Korhonen, P., Malm, T., and White, A. R. (2018) 3D human brain cell models: New frontiers in disease understanding and drug discovery for neurodegenerative diseases. Neurochem Int 120, 191-199 53. Centeno, E. G. Z., Cimarosti, H., and Bithell, A. (2018) 2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling. Mol Neurodegener 13, 27 54. Chen, M., Lee, H. K., Moo, L., Hanlon, E., Stein, T., and Xia, W. (2018) Common proteomic profiles of induced pluripotent stem cell-derived three-dimensional neurons and brain tissue from Alzheimer patients. J Proteomics 182, 21-33 55. Bolognin, S., Fossepre, M., Qing, X., Jarazo, J., Scancar, J., Moreno, E. L., Nickels, S. L., Wasner, K., Ouzren, N., Walter, J., Grunewald, A., Glaab, E., Salamanca, L., Fleming, R. M. T., Antony, P. M. A., and Schwamborn, J. C. (2019) 3D Cultures of Parkinson's Disease-Specific Dopaminergic Neurons for High Content Phenotyping and Drug Testing. Adv Sci (Weinh) 6, 1800927 56. Osaki, T., Uzel, S. G. M., and Kamm, R. D. (2018) Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Sci Adv 4, eaat5847 57. Hu, B. Y., Weick, J. P., Yu, J., Ma, L. X., Zhang, X. Q., Thomson, J. A., and Zhang, S. C. (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci U S A 107, 4335-4340 58. Miranda, C. C., Fernandes, T. G., Pinto, S. N., Prieto, M., Diogo, M. M., and Cabral, J. M. S. (2018) A scale out approach towards neural induction of human induced pluripotent stem cells for neurodevelopmental toxicity studies. Toxicol Lett 294, 51-60 59. Llonch, S., Carido, M., and Ader, M. (2018) Organoid technology for retinal repair. Dev Biol 433, 132-143 60. Takahashi, J. (2017) Strategies for bringing stem cell-derived dopamine neurons to the clinic: The Kyoto trial. Prog Brain Res 230, 213-226 61. Studer, L. (2017) Strategies for bringing stem cell-derived dopamine neurons to the clinic-The NYSTEM trial. Prog Brain Res 230, 191-212 62. Kirkeby, A., Parmar, M., and Barker, R. A. (2017) Strategies for bringing stem cell-derived dopamine neurons to the clinic: A European approach (STEM-PD). Prog Brain Res 230, 165-190 63. Jin, X. L., and O'Neill, C. (2014) The regulation of the expression and activation of the essential ATF1 transcription factor in the mouse preimplantation embryo. Reproduction 148, 147-157 64. Bleckmann, S. C., Blendy, J. A., Rudolph, D., Monaghan, A. P., Schmid, W., and Schutz, G. (2002) Activating transcription factor 1 and CREB are important for cell survival during early mouse development. Mol Cell Biol 22, 1919-1925 65. Cowan, C. A., Klimanskaya, I., McMahon, J., Atienza, J., Witmyer, J., Zucker, J. P., Wang, S., Morton, C. C., McMahon, A. P., Powers, D., and Melton, D. A. (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350, 1353-1356 66. Yang, X., Hao, H., Xia, Z., Xu, G., Cao, Z., Chen, X., Liu, S., and Zhu, Y. (2016) Soluble IL-6 Receptor and IL-27 Subunit p28 Protein Complex Mediate the Antiviral Response through the Type III IFN Pathway. J Immunol 197, 2369-2381 67. Hailemariam, K., Iwasaki, K., Huang, B. W., Sakamoto, K., and Tsuji, Y. (2010) Transcriptional regulation of ferritin and antioxidant genes by HIPK2 under genotoxic stress. J Cell Sci 123, 3863-3871 68. Chou, Y. T., Lee, C. C., Hsiao, S. H., Lin, S. E., Lin, S. C., Chung, C. H., Chung, C. H., Kao, Y. R., Wang, Y. H., Chen, C. T., Wei, Y. H., and Wu, C. W. (2013) The emerging role of SOX2 in cell proliferation and survival and its crosstalk with oncogenic signaling in lung cancer. Stem Cells 31, 2607-2619 69. Wang, C. H., Ma, N., Lin, Y. T., Wu, C. C., Hsiao, M., Lu, F. L., Yu, C. C., Chen, S. Y., and Lu, J. (2012) A shRNA functional screen reveals Nme6 and Nme7 are crucial for embryonic stem cell renewal. Stem Cells 30, 2199-2211 70. Wen, Z., Nguyen, H. N., Guo, Z., Lalli, M. A., Wang, X., Su, Y., Kim, N. S., Yoon, K. J., Shin, J., Zhang, C., Makri, G., Nauen, D., Yu, H., Guzman, E., Chiang, C. H., Yoritomo, N., Kaibuchi, K., Zou, J., Christian, K. M., Cheng, L., Ross, C. A., Margolis, R. L., Chen, G., Kosik, K. S., Song, H., and Ming, G. L. (2014) Synaptic dysregulation in a human iPS cell model of mental disorders. Nature 515, 414-418 71. Lippmann, E. S., Estevez-Silva, M. C., and Ashton, R. S. (2014) Defined human pluripotent stem cell culture enables highly efficient neuroepithelium derivation without small molecule inhibitors. Stem Cells 32, 1032-1042 72. Sierra, R. A., Hoverter, N. P., Ramirez, R. N., Vuong, L. M., Mortazavi, A., Merrill, B. J., Waterman, M. L., and Donovan, P. J. (2018) TCF7L1 suppresses primitive streak gene expression to support human embryonic stem cell pluripotency. Development 145 73. Mignone, J. L., Kreutziger, K. L., Paige, S. L., and Murry, C. E. (2010) Cardiogenesis from human embryonic stem cells. Circ J 74, 2517-2526 74. Houlard, M., Berlivet, S., Probst, A. V., Quivy, J. P., Hery, P., Almouzni, G., and Gerard, M. (2006) CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells. PLoS Genet 2, e181 75. Blum, B., Bar-Nur, O., Golan-Lev, T., and Benvenisty, N. (2009) The anti-apoptotic gene survivin contributes to teratoma formation by human embryonic stem cells. Nat Biotechnol 27, 281-287 76. Desmarais, J. A., Hoffmann, M. J., Bingham, G., Gagou, M. E., Meuth, M., and Andrews, P. W. (2012) Human embryonic stem cells fail to activate CHK1 and commit to apoptosis in response to DNA replication stress. Stem Cells 30, 1385-1393 77. Wang, Y., and Prywes, R. (2000) Activation of the c-fos enhancer by the erk MAP kinase pathway through two sequence elements: the c-fos AP-1 and p62TCF sites. Oncogene 19, 1379-1385 78. Gupta, P., and Prywes, R. (2002) ATF1 phosphorylation by the ERK MAPK pathway is required for epidermal growth factor-induced c-jun expression. J Biol Chem 277, 50550-50556 79. Zhang, X., Odom, D. T., Koo, S. H., Conkright, M. D., Canettieri, G., Best, J., Chen, H., Jenner, R., Herbolsheimer, E., Jacobsen, E., Kadam, S., Ecker, J. R., Emerson, B., Hogenesch, J. B., Unterman, T., Young, R. A., and Montminy, M. (2005) Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A 102, 4459-4464 80. Impey, S., McCorkle, S. R., Cha-Molstad, H., Dwyer, J. M., Yochum, G. S., Boss, J. M., McWeeney, S., Dunn, J. J., Mandel, G., and Goodman, R. H. (2004) Defining the CREB regulon: a genome-wide analysis of transcription factor regulatory regions. Cell 119, 1041-1054 81. Zhou, J., Su, P., Li, D., Tsang, S., Duan, E., and Wang, F. (2010) High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor beta superfamily receptors. Stem Cells 28, 1741-1750 82. Jang, J., Wang, Y., Lalli, M. A., Guzman, E., Godshalk, S. E., Zhou, H., and Kosik, K. S. (2016) Primary Cilium-Autophagy-Nrf2 (PAN) Axis Activation Commits Human Embryonic Stem Cells to a Neuroectoderm Fate. Cell 165, 410-420 83. Lin, Y. P., Ouchi, Y., Satoh, S., and Watanabe, S. (2009) Sox2 plays a role in the induction of amacrine and Muller glial cells in mouse retinal progenitor cells. Invest Ophthalmol Vis Sci 50, 68-74 84. Wen, J., Hu, Q., Li, M., Wang, S., Zhang, L., Chen, Y., and Li, L. (2008) Pax6 directly modulate Sox2 expression in the neural progenitor cells. Neuroreport 19, 413-417 85. Aota, S., Nakajima, N., Sakamoto, R., Watanabe, S., Ibaraki, N., and Okazaki, K. (2003) Pax6 autoregulation mediated by direct interaction of Pax6 protein with the head surface ectoderm-specific enhancer of the mouse Pax6 gene. Dev Biol 257, 1-13 86. Zhang, S., and Cui, W. (2014) Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells 6, 305-311 87. Zhang, X., Huang, C. T., Chen, J., Pankratz, M. T., Xi, J., Li, J., Yang, Y., Lavaute, T. M., Li, X. J., Ayala, M., Bondarenko, G. I., Du, Z. W., Jin, Y., Golos, T. G., and Zhang, S. C. (2010) Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 7, 90-100 88. Du, Z. W., Ma, L. X., Phillips, C., and Zhang, S. C. (2013) miR-200 and miR-96 families repress neural induction from human embryonic stem cells. Development 140, 2611-2618 89. Hou, P. S., Chuang, C. Y., Kao, C. F., Chou, S. J., Stone, L., Ho, H. N., Chien, C. L., and Kuo, H. C. (2013) LHX2 regulates the neural differentiation of human embryonic stem cells via transcriptional modulation of PAX6 and CER1. Nucleic Acids Res 41, 7753-7770 90. Aloia, L., Di Stefano, B., Sessa, A., Morey, L., Santanach, A., Gutierrez, A., Cozzuto, L., Benitah, S. A., Graf, T., Broccoli, V., and Di Croce, L. (2014) Zrf1 is required to establish and maintain neural progenitor identity. Genes Dev 28, 182-197 91. Li, L., Nakaya, N., Chavali, V. R., Ma, Z., Jiao, X., Sieving, P. A., Riazuddin, S., Tomarev, S. I., Ayyagari, R., Riazuddin, S. A., and Hejtmancik, J. F. (2010) A mutation in ZNF513, a putative regulator of photoreceptor development, causes autosomal-recessive retinitis pigmentosa. Am J Hum Genet 87, 400-409 92. Liao, B. Y., and Zhang, J. (2008) Null mutations in human and mouse orthologs frequently result in different phenotypes. Proc Natl Acad Sci U S A 105, 6987-6992 93. Berger, R. P., Sun, Y. H., Kulik, M., Lee, J. K., Nairn, A. V., Moremen, K. W., Pierce, M., and Dalton, S. (2016) ST8SIA4-Dependent Polysialylation is Part of a Developmental Program Required for Germ Layer Formation from Human Pluripotent Stem Cells. Stem Cells 34, 1742-1752 94. Shen, J., and Walsh, C. A. (2005) Targeted disruption of Tgif, the mouse ortholog of a human holoprosencephaly gene, does not result in holoprosencephaly in mice. Mol Cell Biol 25, 3639-3647 95. Li, K., Turner, A. N., Chen, M., Brosius, S. N., Schoeb, T. R., Messiaen, L. M., Bedwell, D. M., Zinn, K. R., Anastasaki, C., Gutmann, D. H., Korf, B. R., and Kesterson, R. A. (2016) Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I. Dis Model Mech 9, 759-767 96. Peters, O. M., Cabrera, G. T., Tran, H., Gendron, T. F., McKeon, J. E., Metterville, J., Weiss, A., Wightman, N., Salameh, J., Kim, J., Sun, H., Boylan, K. B., Dickson, D., Kennedy, Z., Lin, Z., Zhang, Y. J., Daughrity, L., Jung, C., Gao, F. B., Sapp, P. C., Horvitz, H. R., Bosco, D. A., Brown, S. P., de Jong, P., Petrucelli, L., Mueller, C., and Brown, R. H., Jr. (2015) Human C9ORF72 Hexanucleotide Expansion Reproduces RNA Foci and Dipeptide Repeat Proteins but Not Neurodegeneration in BAC Transgenic Mice. Neuron 88, 902-909 97. Shimomura, A., Okamoto, Y., Hirata, Y., Kobayashi, M., Kawakami, K., Kiuchi, K., Wakabayashi, T., and Hagiwara, M. (1998) Dominant negative ATF1 blocks cyclic AMP-induced neurite outgrowth in PC12D cells. J Neurochem 70, 1029-1034 98. Wei, W., Lu, Y., Hao, B., Zhang, K., Wang, Q., Miller, A. L., Zhang, L. R., Zhang, L. H., and Yue, J. (2015) CD38 Is Required for Neural Differentiation of Mouse Embryonic Stem Cells by Modulating Reactive Oxygen Species. Stem Cells 33, 2664-2673 99. Hsueh, Y. P., and Lai, M. Z. (1995) Overexpression of activation transcriptional factor 1 in lymphomas and in activated lymphocytes. J Immunol 154, 5675-5683 100. Jean, D., Tellez, C., Huang, S., Davis, D. W., Bruns, C. J., McConkey, D. J., Hinrichs, S. H., and Bar-Eli, M. (2000) Inhibition of tumor growth and metastasis of human melanoma by intracellular anti-ATF-1 single chain Fv fragment. Oncogene 19, 2721-2730 101. Brown, A. D., Lopez-Terrada, D., Denny, C., and Lee, K. A. (1995) Promoters containing ATF-binding sites are de-regulated in cells that express the EWS/ATF1 oncogene. Oncogene 10, 1749-1756 102. Atlas, E., Stramwasser, M., and Mueller, C. R. (2001) A CREB site in the BRCA1 proximal promoter acts as a constitutive transcriptional element. Oncogene 20, 7110-7114 103. Belmonte, N., Phillips, B. W., Massiera, F., Villageois, P., Wdziekonski, B., Saint-Marc, P., Nichols, J., Aubert, J., Saeki, K., Yuo, A., Narumiya, S., Ailhaud, G., and Dani, C. (2001) Activation of extracellular signal-regulated kinases and CREB/ATF-1 mediate the expression of CCAAT/enhancer binding proteins beta and -delta in preadipocytes. Mol Endocrinol 15, 2037-2049 104. Kingsley-Kallesen, M. L., Kelly, D., and Rizzino, A. (1999) Transcriptional regulation of the transforming growth factor-beta2 promoter by cAMP-responsive element-binding protein (CREB) and activating transcription factor-1 (ATF-1) is modulated by protein kinases and the coactivators p300 and CREB-binding protein. J Biol Chem 274, 34020-34028 105. Rolli, M., Kotlyarov, A., Sakamoto, K. M., Gaestel, M., and Neininger, A. (1999) Stress-induced stimulation of early growth response gene-1 by p38/stress-activated protein kinase 2 is mediated by a cAMP-responsive promoter element in a MAPKAP kinase 2-independent manner. J Biol Chem 274, 19559-19564 106. Zaman, K., Ryu, H., Hall, D., O'Donovan, K., Lin, K. I., Miller, M. P., Marquis, J. C., Baraban, J. M., Semenza, G. L., and Ratan, R. R. (1999) Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. J Neurosci 19, 9821-9830 107. Zhang, J. W., Klemm, D. J., Vinson, C., and Lane, M. D. (2004) Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein beta gene during adipogenesis. J Biol Chem 279, 4471-4478 108. Lee, M. G., and Pedersen, P. L. (2003) Glucose metabolism in cancer: importance of transcription factor-DNA interactions within a short segment of the proximal region og the type II hexokinase promoter. J Biol Chem 278, 41047-41058 109. Iwasaki, K., Hailemariam, K., and Tsuji, Y. (2007) PIAS3 interacts with ATF1 and regulates the human ferritin H gene through an antioxidant-responsive element. J Biol Chem 282, 22335-22343 110. Okuyama, Y., Sowa, Y., Fujita, T., Mizuno, T., Nomura, H., Nikaido, T., Endo, T., and Sakai, T. (1996) ATF site of human RB gene promoter is a responsive element of myogenic differentiation. FEBS Lett 397, 219-224 111. Dong, Y., Asch, H. L., Ying, A., and Asch, B. B. (2002) Molecular mechanism of transcriptional repression of gelsolin in human breast cancer cells. Exp Cell Res 276, 328-336 112. Salnikow, K., Wang, S., and Costa, M. (1997) Induction of activating transcription factor 1 by nickel and its role as a negative regulator of thrombospondin I gene expression. Cancer Res 57, 5060-5066 113. Otani, T., Marchetto, M. C., Gage, F. H., Simons, B. D., and Livesey, F. J. (2016) 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size. Cell Stem Cell 18, 467-480 114. Ryan, S. J., Ehrlich, D. E., and Rainnie, D. G. (2016) Morphology and dendritic maturation of developing principal neurons in the rat basolateral amygdala. Brain Struct Funct 221, 839-854 115. Okaty, B. W., Miller, M. N., Sugino, K., Hempel, C. M., and Nelson, S. B. (2009) Transcriptional and electrophysiological maturation of neocortical fast-spiking GABAergic interneurons. J Neurosci 29, 7040-7052 116. Tripathy, S. J., Burton, S. D., Geramita, M., Gerkin, R. C., and Urban, N. N. (2015) Brain-wide analysis of electrophysiological diversity yields novel categorization of mammalian neuron types. J Neurophysiol 113, 3474-3489 117. Foldy, C., Darmanis, S., Aoto, J., Malenka, R. C., Quake, S. R., and Sudhof, T. C. (2016) Single-cell RNAseq reveals cell adhesion molecule profiles in electrophysiologically defined neurons. Proc Natl Acad Sci U S A 113, E5222-5231 118. Tripathy, S. J., Toker, L., Li, B., Crichlow, C. L., Tebaykin, D., Mancarci, B. O., and Pavlidis, P. (2017) Transcriptomic correlates of neuron electrophysiological diversity. PLoS Comput Biol 13, e1005814 119. Sasai, Y. (2013) Cytosystems dynamics in self-organization of tissue architecture. Nature 493, 318-326 120. Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles, M. E., Homfray, T., Penninger, J. M., Jackson, A. P., and Knoblich, J. A. (2013) Cerebral organoids model human brain development and microcephaly. Nature 501, 373-379 121. Lancaster, M. A., and Knoblich, J. A. (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9, 2329-2340 122. Jo, J., Xiao, Y., Sun, A. X., Cukuroglu, E., Tran, H. D., Goke, J., Tan, Z. Y., Saw, T. Y., Tan, C. P., Lokman, H., Lee, Y., Kim, D., Ko, H. S., Kim, S. O., Park, J. H., Cho, N. J., Hyde, T. M., Kleinman, J. E., Shin, J. H., Weinberger, D. R., Tan, E. K., Je, H. S., and Ng, H. H. (2016) Midbrain-like Organoids from Human Pluripotent Stem Cells Contain Functional Dopaminergic and Neuromelanin-Producing Neurons. Cell Stem Cell 19, 248-257
|