跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/20 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林詠萱
研究生(外文):Yung-Hsuan Lin
論文名稱:探討CEP89在纖毛生合成中扮演的功能
論文名稱(外文):The functional characterization of CEP89 in cilia biogenesis
指導教授:王琬菁
指導教授(外文):Won-Jing Wang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:66
中文關鍵詞:纖毛合成纖毛生合成
外文關鍵詞:ciliaCEP89ciliogenesis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
纖毛是一個由微管所組成,並且是由母中心粒所延伸長出的構造。纖毛在細胞中像是一個天線,是細胞的訊息接收者,它能夠接收外在環境中物理性以及化學性的訊號並促進細胞做出反應,促進下游相關基因的表現。除此之外,纖毛上具備許多跟胚胎發育以及組織型態發育有關的訊號傳遞相關受器。纖毛的生長與細胞週期是緊密相關的。纖毛會在細胞進入G1/Go 時從細胞膜突,並在進入分裂期前縮回去。而纖毛的形成倚靠一個重要的激酶的活性,Tau 微管蛋白激脢(TTBK2)。Tau 微管蛋白激脢的活性會啟動纖毛的形成。另外,纖毛形成的初期會觀察到囊泡聚集在母中心粒頂端的特化構造,此特化構造稱之為centriole distal appendages。這都是纖毛形成的必備條件。而centriole distal appendages 共由六個蛋白所組成(CEP83, CEP89, SCLT1, FBF1, LRRC45, CEP164),他們的共通點就是當基因敲弱這些蛋白,都會抑制纖毛的形成,然而詳細的機轉尚不清楚。在此篇論文,我們透過建立了CEP89 基因剔除的RPE1 細胞,發現CEP89 基因的剔除會在不影響細胞週期的前提下,影響纖毛的形成。我們進一步發現CEP89是利用調節囊泡聚集在母中心粒頂端的步驟進而調控纖毛的形成。除此之外,我們發現CEP89在中心粒上的訊號會隨著細胞週期改變。當細胞進入分裂期,中心粒上是觀察不到CEP89的訊號的。CEP89的訊號出現在中心粒的時間點和纖毛形成的時間相關,這意味著CEP89有可能也會調控纖毛的拆解。
Cilia are microtubule-based organelles extending from the mother centrioles, which act as signal sensors in cells and play important roles in development and tissue morphogenesis. Ciliogenesis is tightly coupled with cell cycle that occurs in G0 or G1 phase and follows a series of highly ordered steps. In the initiating stage, it requires the kinase activity of tau tubulin kinase 2 (TTBK2) and the docking of membrane vesicles by the centriole distal appendages (DAs). The centriole distal appendage is a conserved structure composed of CEP83, CEP89, SCLT1, FBF1, LRRC45, and CEP164. It is known that knockdown of distal appendage proteins (DAPs) inhibits ciliogenesis. However, the underline mechanism of how DAPs regulate ciliogenesis and how membrane vesicles are stably attached at centriole distal end remains unclear. Here, we generate CEP89 knockout RPE1 cells to investigate the molecular regulation of CEP89 in ciliogenesis. We find that CEP89 knockout significantly inhibits ciliogenesis without affecting cell-cycle progression. By analyzing the key steps during ciliogenesis, we uncover that CEP89 promotes cilia formation at the step of ciliary vesicle formation. The localization analysis of CEP89 at the centrioles shows that CEP89 disappears from the mother centriole in mitosis. As the localization of CEP89 at the centrioles is coupled to cell cycle, as well as cilia cycle, our results suggest that the removal of CEP89 from the centrioles may also contribute to the control of cilia disassembly.
致謝:……………...……………………….....………………………….................i
Contents 目錄:........................................................................ii
Abstract:..................................................................................v
摘要:........................................................................................vi
Chapter 1. Introduction…............................................................1
1.1 Centriole, centrosome, and cilium…….................................1
1.2 Cilia and Ciliopathy……………………..…………………………………..2
1.3 Cilia biogenesis is strictly regulated and coupled with cell cycle………..................................................................................3
1.4 Ciliogenesis…………………………………………………………………4
1.4.1 The centriole distal appendages........................................4
1.4.2 TTBK2 is recruited to the centriole by CEP164 upon cilia initiation…...........................................................................5
1.4.3 The removal of CP110………..……..................................5
1.4.4 The docking of membrane vesicles to the centriole distal appendages………....……………………………………………………….6
1.4.5 The assembly of transition zone……...........................6
1.4.6 The intraflagellar transport machinery........................7
1.5 Centrosomal protein of 89 kDa..........................................7
Chapter 2. Materials and methods.............................................9
2.1 Cell culture.........................................................................9
2.2 Transfection in 293T and U2OS cells.................................9
2.3 Transfection in RPE1 cells..................................................9
2.4 Generation of CEP89-/- RPE1 cells...................................10
2.5 Cell lysis............................................................................11
2.6 Protein quantification........................................................11
2.7 Western blot analysis........................................................12
2.8 Immunofluorescence, microscopy....................................13
2.10 Ciliogenesis experiments..................................................15
2.11 Cell proliferation rate assay..............................................15
2.12 Cell cycle synchronization and proteasome inhibitor treatment…...........................................................................….16
2.13 Treatment of Eg5 inhibitor and PLK1 inhibitor...................17
2.15 Statistical analysis............................................................18
Chapter 3. Results....................................................................19
3.1 Generation of CEP89 antibody.........................................19
3.2 Generation of CEP89-/- RPE1 cells..................................20
3.3 CEP89 inactivation does not affect cell proliferation.......20
3.4 CEP89 inactivation inhibits ciliogenesis...........................21
3.5 CEP89 inactivation does not affect the assembly of the centriole distal appendages.....................................................22
3.6 CEP89 inactivation does not affect the recruitment of TTBK2 to the centrioles during ciliogenesis…………………….......22
3.7 CEP89 inactivation does not affect the removal of CP110 during ciliogenesis...................................................................23
3.8 CEP89 inactivation inhibits the formation of ciliary vesicle……........................................................................………23
3.9 The localization of CEP89 at the centrioles is cell-cycle dependent….............................................................................24
3.10 The global expression of CEP89 is cell-cycle dependent...............................................................................25
3.11 CEP89 is phosphorylated during G2/M phases................26
3.12 Inhibition of Plk1 blocks CEP89 removal from the centrioles during mitosis….......................................................26
3.13 Overexpression of wild-type Plk1 induces degradation of CEP89…...................................................................................27
Chapter 4. Discussion..............................................................28
4.1 The role of CEP89 in cilia formation.................................28
4.2 The relationships between CEP89 localization dynamics, cilia, and PLK1….……............................………………………………….28
4.3 The degradation of CEP89 during mitosis.......................29
4.4 The relationship between TTBK2 and CEP89...................30
4.5 The relationships between CEP89, centriole, and mitochondria............................................................................31
Chapter 5. Figure legends.......................................................32
Figure. 1. Homemade CEP89 antibody successfully detects endogenous CEP89 in Western blot and immunostaining.......33
Figure. 3. CEP89 inactivation does not affect cell proliferation……................................................................………36
Figure. 4. CEP89 inactivation inhibits ciliogenesis……….......….38
Figure. 5. CEP89 inactivation does not affect the recruitment of centriole distal appendages.....................................................41
Figure. 6. CEP89 inactivation does not affect the recruitment of TTBK2 to the centrioles...........................................................43
Figure. 7. CEP89 inactivation does not affect CP110 removal during ciliogenesis...................................................................45
Figure. 8. CEP89 inactivation inhibits the formation of ciliary vesicle……………........................................................................47
Figure. 9. The diagram shows that CEP89 affects ciliary vesicle formation in promoting ciliogensis..........................................48
Figure. 10. The recruitment of CEP89 to the centrioles is not totally occurred in G2 phases..................................................50
Figure. 11. The localization of CEP89 at the centrioles is cell-cycle dependent......................................................................54
Figure. 12. CEP89 undergoes proteasome-dependent protein degradation in mitosis.............................................................55
Figure. 13. Inhibition of Plk1 blocks CEP89 removal from the centrioles during mitosis………………………………….........……………57
Figure. 14. Overexpression of wild-type Plk1 induces degradation of CEP89. ..........................................................58
Chapter 6. References.............................................................59
Chapter 7. Tables.....................................................................64
Table 1. Primary antibodies information..................................64
Table 2. Secondary antibodies information.............................65
Table 3. Primers for cloning....................................................66
1. Sorokin, S.P., Reconstructions of Centriole Formation and Ciliogenesis in Mammalian Lungs. Journal of Cell Science, 1968. 3(2): p. 207.

2. Winey, M. and E. O'Toole, Centriole structure. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2014. 369(1650): p. 20130457.

3. Edde, B., et al., Posttranslational glutamylation of alpha-tubulin. Science, 1990. 247(4938): p. 83.

4. Eggenschwiler, J.T. and K.V. Anderson, Cilia and developmental signaling. Annual review of cell and developmental biology, 2007. 23: p. 345-373.

5. Sorokin, S., Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. The Journal of cell biology, 1962. 15(2): p. 363-377.

6. Christensen, S.T., et al., Sensory Cilia and Integration of Signal Transduction in Human Health and Disease. Traffic, 2007. 8(2): p. 97-109.

7. Rohatgi, R. and W.J. Snell, The ciliary membrane. Current opinion in cell biology, 2010. 22(4): p. 541-546.

8. Gilula, N.B. and P. Satir, The ciliary necklace. A ciliary membrane specialization. The Journal of cell biology, 1972. 53(2): p. 494-509.

9. Vincensini, L., T. Blisnick, and P. Bastin, 1001 model organisms to study cilia and flagella. Biology of the Cell, 2011. 103(3): p. 109-130.

10. Mitchison, H.M. and E.M. Valente, Motile and non-motile cilia in human pathology: from function to phenotypes. The Journal of Pathology, 2017. 241(2): p. 294-309.

11. Satir, P. and S.T. Christensen, Overview of Structure and Function of Mammalian Cilia. Annual Review of Physiology, 2007. 69(1): p. 377-400.

12. Singla, V. and J.F. Reiter, The Primary Cilium as the Cell's Antenna: Signaling at a Sensory Organelle. Science, 2006. 313(5787): p. 629.

13. Hildebrandt, F., T. Benzing, and N. Katsanis, Ciliopathies. The New England journal of medicine, 2011. 364(16): p. 1533-1543.

14. Badano, J.L., et al., The Ciliopathies: An Emerging Class of Human Genetic Disorders. Annual Review of Genomics and Human Genetics, 2006. 7(1): p. 125-148.

15. Hildebrandt, F. and W. Zhou, Nephronophthisis-Associated Ciliopathies. Journal of the American Society of Nephrology, 2007. 18(6): p. 1855.

16. Zariwala, M.A., M.R. Knowles, and H. Omran, Genetic Defects in Ciliary Structure and Function. Annual Review of Physiology, 2007. 69(1): p. 423-450.

17. Goto, H., A. Inoko, and M. Inagaki, Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cellular and molecular life sciences : CMLS, 2013. 70(20): p. 3893-3905.

18. Pugacheva, E.N., et al., HEF1-Dependent Aurora A Activation Induces Disassembly of the Primary Cilium. Cell, 2007. 129(7): p. 1351-1363.

19. Wang, G., et al., PCM1 recruits Plk1 to the pericentriolar matrix to promote primary cilia disassembly before mitotic entry. J Cell Sci, 2013. 126(Pt 6): p. 1355-65.

20. Schmidt, K.N., et al., Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J Cell Biol, 2012. 199(7): p. 1083-101.

21. Tanos, B.E., et al., Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev, 2013. 27(2): p. 163-8.

22. Cole, D.G., et al., Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. The Journal of cell biology, 1998. 141(4): p. 993-1008.

23. Pedersen, L.B. and J.L. Rosenbaum, Chapter Two Intraflagellar Transport (IFT): Role in Ciliary Assembly, Resorption and Signalling, in Current Topics in Developmental Biology. 2008, Academic Press. p. 23-61.

24. Kurtulmus, B., et al., LRRC45 contributes to early steps of axoneme extension. Journal of Cell Science, 2018. 131(18): p. jcs223594.

25. Kurtulmus, B., et al., LRRC45 contributes to early steps of axoneme extension. Journal of Cell Science, 2018: p. jcs.223594.

26. Ye, X., et al., C2cd3 is critical for centriolar distal appendage assembly and ciliary vesicle docking in mammals. Proceedings of the National Academy of Sciences of the United States of America, 2014. 111(6): p. 2164-2169.

27. Yang, T.T., et al., Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nature Communications, 2018. 9(1): p. 2023.

28. Bowler, M., et al., High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy. Nat Commun, 2019. 10(1): p. 993.

29. Takahashi, M., et al., A novel tau-tubulin kinase from bovine brain. FEBS Letters, 1995. 372(1): p. 59-64.

30. Tomizawa, K., et al., Tau-tubulin kinase phosphorylates tau at Ser-208 and Ser-210, sites found in paired helical filament-tau. FEBS Letters, 2001. 492(3): p. 221-227.

31. Goetz, S.C., K.F. Liem, Jr., and K.V. Anderson, The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell, 2012. 151(4): p. 847-858.

32. Oda, T., et al., Binding to Cep164, but not EB1, is essential for centriolar localization of TTBK2 and its function in ciliogenesis. Genes Cells, 2014. 19(12): p. 927-40.

33. Čajánek, L. and E.A. Nigg, Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. Proceedings of the National Academy of Sciences of the United States of America, 2014. 111(28): p. E2841-E2850.

34. Jackson, P.K., TTBK2 kinase: linking primary cilia and cerebellar ataxias. Cell, 2012. 151(4): p. 697-699.

35. Spektor, A., et al., Cep97 and CP110 Suppress a Cilia Assembly Program. Cell, 2007. 130(4): p. 678-690.

36. Huang, N., et al., M-Phase Phosphoprotein 9 regulates ciliogenesis by modulating CP110-CEP97 complex localization at the mother centriole. Nature Communications, 2018. 9(1): p. 4511.

37. Tsang, W.Y., et al., CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease. Developmental cell, 2008. 15(2): p. 187-197.

38. Insinna, C., et al., Investigation of F-BAR domain PACSIN proteins uncovers membrane tubulation function in cilia assembly and transport. Nat Commun, 2019. 10(1): p. 428.

39. Lu, Q., et al., Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat Cell Biol, 2015. 17(3): p. 228-240.

40. Wu, C.T., H.Y. Chen, and T.K. Tang, Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis. Nat Cell Biol, 2018. 20(2): p. 175-185.

41. Anderson, R.G., The three-dimensional structure of the basal body from the rhesus monkey oviduct. The Journal of cell biology, 1972. 54(2): p. 246-265.

42. Hu, Q., et al., A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science (New York, N.Y.), 2010. 329(5990): p. 436-439.

43. Kee, H.L., et al., A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nature cell biology, 2012. 14(4): p. 431-437.

44. Reiter, J.F., O.E. Blacque, and M.R. Leroux, The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO reports, 2012. 13(7): p. 608-618.

45. Chih, B., et al., A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nature Cell Biology, 2011. 14: p. 61.

46. Marshall, W.F., et al., Flagellar length control system: testing a simple model based on intraflagellar transport and turnover. Molecular biology of the cell, 2005. 16(1): p. 270-278.

47. Hao, L., et al., Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments. Nature cell biology, 2011. 13(7): p. 790-798.

48. Snow, J.J., et al., Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nature Cell Biology, 2004. 6(11): p. 1109-1113.

49. Claros, M.G. and P. Vincens, Computational Method to Predict Mitochondrially Imported Proteins and their Targeting Sequences. European Journal of Biochemistry, 1996. 241(3): p. 779-786.

50. Sillibourne, J.E., et al., Primary ciliogenesis requires the distal appendage component Cep123. Biol Open, 2013. 2(6): p. 535-45.

51. van Bon, B.W., et al., CEP89 is required for mitochondrial metabolism and neuronal function in man and fly. Hum Mol Genet, 2013. 22(15): p. 3138-51.

52. Mali, P., et al., RNA-guided human genome engineering via Cas9. Science (New York, N.Y.), 2013. 339(6121): p. 823-826.

53. Steegmaier, M., et al., BI 2536, a Potent and Selective Inhibitor of Polo-like Kinase 1, Inhibits Tumor Growth In Vivo. Current Biology, 2007. 17(4): p. 316-322.

54. Vorobjev, I.A. and S. Chentsov Yu, Centrioles in the cell cycle. I. Epithelial cells. The Journal of Cell Biology, 1982. 93(3): p. 938.

55. Kong, D., et al., Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles. The Journal of cell biology, 2014. 206(7): p. 855-865.

56. Donaldson, M.M., et al., The mitotic roles of Polo-like kinase. Journal of Cell Science, 2001. 114(13): p. 2357.

57. Barr, F.A., H.H.W. Silljé, and E.A. Nigg, Polo-like kinases and the orchestration of cell division. Nature Reviews Molecular Cell Biology, 2004. 5(6): p. 429-441.

58. van de Weerdt, B.C.M., et al., Uncoupling Anaphase-Promoting Complex/Cyclosome Activity from Spindle Assembly Checkpoint Control by Deregulating Polo-Like Kinase 1. Molecular and Cellular Biology, 2005. 25(5): p. 2031.

59. Kishi, K., et al., Functional Dynamics of Polo-Like Kinase 1 at the Centrosome. Molecular and Cellular Biology, 2009. 29(11): p. 3134.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top