|
References 1. Vezina, C., A. Kudelski, and S.N. Sehgal, Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo), 1975. 28(10): p. 721-6. 2. Martel, R.R., J. Klicius, and S. Galet, Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol, 1977. 55(1): p. 48-51. 3. Andoh, T.F., et al., Comparison of acute rapamycin nephrotoxicity with cyclosporine and FK506. Kidney Int, 1996. 50(4): p. 1110-7. 4. Houchens, D.P., et al., Human brain tumor xenografts in nude mice as a chemotherapy model. Eur J Cancer Clin Oncol, 1983. 19(6): p. 799-805. 5. Heitman, J., N.R. Movva, and M.N. Hall, Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science, 1991. 253(5022): p. 905-9. 6. Dumont, F.J., FK506, an immunosuppressant targeting calcineurin function. Curr Med Chem, 2000. 7(7): p. 731-48. 7. Kino, T., et al., FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo), 1987. 40(9): p. 1249-55. 8. Goto, T., et al., Discovery of FK-506, a novel immunosuppressant isolated from Streptomyces tsukubaensis. Transplant Proc, 1987. 19(5 Suppl 6): p. 4-8. 9. Dumont, F.J., et al., The immunosuppressive macrolides FK-506 and rapamycin act as reciprocal antagonists in murine T cells. J Immunol, 1990. 144(4): p. 1418-24. 10. Dumont, F.J., et al., Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J Immunol, 1990. 144(1): p. 251-8. 11. Bierer, B.E., et al., Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proc Natl Acad Sci U S A, 1990. 87(23): p. 9231-5. 12. Hultsch, T., R. Martin, and R.J. Hohman, The effect of the immunophilin ligands rapamycin and FK506 on proliferation of mast cells and other hematopoietic cell lines. Mol Biol Cell, 1992. 3(9): p. 981-7. 13. Koltin, Y., et al., Rapamycin sensitivity in Saccharomyces cerevisiae is mediated by a peptidyl-prolyl cis-trans isomerase related to human FK506-binding protein. Mol Cell Biol, 1991. 11(3): p. 1718-23. 14. Brown, E.J., et al., A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature, 1994. 369(6483): p. 756-8. 15. Sabatini, D.M., et al., RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell, 1994. 78(1): p. 35-43. 16. Chiu, M.I., H. Katz, and V. Berlin, RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci U S A, 1994. 91(26): p. 12574-12578. 17. Sabers, C.J., et al., Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem, 1995. 270(2): p. 815-22. 18. Helliwell, S.B., et al., TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell, 1994. 5(1): p. 105-18. 19. Lee, S., et al., TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol Cell Biol, 2005. 16(10): p. 4572-4583. 20. Cardenas, M.E., et al., The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev, 1999. 13(24): p. 3271-3279. 21. Oldham, S., et al., Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev, 2000. 14(21): p. 2689-2694. 22. Hara, K., et al., Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell, 2002. 110(2): p. 177-89. 23. Long, X., et al., TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol, 2002. 12(17): p. 1448-61. 24. Kunz, J., et al., Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell, 1993. 73(3): p. 585-96. 25. Cafferkey, R., et al., Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol, 1993. 13(10): p. 6012-23. 26. Andrade, M.A. and P. Bork, HEAT repeats in the Huntington's disease protein. Nat Genet, 1995. 11(2): p. 115-6. 27. Bosotti, R., A. Isacchi, and E.L. Sonnhammer, FAT: a novel domain in PIK-related kinases. Trends Biochem Sci, 2000. 25(5): p. 225-7. 28. Benjamin, D., et al., Rapamycin passes the torch: a new generation of mTOR inhibitors. Nature Reviews Drug Discovery, 2011. 10: p. 868. 29. Barbet, N.C., et al., TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell, 1996. 7(1): p. 25-42. 30. Wang, X., et al., Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J, 1998. 334 ( Pt 1)(Pt 1): p. 261-7. 31. Hara, K., et al., Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem, 1998. 273(23): p. 14484-94. 32. Schmelzle, T. and M.N. Hall, TOR, a central controller of cell growth. Cell, 2000. 103(2): p. 253-62. 33. Loewith, R., et al., Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell, 2002. 10(3): p. 457-68. 34. Kim, D.H., et al., mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 2002. 110(2): p. 163-75. 35. Eltschinger, S. and R. Loewith, TOR Complexes and the Maintenance of Cellular Homeostasis. Trends Cell Biol, 2016. 26(2): p. 148-159. 36. Hardwick, J.S., et al., Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci U S A, 1999. 96(26): p. 14866-70. 37. Komeili, A., et al., Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J Cell Biol, 2000. 151(4): p. 863-78. 38. Crespo, J.L., et al., The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci U S A, 2002. 99(10): p. 6784-6789. 39. Helliwell, S.B., et al., TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics, 1998. 148(1): p. 99-112. 40. Aronova, S., et al., Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae. Mol Biol Cell, 2007. 18(8): p. 2779-94. 41. Sturgill, T.W., et al., TOR1 and TOR2 have distinct locations in live cells. Eukaryot Cell, 2008. 7(10): p. 1819-30. 42. Urban, J., et al., Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell, 2007. 26(5): p. 663-74. 43. Berchtold, D. and T.C. Walther, TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol Biol Cell, 2009. 20(5): p. 1565-75. 44. Binda, M., et al., The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell, 2009. 35(5): p. 563-73. 45. Li, H., et al., Nutrient regulates Tor1 nuclear localization and association with rDNA promoter. Nature, 2006. 442(7106): p. 1058-61. 46. Di Como, C.J. and K.T. Arndt, Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev, 1996. 10(15): p. 1904-16. 47. Jacinto, E., et al., TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway. Mol Cell, 2001. 8(5): p. 1017-26. 48. Beck, T. and M.N. Hall, The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature, 1999. 402(6762): p. 689-92. 49. Liu, K., et al., The sphingoid long chain base phytosphingosine activates AGC-type protein kinases in Saccharomyces cerevisiae including Ypk1, Ypk2, and Sch9. J Biol Chem, 2005. 280(24): p. 22679-87. 50. Voordeckers, K., et al., Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9. J Biol Chem, 2011. 286(25): p. 22017-27. 51. Huber, A., et al., Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev, 2009. 23(16): p. 1929-43. 52. Lee, J., R.D. Moir, and I.M. Willis, Regulation of RNA polymerase III transcription involves SCH9-dependent and SCH9-independent branches of the target of rapamycin (TOR) pathway. J Biol Chem, 2009. 284(19): p. 12604-8. 53. Fabrizio, P., et al., Sir2 Blocks Extreme Life-Span Extension. Cell, 2005. 123(4): p. 655-667. 54. Kaeberlein, M., et al., Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science, 2005. 310(5751): p. 1193-6. 55. Jorgensen, P., et al., A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev, 2004. 18(20): p. 2491-505. 56. Roosen, J., et al., PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol, 2005. 55(3): p. 862-80. 57. Deprez, M.A., et al., The TORC1-Sch9 pathway as a crucial mediator of chronological lifespan in the yeast Saccharomyces cerevisiae. FEMS Yeast Res, 2018. 18(5). 58. Kunz, J., et al., HEAT repeats mediate plasma membrane localization of Tor2p in yeast. J Biol Chem, 2000. 275(47): p. 37011-20. 59. Wedaman, K.P., et al., Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol Biol Cell, 2003. 14(3): p. 1204-20. 60. Berchtold, D., et al., Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat Cell Biol, 2012. 14(5): p. 542-7. 61. Olivera-Couto, A., et al., The eisosome core is composed of BAR domain proteins. Mol Biol Cell, 2011. 22(13): p. 2360-72. 62. Niles, B.J. and T. Powers, Plasma membrane proteins Slm1 and Slm2 mediate activation of the AGC kinase Ypk1 by TORC2 and sphingolipids in S. cerevisiae. Cell cycle (Georgetown, Tex.), 2012. 11(20): p. 3745-3749. 63. Nomura, W. and Y. Inoue, Methylglyoxal activates the target of rapamycin complex 2-protein kinase C signaling pathway in Saccharomyces cerevisiae. Mol Cell Biol, 2015. 35(7): p. 1269-80. 64. Kamada, Y., et al., Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol, 2005. 25(16): p. 7239-7248. 65. Audhya, A., et al., Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton. Embo j, 2004. 23(19): p. 3747-57. 66. Lee, K.S., et al., A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol Cell Biol, 1993. 13(5): p. 3067-3075. 67. Martin, H., et al., Molecular and functional characterization of a mutant allele of the mitogen-activated protein-kinase gene SLT2(MPK1) rescued from yeast autolytic mutants. Curr Genet, 1996. 29(6): p. 516-22. 68. Delley, P.-A. and M.N. Hall, Cell Wall Stress Depolarizes Cell Growth via Hyperactivation of Rho1. J Cell Biol, 1999. 147(1): p. 163-174. 69. Ozaki, K., et al., Rom1p and Rom2p are GDP/GTP exchange proteins (GEPs) for the Rho1p small GTP binding protein in Saccharomyces cerevisiae. Embo j, 1996. 15(9): p. 2196-2207. 70. Bickle, M., et al., Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. Embo j, 1998. 17(8): p. 2235-2245. 71. Schmelzle, T., S.B. Helliwell, and M.N. Hall, Yeast protein kinases and the RHO1 exchange factor TUS1 are novel components of the cell integrity pathway in yeast. Mol Cell Biol, 2002. 22(5): p. 1329-39. 72. Schmidt, A., T. Schmelzle, and M.N. Hall, The RHO1-GAPs SAC7, BEM2 and BAG7 control distinct RHO1 functions in Saccharomyces cerevisiae. Mol Microbiol, 2002. 45(5): p. 1433-41. 73. Schmidt, A., et al., The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell, 1997. 88(4): p. 531-42. 74. deHart, A.K., et al., Receptor internalization in yeast requires the Tor2-Rho1 signaling pathway. Mol Biol Cell, 2003. 14(11): p. 4676-84. 75. Roelants, F.M., P.D. Torrance, and J. Thorner, Differential roles of PDK1- and PDK2-phosphorylation sites in the yeast AGC kinases Ypk1, Pkc1 and Sch9. Microbiology, 2004. 150(10): p. 3289-3304. 76. Roelants, F.M., et al., The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae. Biomolecules, 2017. 7(3): p. 66. 77. Roelants, F.M., et al., Pkh1 and Pkh2 differentially phosphorylate and activate Ypk1 and Ykr2 and define protein kinase modules required for maintenance of cell wall integrity. Mol Biol Cell, 2002. 13(9): p. 3005-28. 78. Sun, Y., et al., Sli2 (Ypk1), a homologue of mammalian protein kinase SGK, is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. Mol Cell Biol, 2000. 20(12): p. 4411-4419. 79. Breslow, D.K., et al., Orm family proteins mediate sphingolipid homeostasis. Nature, 2010. 463(7284): p. 1048-53. 80. Roelants, F.M., et al., Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 2011. 108(48): p. 19222-7. 81. Niles, B.J., et al., Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2. Proc Natl Acad Sci U S A, 2012. 109(5): p. 1536-41. 82. Muir, A., et al., TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids. eLife, 2014. 3: p. e03779. 83. Aronova, S., et al., Regulation of ceramide biosynthesis by TOR complex 2. Cell Metab, 2008. 7(2): p. 148-58. 84. Muir, A., et al., Down-regulation of TORC2-Ypk1 signaling promotes MAPK-independent survival under hyperosmotic stress. eLife, 2015. 4: p. e09336. 85. Lee, Y.J., et al., Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress. Mol Cell Biol, 2012. 32(22): p. 4705-17. 86. Roelants, F.M., et al., A protein kinase network regulates the function of aminophospholipid flippases. Proc Natl Acad Sci U S A, 2010. 107(1): p. 34-9. 87. Nakano, K., et al., Protein kinases Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry. Mol Biol Cell, 2008. 19(4): p. 1783-97. 88. Sebastian, T.T., et al., Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochim Biophys Acta, 2012. 1821(8): p. 1068-77. 89. Bourgoint, C., et al., Target of rapamycin complex 2-dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in Saccharomyces cerevisiae. J Biol Chem, 2018. 293(31): p. 12043-12053. 90. Rispal, D., et al., Target of Rapamycin Complex 2 Regulates Actin Polarization and Endocytosis via Multiple Pathways. J Biol Chem, 2015. 290(24): p. 14963-78. 91. Roelants, F.M., et al., TOR Complex 2-Regulated Protein Kinase Fpk1 Stimulates Endocytosis via Inhibition of Ark1/Prk1-Related Protein Kinase Akl1 in Saccharomyces cerevisiae. Mol Cell Biol, 2017. 37(7). 92. Gaubitz, C., et al., Molecular Basis of the Rapamycin Insensitivity of Target Of Rapamycin Complex 2. Mol Cell, 2015. 58(6): p. 977-88. 93. Shimada, K., et al., TORC2 Signaling Pathway Guarantees Genome Stability in the Face of DNA Strand Breaks. Mol Cell, 2013. 51(6): p. 829-839. 94. Kliegman, J.I., et al., Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae. Cell Rep, 2013. 5(6): p. 1725-36. 95. Ahmed, S., et al., F-BAR domain proteins: Families and function. Communicative & integrative biology, 2010. 3(2): p. 116-121. 96. Bultynck, G., et al., Slm1 and slm2 are novel substrates of the calcineurin phosphatase required for heat stress-induced endocytosis of the yeast uracil permease. Mol Cell Biol, 2006. 26(12): p. 4729-45. 97. Fadri, M., et al., The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2. Mol Biol Cell, 2005. 16(4): p. 1883-900. 98. Tabuchi, M., et al., The phosphatidylinositol 4,5-biphosphate and TORC2 binding proteins Slm1 and Slm2 function in sphingolipid regulation. Mol Cell Biol, 2006. 26(15): p. 5861-75. 99. Daquinag, A., et al., The yeast PH domain proteins Slm1 and Slm2 are targets of sphingolipid signaling during the response to heat stress. Mol Cell Biol, 2007. 27(2): p. 633-50. 100. Ho, H.L., Y.S. Shiau, and M.Y. Chen, Saccharomyces cerevisiaeTSC11/AVO3 participates in regulating cell integrity and functionally interacts with components of the Tor2 complex. Curr Genet, 2005. 47(5): p. 273-88. 101. Rosebrock, A.P., Analysis of the Budding Yeast Cell Cycle by Flow Cytometry. Cold Spring Harb Protoc, 2017. 2017(1). 102. Ho, H.L., et al., Involvement of Saccharomyces cerevisiae Avo3p/Tsc11p in maintaining TOR complex 2 integrity and coupling to downstream signaling. Eukaryot Cell, 2008. 7(8): p. 1328-43. 103. Kubler, E. and H. Riezman, Actin and fimbrin are required for the internalization step of endocytosis in yeast. Embo j, 1993. 12(7): p. 2855-62. 104. Geli, M.I. and H. Riezman, Role of Type I Myosins in Receptor-Mediated Endocytosis in Yeast. Science, 1996. 272(5261): p. 533. 105. Qualmann, B., M.M. Kessels, and R.B. Kelly, Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol, 2000. 150(5): p. F111-F116. 106. Boscheron, C., et al., A role for the yeast CLIP170 ortholog, the plus-end-tracking protein Bik1, and the Rho1 GTPase in Snc1 trafficking. J Cell Sci, 2016. 129(17): p. 3332. 107. Helliwell, S.B., et al., The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton. Curr Biol, 1998. 8(22): p. 1211-4. 108. Liao, H.-C. and M.-Y. Chen, Target of rapamycin complex 2 signals to downstream effector yeast protein kinase 2 (Ypk2) through adheres-voraciously-to-target-of-rapamycin-2 protein 1 (Avo1) in Saccharomyces cerevisiae. J Biol Chem, 2012. 287(9): p. 6089-6099. 109. Zinzalla, V., et al., Activation of mTORC2 by association with the ribosome. Cell, 2011. 144(5): p. 757-68. 110. Koo, S.H., et al., The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature, 2005. 437(7062): p. 1109-11. 111. Jansson, D., et al., Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2. Proc Natl Acad Sci U S A, 2008. 105(29): p. 10161-10166. 112. Kumar, A., et al., Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances Basal glycogen synthase activity. Mol Cell Biol, 2008. 28(1): p. 61-70. 113. Ryu, D., et al., TORC2 Regulates Hepatic Insulin Signaling via a Mammalian Phosphatidic Acid Phosphatase, LIPIN1. Cell Metab, 2009. 9(3): p. 240-251. 114. Cohen, A., M. Kupiec, and R. Weisman, Glucose activates TORC2-Gad8 protein via positive regulation of the cAMP/cAMP-dependent protein kinase A (PKA) pathway and negative regulation of the Pmk1 protein-mitogen-activated protein kinase pathway. J Biol Chem, 2014. 289(31): p. 21727-37. 115. Cardenas, M.E. and J. Heitman, FKBP12-rapamycin target TOR2 is a vacuolar protein with an associated phosphatidylinositol-4 kinase activity. Embo j, 1995. 14(23): p. 5892-907. 116. Jiang, Y. and J.R. Broach, Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. Embo j, 1999. 18(10): p. 2782-92. 117. Zheng, X.F., et al., TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell, 1995. 82(1): p. 121-30.
|