|
1. Kuspa, A. and W.F. Loomis, Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc Natl Acad Sci U S A, 1992. 89(18): p. 8803-7. 2. Adachi, H., et al., Isolation of Dictyostelium discoideum cytokinesis mutants by restriction enzyme-mediated integration of the blasticidin S resistance marker. Biochem Biophys Res Commun, 1994. 205(3): p. 1808-14. 3. Yi-Lan, W., Isolation and characterization of genes that are required for proper chemotaxis and development in Dictyostelium. 2001. 4. Pang, T.-L., The regulation of chemotaxis in Dictyostelium development. 2007. 5. Chen, F.C., Screening and characterization of dictyostelium mutants defective in chemotaxis and development. 2004. 6. Arai, A., J.A. Spencer, and E.N. Olson, STARS, a striated muscle activator of Rho signaling and serum response factor-dependent transcription. J Biol Chem, 2002. 277(27): p. 24453-9. 7. Pang, T.L., et al., Costars, a Dictyostelium protein similar to the C-terminal domain of STARS, regulates the actin cytoskeleton and motility. J Cell Sci, 2010. 123(Pt 21): p. 3745-55. 8. Weijer, C.J., Collective cell migration in development. J Cell Sci, 2009. 122(Pt 18): p. 3215-23. 9. Snapper, S.B., et al., N-WASP deficiency reveals distinct pathways for cell surface projections and microbial actin-based motility. Nat Cell Biol, 2001. 3(10): p. 897-904. 10. Welch, M.D. and R.D. Mullins, Cellular control of actin nucleation. Annu Rev Cell Dev Biol, 2002. 18: p. 247-88. 11. Vinson, V.K., et al., Interactions of Acanthamoeba profilin with actin and nucleotides bound to actin. Biochemistry, 1998. 37(31): p. 10871-80. 12. Kaiser, D.A., et al., Profilin is predominantly associated with monomeric actin in Acanthamoeba. J Cell Sci, 1999. 112 ( Pt 21): p. 3779-90. 13. Kawano, Y., et al., Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. J Cell Biol, 1999. 147(5): p. 1023-38. 14. Maekawa, M., et al., Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science, 1999. 285(5429): p. 895-8. 15. Nobes, C.D. and A. Hall, Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 1995. 81(1): p. 53-62. 16. Gridelli, C., et al., Non-small-cell lung cancer. Nature Reviews Disease Primers, 2015. 1: p. 15009. 17. Zappa, C. and S.A. Mousa, Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res, 2016. 5(3): p. 288-300. 18. Sholl, L.M., et al., Multi-institutional Oncogenic Driver Mutation Analysis in Lung Adenocarcinoma: The Lung Cancer Mutation Consortium Experience. J Thorac Oncol, 2015. 10(5): p. 768-777. 19. Lynch, T.J., et al., Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med, 2004. 350(21): p. 2129-39. 20. Paez, J.G., et al., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004. 304(5676): p. 1497-500. 21. Pao, W., et al., EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A, 2004. 101(36): p. 13306-11. 22. Riely, G.J., J. Marks, and W. Pao, KRAS mutations in non-small cell lung cancer. Proc Am Thorac Soc, 2009. 6(2): p. 201-5. 23. Riely, G.J. and M. Ladanyi, KRAS mutations: an old oncogene becomes a new predictive biomarker. J Mol Diagn, 2008. 10(6): p. 493-5. 24. Riely, G.J., et al., Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res, 2008. 14(18): p. 5731-4. 25. Brose, M.S., et al., BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res, 2002. 62(23): p. 6997-7000. 26. Choi, Y.L., et al., Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res, 2008. 68(13): p. 4971-6. 27. Takeuchi, K., et al., Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin Cancer Res, 2008. 14(20): p. 6618-24. 28. Koivunen, J.P., et al., EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res, 2008. 14(13): p. 4275-83. 29. Cardarella, S., et al., Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer. Clin Cancer Res, 2013. 19(16): p. 4532-40. 30. Millington, G.W., Mutations of the BRAF gene in human cancer, by Davies et al. (Nature 2002; 417: 949-54). Clin Exp Dermatol, 2013. 38(2): p. 222-3. 31. Naoki, K., et al., Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res, 2002. 62(23): p. 7001-3. 32. Paik, P.K., et al., Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol, 2011. 29(15): p. 2046-51. 33. Pratilas, C.A., et al., Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res, 2008. 68(22): p. 9375-83. 34. O'Brien, J., et al., Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne), 2018. 9: p. 402. 35. Lee, Y., et al., MicroRNA genes are transcribed by RNA polymerase II. Embo j, 2004. 23(20): p. 4051-60. 36. Borchert, G.M., W. Lanier, and B.L. Davidson, RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol, 2006. 13(12): p. 1097-101. 37. Kim, V.N., J. Han, and M.C. Siomi, Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol, 2009. 10(2): p. 126-39. 38. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97. 39. Michael, M.Z., et al., Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res, 2003. 1(12): p. 882-91. 40. Iorio, M.V., et al., MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 2005. 65(16): p. 7065-70. 41. Kent, O.A. and J.T. Mendell, A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene, 2006. 25(46): p. 6188-96. 42. Iorio, M.V., et al., MicroRNA signatures in human ovarian cancer. Cancer Res, 2007. 67(18): p. 8699-707. 43. Akao, Y., et al., Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci, 2007. 98(12): p. 1914-20. 44. Schepeler, T., et al., Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res, 2008. 68(15): p. 6416-24. 45. Subramanian, S., et al., MicroRNA expression signature of human sarcomas. Oncogene, 2008. 27(14): p. 2015-26. 46. Wang, X., et al., Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One, 2008. 3(7): p. e2557. 47. Takagi, T., et al., Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology, 2009. 77(1): p. 12-21. 48. Cui, S.Y., R. Wang, and L.B. Chen, MicroRNA-145: a potent tumour suppressor that regulates multiple cellular pathways. J Cell Mol Med, 2014. 18(10): p. 1913-26. 49. Li, B., et al., MicroRNA145 inhibits migration and induces apoptosis in human nonsmall cell lung cancer cells through regulation of the EGFR/PI3K/AKT signaling pathway. Oncol Rep, 2018. 40(5): p. 2944-2954. 50. Pan, Y., et al., miR-145 suppresses the proliferation, invasion and migration of NSCLC cells by regulating the BAX/BCL-2 ratio and the caspase-3 cascade. Oncol Lett, 2018. 15(4): p. 4337-4343. 51. Baldus, S.E., et al., MUC1 and nuclear beta-catenin are coexpressed at the invasion front of colorectal carcinomas and are both correlated with tumor prognosis. Clin Cancer Res, 2004. 10(8): p. 2790-6. 52. Chen, J.J., et al., Reverse Correlation between MicroRNA-145 and FSCN1 Affecting Gastric Cancer Migration and Invasion. PLoS One, 2015. 10(5): p. e0126890. 53. Zhang, Y., et al., MicroRNA-145 inhibits migration and invasion via inhibition of fascin 1 protein expression in non-small-cell lung cancer cells. Mol Med Rep, 2015. 12(4): p. 6193-8. 54. Ren, D., et al., Wild-type p53 suppresses the epithelial-mesenchymal transition and stemness in PC-3 prostate cancer cells by modulating miR145. Int J Oncol, 2013. 42(4): p. 1473-81. 55. Mo, D., et al., MiRNA-145 suppresses lung adenocarcinoma cell invasion and migration by targeting N-cadherin. Biotechnol Lett, 2017. 39(5): p. 701-710. 56. Dong, R., et al., miR-145 inhibits tumor growth and metastasis by targeting metadherin in high-grade serous ovarian carcinoma. Oncotarget, 2014. 5(21): p. 10816-29. 57. Kojima, S., et al., The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer. J Hum Genet, 2014. 59(2): p. 78-87. 58. Huang, H., et al., miR-145 inhibits invasion and metastasis by directly targeting Smad3 in nasopharyngeal cancer. Tumour Biol, 2015. 36(6): p. 4123-31. 59. Wu, D., et al., microRNA145 inhibits cell proliferation, migration and invasion by targeting matrix metallopeptidase-11 in renal cell carcinoma. Mol Med Rep, 2014. 10(1): p. 393-8. 60. Jiang, S.B., et al., MicroRNA-145-5p inhibits gastric cancer invasiveness through targeting N-cadherin and ZEB2 to suppress epithelial-mesenchymal transition. Onco Targets Ther, 2016. 9: p. 2305-15. 61. Xu, Q., et al., MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res, 2012. 40(2): p. 761-74. 62. Ding, W., et al., MiR-145 suppresses cell proliferation and motility by inhibiting ROCK1 in hepatocellular carcinoma. Tumour Biol, 2016. 37(5): p. 6255-60. 63. Wan, X., et al., ROCK1, a novel target of miR-145, promotes glioma cell invasion. Mol Med Rep, 2014. 9(5): p. 1877-82. 64. Bader, A.G., miR-34 - a microRNA replacement therapy is headed to the clinic. Front Genet, 2012. 3: p. 120. 65. Inamoto, T., et al., Intravesical administration of exogenous microRNA-145 as a therapy for mouse orthotopic human bladder cancer xenograft. Oncotarget, 2015. 6(25): p. 21628-35. 66. Brennecke, J., et al., Principles of microRNA-target recognition. PLoS Biol, 2005. 3(3): p. e85. 67. Mairinger, F.D., et al., Different micro-RNA expression profiles distinguish subtypes of neuroendocrine tumors of the lung: results of a profiling study. Mod Pathol, 2014. 27(12): p. 1632-40.
|