跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱卲翎
研究生(外文):Shao-Ling Chu
論文名稱:出芽酵母菌 Slm蛋白在 TORC2訊息傳遞中之角色
論文名稱(外文):The role of Saccharomyces cerevisiae Slm proteins in TORC2 signaling
指導教授:陳美瑜陳美瑜引用關係
指導教授(外文):Mei-Yu Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:86
外文關鍵詞:TORC2SLMTarget of rapamycin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
啤酒酵母菌中的兩個同源Slm (Synthetic lethal with Mss4)蛋白Slm1以及Slm2 是磷脂酸肌醇 4,5-雙磷酸結合蛋白,且會跟TORC2 (target of rapamycin complex 2)結合;而Tor為雷帕黴素作用的標的,是一個從酵母菌到哺乳類動物都高度保留的絲胺酸-蘇胺酸蛋白激酶,在細胞中扮演生長代謝調控中樞。Tor與不同細胞蛋白組成兩個多蛋白複合體TORC1以及TORC2,分別去調控細胞生長相關的功能以及肌動蛋白的排列組織。相對於對TORC1調控路徑的了解,我們對於TORC2的訊息傳遞所知甚少。過去Slm蛋白被認為是TORC2下游直接的受質且作為TORC2的周圍組成蛋白,然而Slm蛋白在TORC2訊息傳遞中的角色還不是很清楚。在本論文研究中,我們發現當酵母菌缺失SLM1以及SLM2基因時,許多細胞功能出現問題,包含:細胞壁完整性、肌動蛋白排列組織、和胞吞作用有缺陷,這和TORC2突變株表現型相同。為了進一步了解Slm蛋白在TORC2訊息傳遞中的功能,我們試圖尋找與SLM基因有遺傳交互作用的基因、以及與Slm蛋白有實質交互作用的蛋白。在遺傳交互作用方面,我們發現當細胞表現有自發活性的已知TORC2下游Ypk蛋白激酶時,可以拯救缺失SLM1和SLM2基因所造成的缺陷,並且也觀察到Slm蛋白缺失細胞中,Ypk蛋白激酶的活性會劇烈下降;意外的是,細胞表現有自發活性的已知TORC1受質Sch9蛋白激酶時,也可以拯救缺失SLM基因所導致的表現型。在尋找交互作用蛋白方面,我們以大量表現GST融合Slm重組蛋白並執行共純化實驗的方式來取得可能的交互作用蛋白,由蛋白體學分析獲得的分子互動組顯示可能的交互作用蛋白多半參與在蛋白質轉譯、蛋白質和囊泡運輸以及代謝的過程中,而其中確切的交互作用蛋白仍在被驗證中。綜觀目前的實驗結果,我們結論:Ypk蛋白激酶在訊息傳遞路徑上是位於Slm蛋白的下游;而表現活化態TORC1受質Sch9對Slm蛋白缺失細胞表現型的修飾或許暗示Slm蛋白功能與TORC1的下游傳訊有牽連;另外,由所得候選Slm交互作用蛋白已知的功能來推測,Slm蛋白很有可能參與調節囊泡運輸過程。
Synthetic lethal with Mss4 (Slm) proteins, i.e., Slm1 and Slm2, are two homologous phosphatidylinositol 4,5-bisphosphate-binding proteins which can associate with the target of rapamycin complex 2 (TORC2) in Saccharomyces cerevisiae. Target of rapamycin (TOR), a Ser/Thr kinase highly conserved from yeast to human, serves as a central regulator of growth and metabolism. Tor forms two distinct multi-protein complexes, TORC1 and TORC2, which signal to coordinate growth-related cell processes and regulation of the actin cytoskeleton, respectively. Compared to the understanding about TORC1-linked pathways, little do we know about TORC2 signaling. Slm proteins are considered direct substrates of TORC2 and peripheral components of TORC2, while their role in TORC2 signaling remains to be investigated. In this thesis study, our results demonstrate that cells with deletion of both SLM1 and SLM2 exhibit phenotypes shared among TORC2 mutants. To explore the function of Slm proteins in TORC2 signaling, we set out to search for genetic interactors with SLM alleles and for physical interactors of Slm1 protein. Genetic analyses have revealed that constitutively active Ypk kinases, which are known to function downstream of TORC2, can rescue TORC2-mediated phenotypes caused by depletion of Slm proteins, and the activity of Ypk2 kinase is dramatically reduced in cells without Slm proteins. To our surprise, constitutively active Sch9 kinase, which acts downstream of TORC1, can also rescue the phenotype caused by depletion of Slm proteins. In order to identify the physical interactors of Slm1, GST-pulldown procedures were carried out using lysates from GST-Slm1-overexpressing yeast cells. The obtained interactomes demonstrate that candidate Slm interactors participate in protein translation, trafficking and transport, and metabolism; verification of specific interactions is underway. In summary, our data indicate that Ypk kinases function downstream of Slm proteins; the modification of the phenotypes of Slm proteins-depleted cells by active TORC1 downstream kinase Sch9 may imply a functional crosstalk between Slm proteins and TORC1 signaling; moreover, the identification of many candidate Slm1 interactors with known functions in vesicular transport suggests that Slm proteins may play a significant role in this process.
誌謝...i
摘要...ii
Abstract...iv
Contents...vi
Introduction...1
Discovery of the Target of Rapamycin (TOR) proteins...1
Structure and function of Tor proteins...1
TOR functions in two distinct multi-protein complexes...2
TOR signaling in Saccharomyces cerevisiae...3
Signaling network of TORC1...4
(A) Location of TORC1...4
(B) Upstream signaling of TORC1...4
(C) Downstream signaling of TORC1...5
Signaling network of TORC2...6
(A) Location of TORC2...6
(B) Upstream of TORC2...6
(C) Downstream of TORC2...7
Pkc1 and the cell wall integrity pathway...7
Ypk1 and Ypk2...8
Slm1 and Slm2...10
Aims...13
Materials and Methods...14
Bacterial and yeast culture...14
Bacteria strains...14
Yeast strains...14
Plasmids...14
Trypan blue assay...15
Actin staining...15
Spot assay...15
Growth curve...16
GFP-Snc1 localization...16
E. coli transformation...16
Yeast transformation...17
Flow cytometry...17
GST pulldown assay...18
GO analysis and categorization...19
Co-Immunoprecipitation analysis...19
Results...21
slm1∆ slm2∆ cells showed slow growth at high temperatures and sensitivity to rapamycin...21
SLM1 and SLM2 were required for TORC2-mediated functions...22
Mutation of the AVO3 allele was synthetic lethal with deletion of SLM1 and SLM2...23
Overexpressing components of TORC2 could not rescue the rapamycin sensitivity of slm1∆ slm2∆...24
Only active Bck1, the component in the cell wall integrity pathway rescued the rapamycin sensitivity of slm1∆ slm2∆ cells...25
Ypk1 and Ypk2 appeared to function downstream of Slm proteins...25
Constitutively active Sch9, a TORC1 downstream substrate, also rescued the rapamycin sensitivity of slm1∆ slm2∆ cells...26
Gene Ontology analysis revealed functions of candidate Slm interactors in protein translation, trafficking and transport, and metabolism...27
Candidate Slm interactors involved in vesicular transport showed physical interaction with Slm1 proteins...29
Discussion...31
What are the mechanisms behind the temperature sensitivity in slm1D slm2D cells?...31
What is the direct mediator of rapamycin that causes cells growth inhibition in slm1∆ slm2∆ cells?...32
How can both active Sch9 and Ypk kinases rescue the rapamycin sensitivity of slm1∆ slm2∆ cells?...33
Are phenotypes of slm1∆ slm2∆ cells caused by disruption of upstream or downstream TORC2 signaling?...34
Why components of TORC2 did not co-pulldown with GST-Slm1 in this study?...35
Figures...36
Tables...59
Appendices...66
Supplements...69
References...75
References
1. Vezina, C., A. Kudelski, and S.N. Sehgal, Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo), 1975. 28(10): p. 721-6.
2. Martel, R.R., J. Klicius, and S. Galet, Inhibition of the immune response by rapamycin, a new antifungal antibiotic. Can J Physiol Pharmacol, 1977. 55(1): p. 48-51.
3. Andoh, T.F., et al., Comparison of acute rapamycin nephrotoxicity with cyclosporine and FK506. Kidney Int, 1996. 50(4): p. 1110-7.
4. Houchens, D.P., et al., Human brain tumor xenografts in nude mice as a chemotherapy model. Eur J Cancer Clin Oncol, 1983. 19(6): p. 799-805.
5. Heitman, J., N.R. Movva, and M.N. Hall, Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science, 1991. 253(5022): p. 905-9.
6. Dumont, F.J., FK506, an immunosuppressant targeting calcineurin function. Curr Med Chem, 2000. 7(7): p. 731-48.
7. Kino, T., et al., FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot (Tokyo), 1987. 40(9): p. 1249-55.
8. Goto, T., et al., Discovery of FK-506, a novel immunosuppressant isolated from Streptomyces tsukubaensis. Transplant Proc, 1987. 19(5 Suppl 6): p. 4-8.
9. Dumont, F.J., et al., The immunosuppressive macrolides FK-506 and rapamycin act as reciprocal antagonists in murine T cells. J Immunol, 1990. 144(4): p. 1418-24.
10. Dumont, F.J., et al., Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J Immunol, 1990. 144(1): p. 251-8.
11. Bierer, B.E., et al., Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proc Natl Acad Sci U S A, 1990. 87(23): p. 9231-5.
12. Hultsch, T., R. Martin, and R.J. Hohman, The effect of the immunophilin ligands rapamycin and FK506 on proliferation of mast cells and other hematopoietic cell lines. Mol Biol Cell, 1992. 3(9): p. 981-7.
13. Koltin, Y., et al., Rapamycin sensitivity in Saccharomyces cerevisiae is mediated by a peptidyl-prolyl cis-trans isomerase related to human FK506-binding protein. Mol Cell Biol, 1991. 11(3): p. 1718-23.
14. Brown, E.J., et al., A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature, 1994. 369(6483): p. 756-8.
15. Sabatini, D.M., et al., RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell, 1994. 78(1): p. 35-43.
16. Chiu, M.I., H. Katz, and V. Berlin, RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci U S A, 1994. 91(26): p. 12574-12578.
17. Sabers, C.J., et al., Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem, 1995. 270(2): p. 815-22.
18. Helliwell, S.B., et al., TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell, 1994. 5(1): p. 105-18.
19. Lee, S., et al., TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol Cell Biol, 2005. 16(10): p. 4572-4583.
20. Cardenas, M.E., et al., The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev, 1999. 13(24): p. 3271-3279.
21. Oldham, S., et al., Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev, 2000. 14(21): p. 2689-2694.
22. Hara, K., et al., Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell, 2002. 110(2): p. 177-89.
23. Long, X., et al., TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol, 2002. 12(17): p. 1448-61.
24. Kunz, J., et al., Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell, 1993. 73(3): p. 585-96.
25. Cafferkey, R., et al., Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol, 1993. 13(10): p. 6012-23.
26. Andrade, M.A. and P. Bork, HEAT repeats in the Huntington's disease protein. Nat Genet, 1995. 11(2): p. 115-6.
27. Bosotti, R., A. Isacchi, and E.L. Sonnhammer, FAT: a novel domain in PIK-related kinases. Trends Biochem Sci, 2000. 25(5): p. 225-7.
28. Benjamin, D., et al., Rapamycin passes the torch: a new generation of mTOR inhibitors. Nature Reviews Drug Discovery, 2011. 10: p. 868.
29. Barbet, N.C., et al., TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell, 1996. 7(1): p. 25-42.
30. Wang, X., et al., Amino acid availability regulates p70 S6 kinase and multiple translation factors. Biochem J, 1998. 334 ( Pt 1)(Pt 1): p. 261-7.
31. Hara, K., et al., Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem, 1998. 273(23): p. 14484-94.
32. Schmelzle, T. and M.N. Hall, TOR, a central controller of cell growth. Cell, 2000. 103(2): p. 253-62.
33. Loewith, R., et al., Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell, 2002. 10(3): p. 457-68.
34. Kim, D.H., et al., mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 2002. 110(2): p. 163-75.
35. Eltschinger, S. and R. Loewith, TOR Complexes and the Maintenance of Cellular Homeostasis. Trends Cell Biol, 2016. 26(2): p. 148-159.
36. Hardwick, J.S., et al., Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci U S A, 1999. 96(26): p. 14866-70.
37. Komeili, A., et al., Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J Cell Biol, 2000. 151(4): p. 863-78.
38. Crespo, J.L., et al., The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci U S A, 2002. 99(10): p. 6784-6789.
39. Helliwell, S.B., et al., TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics, 1998. 148(1): p. 99-112.
40. Aronova, S., et al., Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae. Mol Biol Cell, 2007. 18(8): p. 2779-94.
41. Sturgill, T.W., et al., TOR1 and TOR2 have distinct locations in live cells. Eukaryot Cell, 2008. 7(10): p. 1819-30.
42. Urban, J., et al., Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell, 2007. 26(5): p. 663-74.
43. Berchtold, D. and T.C. Walther, TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol Biol Cell, 2009. 20(5): p. 1565-75.
44. Binda, M., et al., The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell, 2009. 35(5): p. 563-73.
45. Li, H., et al., Nutrient regulates Tor1 nuclear localization and association with rDNA promoter. Nature, 2006. 442(7106): p. 1058-61.
46. Di Como, C.J. and K.T. Arndt, Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev, 1996. 10(15): p. 1904-16.
47. Jacinto, E., et al., TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway. Mol Cell, 2001. 8(5): p. 1017-26.
48. Beck, T. and M.N. Hall, The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature, 1999. 402(6762): p. 689-92.
49. Liu, K., et al., The sphingoid long chain base phytosphingosine activates AGC-type protein kinases in Saccharomyces cerevisiae including Ypk1, Ypk2, and Sch9. J Biol Chem, 2005. 280(24): p. 22679-87.
50. Voordeckers, K., et al., Yeast 3-phosphoinositide-dependent protein kinase-1 (PDK1) orthologs Pkh1-3 differentially regulate phosphorylation of protein kinase A (PKA) and the protein kinase B (PKB)/S6K ortholog Sch9. J Biol Chem, 2011. 286(25): p. 22017-27.
51. Huber, A., et al., Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev, 2009. 23(16): p. 1929-43.
52. Lee, J., R.D. Moir, and I.M. Willis, Regulation of RNA polymerase III transcription involves SCH9-dependent and SCH9-independent branches of the target of rapamycin (TOR) pathway. J Biol Chem, 2009. 284(19): p. 12604-8.
53. Fabrizio, P., et al., Sir2 Blocks Extreme Life-Span Extension. Cell, 2005. 123(4): p. 655-667.
54. Kaeberlein, M., et al., Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science, 2005. 310(5751): p. 1193-6.
55. Jorgensen, P., et al., A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev, 2004. 18(20): p. 2491-505.
56. Roosen, J., et al., PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol, 2005. 55(3): p. 862-80.
57. Deprez, M.A., et al., The TORC1-Sch9 pathway as a crucial mediator of chronological lifespan in the yeast Saccharomyces cerevisiae. FEMS Yeast Res, 2018. 18(5).
58. Kunz, J., et al., HEAT repeats mediate plasma membrane localization of Tor2p in yeast. J Biol Chem, 2000. 275(47): p. 37011-20.
59. Wedaman, K.P., et al., Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol Biol Cell, 2003. 14(3): p. 1204-20.
60. Berchtold, D., et al., Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat Cell Biol, 2012. 14(5): p. 542-7.
61. Olivera-Couto, A., et al., The eisosome core is composed of BAR domain proteins. Mol Biol Cell, 2011. 22(13): p. 2360-72.
62. Niles, B.J. and T. Powers, Plasma membrane proteins Slm1 and Slm2 mediate activation of the AGC kinase Ypk1 by TORC2 and sphingolipids in S. cerevisiae. Cell cycle (Georgetown, Tex.), 2012. 11(20): p. 3745-3749.
63. Nomura, W. and Y. Inoue, Methylglyoxal activates the target of rapamycin complex 2-protein kinase C signaling pathway in Saccharomyces cerevisiae. Mol Cell Biol, 2015. 35(7): p. 1269-80.
64. Kamada, Y., et al., Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol, 2005. 25(16): p. 7239-7248.
65. Audhya, A., et al., Genome-wide lethality screen identifies new PI4,5P2 effectors that regulate the actin cytoskeleton. Embo j, 2004. 23(19): p. 3747-57.
66. Lee, K.S., et al., A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol Cell Biol, 1993. 13(5): p. 3067-3075.
67. Martin, H., et al., Molecular and functional characterization of a mutant allele of the mitogen-activated protein-kinase gene SLT2(MPK1) rescued from yeast autolytic mutants. Curr Genet, 1996. 29(6): p. 516-22.
68. Delley, P.-A. and M.N. Hall, Cell Wall Stress Depolarizes Cell Growth via Hyperactivation of Rho1. J Cell Biol, 1999. 147(1): p. 163-174.
69. Ozaki, K., et al., Rom1p and Rom2p are GDP/GTP exchange proteins (GEPs) for the Rho1p small GTP binding protein in Saccharomyces cerevisiae. Embo j, 1996. 15(9): p. 2196-2207.
70. Bickle, M., et al., Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. Embo j, 1998. 17(8): p. 2235-2245.
71. Schmelzle, T., S.B. Helliwell, and M.N. Hall, Yeast protein kinases and the RHO1 exchange factor TUS1 are novel components of the cell integrity pathway in yeast. Mol Cell Biol, 2002. 22(5): p. 1329-39.
72. Schmidt, A., T. Schmelzle, and M.N. Hall, The RHO1-GAPs SAC7, BEM2 and BAG7 control distinct RHO1 functions in Saccharomyces cerevisiae. Mol Microbiol, 2002. 45(5): p. 1433-41.
73. Schmidt, A., et al., The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell, 1997. 88(4): p. 531-42.
74. deHart, A.K., et al., Receptor internalization in yeast requires the Tor2-Rho1 signaling pathway. Mol Biol Cell, 2003. 14(11): p. 4676-84.
75. Roelants, F.M., P.D. Torrance, and J. Thorner, Differential roles of PDK1- and PDK2-phosphorylation sites in the yeast AGC kinases Ypk1, Pkc1 and Sch9. Microbiology, 2004. 150(10): p. 3289-3304.
76. Roelants, F.M., et al., The TORC2-Dependent Signaling Network in the Yeast Saccharomyces cerevisiae. Biomolecules, 2017. 7(3): p. 66.
77. Roelants, F.M., et al., Pkh1 and Pkh2 differentially phosphorylate and activate Ypk1 and Ykr2 and define protein kinase modules required for maintenance of cell wall integrity. Mol Biol Cell, 2002. 13(9): p. 3005-28.
78. Sun, Y., et al., Sli2 (Ypk1), a homologue of mammalian protein kinase SGK, is a downstream kinase in the sphingolipid-mediated signaling pathway of yeast. Mol Cell Biol, 2000. 20(12): p. 4411-4419.
79. Breslow, D.K., et al., Orm family proteins mediate sphingolipid homeostasis. Nature, 2010. 463(7284): p. 1048-53.
80. Roelants, F.M., et al., Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 2011. 108(48): p. 19222-7.
81. Niles, B.J., et al., Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2. Proc Natl Acad Sci U S A, 2012. 109(5): p. 1536-41.
82. Muir, A., et al., TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids. eLife, 2014. 3: p. e03779.
83. Aronova, S., et al., Regulation of ceramide biosynthesis by TOR complex 2. Cell Metab, 2008. 7(2): p. 148-58.
84. Muir, A., et al., Down-regulation of TORC2-Ypk1 signaling promotes MAPK-independent survival under hyperosmotic stress. eLife, 2015. 4: p. e09336.
85. Lee, Y.J., et al., Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress. Mol Cell Biol, 2012. 32(22): p. 4705-17.
86. Roelants, F.M., et al., A protein kinase network regulates the function of aminophospholipid flippases. Proc Natl Acad Sci U S A, 2010. 107(1): p. 34-9.
87. Nakano, K., et al., Protein kinases Fpk1p and Fpk2p are novel regulators of phospholipid asymmetry. Mol Biol Cell, 2008. 19(4): p. 1783-97.
88. Sebastian, T.T., et al., Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochim Biophys Acta, 2012. 1821(8): p. 1068-77.
89. Bourgoint, C., et al., Target of rapamycin complex 2-dependent phosphorylation of the coat protein Pan1 by Akl1 controls endocytosis dynamics in Saccharomyces cerevisiae. J Biol Chem, 2018. 293(31): p. 12043-12053.
90. Rispal, D., et al., Target of Rapamycin Complex 2 Regulates Actin Polarization and Endocytosis via Multiple Pathways. J Biol Chem, 2015. 290(24): p. 14963-78.
91. Roelants, F.M., et al., TOR Complex 2-Regulated Protein Kinase Fpk1 Stimulates Endocytosis via Inhibition of Ark1/Prk1-Related Protein Kinase Akl1 in Saccharomyces cerevisiae. Mol Cell Biol, 2017. 37(7).
92. Gaubitz, C., et al., Molecular Basis of the Rapamycin Insensitivity of Target Of Rapamycin Complex 2. Mol Cell, 2015. 58(6): p. 977-88.
93. Shimada, K., et al., TORC2 Signaling Pathway Guarantees Genome Stability in the Face of DNA Strand Breaks. Mol Cell, 2013. 51(6): p. 829-839.
94. Kliegman, J.I., et al., Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae. Cell Rep, 2013. 5(6): p. 1725-36.
95. Ahmed, S., et al., F-BAR domain proteins: Families and function. Communicative & integrative biology, 2010. 3(2): p. 116-121.
96. Bultynck, G., et al., Slm1 and slm2 are novel substrates of the calcineurin phosphatase required for heat stress-induced endocytosis of the yeast uracil permease. Mol Cell Biol, 2006. 26(12): p. 4729-45.
97. Fadri, M., et al., The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2. Mol Biol Cell, 2005. 16(4): p. 1883-900.
98. Tabuchi, M., et al., The phosphatidylinositol 4,5-biphosphate and TORC2 binding proteins Slm1 and Slm2 function in sphingolipid regulation. Mol Cell Biol, 2006. 26(15): p. 5861-75.
99. Daquinag, A., et al., The yeast PH domain proteins Slm1 and Slm2 are targets of sphingolipid signaling during the response to heat stress. Mol Cell Biol, 2007. 27(2): p. 633-50.
100. Ho, H.L., Y.S. Shiau, and M.Y. Chen, Saccharomyces cerevisiaeTSC11/AVO3 participates in regulating cell integrity and functionally interacts with components of the Tor2 complex. Curr Genet, 2005. 47(5): p. 273-88.
101. Rosebrock, A.P., Analysis of the Budding Yeast Cell Cycle by Flow Cytometry. Cold Spring Harb Protoc, 2017. 2017(1).
102. Ho, H.L., et al., Involvement of Saccharomyces cerevisiae Avo3p/Tsc11p in maintaining TOR complex 2 integrity and coupling to downstream signaling. Eukaryot Cell, 2008. 7(8): p. 1328-43.
103. Kubler, E. and H. Riezman, Actin and fimbrin are required for the internalization step of endocytosis in yeast. Embo j, 1993. 12(7): p. 2855-62.
104. Geli, M.I. and H. Riezman, Role of Type I Myosins in Receptor-Mediated Endocytosis in Yeast. Science, 1996. 272(5261): p. 533.
105. Qualmann, B., M.M. Kessels, and R.B. Kelly, Molecular links between endocytosis and the actin cytoskeleton. J Cell Biol, 2000. 150(5): p. F111-F116.
106. Boscheron, C., et al., A role for the yeast CLIP170 ortholog, the plus-end-tracking protein Bik1, and the Rho1 GTPase in Snc1 trafficking. J Cell Sci, 2016. 129(17): p. 3332.
107. Helliwell, S.B., et al., The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin cytoskeleton. Curr Biol, 1998. 8(22): p. 1211-4.
108. Liao, H.-C. and M.-Y. Chen, Target of rapamycin complex 2 signals to downstream effector yeast protein kinase 2 (Ypk2) through adheres-voraciously-to-target-of-rapamycin-2 protein 1 (Avo1) in Saccharomyces cerevisiae. J Biol Chem, 2012. 287(9): p. 6089-6099.
109. Zinzalla, V., et al., Activation of mTORC2 by association with the ribosome. Cell, 2011. 144(5): p. 757-68.
110. Koo, S.H., et al., The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature, 2005. 437(7062): p. 1109-11.
111. Jansson, D., et al., Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2. Proc Natl Acad Sci U S A, 2008. 105(29): p. 10161-10166.
112. Kumar, A., et al., Muscle-specific deletion of rictor impairs insulin-stimulated glucose transport and enhances Basal glycogen synthase activity. Mol Cell Biol, 2008. 28(1): p. 61-70.
113. Ryu, D., et al., TORC2 Regulates Hepatic Insulin Signaling via a Mammalian Phosphatidic Acid Phosphatase, LIPIN1. Cell Metab, 2009. 9(3): p. 240-251.
114. Cohen, A., M. Kupiec, and R. Weisman, Glucose activates TORC2-Gad8 protein via positive regulation of the cAMP/cAMP-dependent protein kinase A (PKA) pathway and negative regulation of the Pmk1 protein-mitogen-activated protein kinase pathway. J Biol Chem, 2014. 289(31): p. 21727-37.
115. Cardenas, M.E. and J. Heitman, FKBP12-rapamycin target TOR2 is a vacuolar protein with an associated phosphatidylinositol-4 kinase activity. Embo j, 1995. 14(23): p. 5892-907.
116. Jiang, Y. and J.R. Broach, Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. Embo j, 1999. 18(10): p. 2782-92.
117. Zheng, X.F., et al., TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell, 1995. 82(1): p. 121-30.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top