|
1. Sorokin, S.P., Reconstructions of Centriole Formation and Ciliogenesis in Mammalian Lungs. Journal of Cell Science, 1968. 3(2): p. 207.
2. Winey, M. and E. O'Toole, Centriole structure. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2014. 369(1650): p. 20130457.
3. Edde, B., et al., Posttranslational glutamylation of alpha-tubulin. Science, 1990. 247(4938): p. 83.
4. Eggenschwiler, J.T. and K.V. Anderson, Cilia and developmental signaling. Annual review of cell and developmental biology, 2007. 23: p. 345-373.
5. Sorokin, S., Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. The Journal of cell biology, 1962. 15(2): p. 363-377.
6. Christensen, S.T., et al., Sensory Cilia and Integration of Signal Transduction in Human Health and Disease. Traffic, 2007. 8(2): p. 97-109.
7. Rohatgi, R. and W.J. Snell, The ciliary membrane. Current opinion in cell biology, 2010. 22(4): p. 541-546.
8. Gilula, N.B. and P. Satir, The ciliary necklace. A ciliary membrane specialization. The Journal of cell biology, 1972. 53(2): p. 494-509.
9. Vincensini, L., T. Blisnick, and P. Bastin, 1001 model organisms to study cilia and flagella. Biology of the Cell, 2011. 103(3): p. 109-130.
10. Mitchison, H.M. and E.M. Valente, Motile and non-motile cilia in human pathology: from function to phenotypes. The Journal of Pathology, 2017. 241(2): p. 294-309.
11. Satir, P. and S.T. Christensen, Overview of Structure and Function of Mammalian Cilia. Annual Review of Physiology, 2007. 69(1): p. 377-400.
12. Singla, V. and J.F. Reiter, The Primary Cilium as the Cell's Antenna: Signaling at a Sensory Organelle. Science, 2006. 313(5787): p. 629.
13. Hildebrandt, F., T. Benzing, and N. Katsanis, Ciliopathies. The New England journal of medicine, 2011. 364(16): p. 1533-1543.
14. Badano, J.L., et al., The Ciliopathies: An Emerging Class of Human Genetic Disorders. Annual Review of Genomics and Human Genetics, 2006. 7(1): p. 125-148.
15. Hildebrandt, F. and W. Zhou, Nephronophthisis-Associated Ciliopathies. Journal of the American Society of Nephrology, 2007. 18(6): p. 1855.
16. Zariwala, M.A., M.R. Knowles, and H. Omran, Genetic Defects in Ciliary Structure and Function. Annual Review of Physiology, 2007. 69(1): p. 423-450.
17. Goto, H., A. Inoko, and M. Inagaki, Cell cycle progression by the repression of primary cilia formation in proliferating cells. Cellular and molecular life sciences : CMLS, 2013. 70(20): p. 3893-3905.
18. Pugacheva, E.N., et al., HEF1-Dependent Aurora A Activation Induces Disassembly of the Primary Cilium. Cell, 2007. 129(7): p. 1351-1363.
19. Wang, G., et al., PCM1 recruits Plk1 to the pericentriolar matrix to promote primary cilia disassembly before mitotic entry. J Cell Sci, 2013. 126(Pt 6): p. 1355-65.
20. Schmidt, K.N., et al., Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J Cell Biol, 2012. 199(7): p. 1083-101.
21. Tanos, B.E., et al., Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev, 2013. 27(2): p. 163-8.
22. Cole, D.G., et al., Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. The Journal of cell biology, 1998. 141(4): p. 993-1008.
23. Pedersen, L.B. and J.L. Rosenbaum, Chapter Two Intraflagellar Transport (IFT): Role in Ciliary Assembly, Resorption and Signalling, in Current Topics in Developmental Biology. 2008, Academic Press. p. 23-61.
24. Kurtulmus, B., et al., LRRC45 contributes to early steps of axoneme extension. Journal of Cell Science, 2018. 131(18): p. jcs223594.
25. Kurtulmus, B., et al., LRRC45 contributes to early steps of axoneme extension. Journal of Cell Science, 2018: p. jcs.223594.
26. Ye, X., et al., C2cd3 is critical for centriolar distal appendage assembly and ciliary vesicle docking in mammals. Proceedings of the National Academy of Sciences of the United States of America, 2014. 111(6): p. 2164-2169.
27. Yang, T.T., et al., Super-resolution architecture of mammalian centriole distal appendages reveals distinct blade and matrix functional components. Nature Communications, 2018. 9(1): p. 2023.
28. Bowler, M., et al., High-resolution characterization of centriole distal appendage morphology and dynamics by correlative STORM and electron microscopy. Nat Commun, 2019. 10(1): p. 993.
29. Takahashi, M., et al., A novel tau-tubulin kinase from bovine brain. FEBS Letters, 1995. 372(1): p. 59-64.
30. Tomizawa, K., et al., Tau-tubulin kinase phosphorylates tau at Ser-208 and Ser-210, sites found in paired helical filament-tau. FEBS Letters, 2001. 492(3): p. 221-227.
31. Goetz, S.C., K.F. Liem, Jr., and K.V. Anderson, The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell, 2012. 151(4): p. 847-858.
32. Oda, T., et al., Binding to Cep164, but not EB1, is essential for centriolar localization of TTBK2 and its function in ciliogenesis. Genes Cells, 2014. 19(12): p. 927-40.
33. Čajánek, L. and E.A. Nigg, Cep164 triggers ciliogenesis by recruiting Tau tubulin kinase 2 to the mother centriole. Proceedings of the National Academy of Sciences of the United States of America, 2014. 111(28): p. E2841-E2850.
34. Jackson, P.K., TTBK2 kinase: linking primary cilia and cerebellar ataxias. Cell, 2012. 151(4): p. 697-699.
35. Spektor, A., et al., Cep97 and CP110 Suppress a Cilia Assembly Program. Cell, 2007. 130(4): p. 678-690.
36. Huang, N., et al., M-Phase Phosphoprotein 9 regulates ciliogenesis by modulating CP110-CEP97 complex localization at the mother centriole. Nature Communications, 2018. 9(1): p. 4511.
37. Tsang, W.Y., et al., CP110 suppresses primary cilia formation through its interaction with CEP290, a protein deficient in human ciliary disease. Developmental cell, 2008. 15(2): p. 187-197.
38. Insinna, C., et al., Investigation of F-BAR domain PACSIN proteins uncovers membrane tubulation function in cilia assembly and transport. Nat Commun, 2019. 10(1): p. 428.
39. Lu, Q., et al., Early steps in primary cilium assembly require EHD1/EHD3-dependent ciliary vesicle formation. Nat Cell Biol, 2015. 17(3): p. 228-240.
40. Wu, C.T., H.Y. Chen, and T.K. Tang, Myosin-Va is required for preciliary vesicle transportation to the mother centriole during ciliogenesis. Nat Cell Biol, 2018. 20(2): p. 175-185.
41. Anderson, R.G., The three-dimensional structure of the basal body from the rhesus monkey oviduct. The Journal of cell biology, 1972. 54(2): p. 246-265.
42. Hu, Q., et al., A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science (New York, N.Y.), 2010. 329(5990): p. 436-439.
43. Kee, H.L., et al., A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nature cell biology, 2012. 14(4): p. 431-437.
44. Reiter, J.F., O.E. Blacque, and M.R. Leroux, The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO reports, 2012. 13(7): p. 608-618.
45. Chih, B., et al., A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nature Cell Biology, 2011. 14: p. 61.
46. Marshall, W.F., et al., Flagellar length control system: testing a simple model based on intraflagellar transport and turnover. Molecular biology of the cell, 2005. 16(1): p. 270-278.
47. Hao, L., et al., Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments. Nature cell biology, 2011. 13(7): p. 790-798.
48. Snow, J.J., et al., Two anterograde intraflagellar transport motors cooperate to build sensory cilia on C. elegans neurons. Nature Cell Biology, 2004. 6(11): p. 1109-1113.
49. Claros, M.G. and P. Vincens, Computational Method to Predict Mitochondrially Imported Proteins and their Targeting Sequences. European Journal of Biochemistry, 1996. 241(3): p. 779-786.
50. Sillibourne, J.E., et al., Primary ciliogenesis requires the distal appendage component Cep123. Biol Open, 2013. 2(6): p. 535-45.
51. van Bon, B.W., et al., CEP89 is required for mitochondrial metabolism and neuronal function in man and fly. Hum Mol Genet, 2013. 22(15): p. 3138-51.
52. Mali, P., et al., RNA-guided human genome engineering via Cas9. Science (New York, N.Y.), 2013. 339(6121): p. 823-826.
53. Steegmaier, M., et al., BI 2536, a Potent and Selective Inhibitor of Polo-like Kinase 1, Inhibits Tumor Growth In Vivo. Current Biology, 2007. 17(4): p. 316-322.
54. Vorobjev, I.A. and S. Chentsov Yu, Centrioles in the cell cycle. I. Epithelial cells. The Journal of Cell Biology, 1982. 93(3): p. 938.
55. Kong, D., et al., Centriole maturation requires regulated Plk1 activity during two consecutive cell cycles. The Journal of cell biology, 2014. 206(7): p. 855-865.
56. Donaldson, M.M., et al., The mitotic roles of Polo-like kinase. Journal of Cell Science, 2001. 114(13): p. 2357.
57. Barr, F.A., H.H.W. Silljé, and E.A. Nigg, Polo-like kinases and the orchestration of cell division. Nature Reviews Molecular Cell Biology, 2004. 5(6): p. 429-441.
58. van de Weerdt, B.C.M., et al., Uncoupling Anaphase-Promoting Complex/Cyclosome Activity from Spindle Assembly Checkpoint Control by Deregulating Polo-Like Kinase 1. Molecular and Cellular Biology, 2005. 25(5): p. 2031.
59. Kishi, K., et al., Functional Dynamics of Polo-Like Kinase 1 at the Centrosome. Molecular and Cellular Biology, 2009. 29(11): p. 3134.
|