(3.232.129.123) 您好!臺灣時間:2021/03/04 18:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:丁琬庭
研究生(外文):Wan-Ting Ting
論文名稱:國人暴露醛類之混合性風險評估與風險排序
論文名稱(外文):Mixture risk assessment and prioritization for the Taiwanese population exposed to aldehydes
指導教授:楊振昌楊振昌引用關係康照洲康照洲引用關係林怡君林怡君引用關係
指導教授(外文):Chen-Chang YangJaw-Jou KangYi-Jun Lin
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:食品安全及健康風險評估研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:90
中文關鍵詞:油炸食品醛類總膳食調查21世紀風險評估混合性風險評估
外文關鍵詞:fried foodsaldehydestotal dietary studyRISK21mixture risk assessment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
油炸為一種利用食用油脂作為熱交換介質且直接與食物接觸之普遍烹調與食品加工方式。已知於常見油炸過程中食用油經過三酸甘油脂降解會在食品中產生許多對人體有害之低分子量醛類,包括甲醛(formaldehyde)、乙醛(acetaldehyde)及丙烯醛(acrolein);然而,至今尚未有研究同時評估由飲食和吸入暴露引起的多種醛之混合風險。因此,本論文之研究目的為(1)評估台灣不同年齡層族群食用油炸食品共同暴露甲醛、乙醛與丙烯醛之混合性風險、(2)評估廚房工作者於不同烹飪類型廚房吸入暴露甲醛、乙醛與丙烯醛之混合性風險及(3)確定哪些油炸食品具有較大之膳食暴露風險。
本研究使用臺灣國民營養調查之大量膳食資料庫進行一項類總膳食研究調查,以規劃臺灣國人最常食用之油炸食品採樣清單,並以固相微萃取搭配氣相層析質譜儀分析油炸食品中甲醛、乙醛與丙烯醛濃度。接著,分析濃度數據、攝食率及體重來推估孩童族群、青少年族群、成年族群與老年族群之甲醛、乙醛與丙烯醛膳食攝入量。另一方面,本研究由一項臺灣調查文獻蒐集三種不同烹調類型餐廳中三種醛類濃度數據,以推估成年廚房工作者於三種烹飪場所之甲醛、乙醛與丙烯醛吸入暴露濃度。最後,本研究使用危害係數(hazard index, HI)針對(1)不同年齡族群之膳食暴露和(2)廚房工作者之呼吸暴露,特徵化甲醛、乙醛與丙烯醛之混合風險。此外,亦使用21世紀風險評估(RISK21)方法學針對不同油炸食品進行風險關注度排序。
分析結果顯示油炸食品中醛濃度之順序如下:乙醛 > 甲醛 > 丙烯醛。油條中乙醛含量最高,濃度為479.94 (95% confidence interval: 356.55 – 604.87 mg/kg),泡麵有最高甲醛含量(5.87, 4.59 – 7.16 mg/kg),而薯條具有最高丙烯醛濃度(0.83, 0.83 – 1.85mg/kg)。風險評估結果顯示,孩童透過膳食攝入油炸食品之腸胃道健康風險為最高,HI估計值為1.12 (95% CI: 0.11 – 5.33)。RISK21結果則顯示,泡麵中甲醛、乙醛及丙烯醛於腸胃道效應風險之高關注度之食品。在呼吸暴露之混合性風險方面,結果顯示廚房工作者於西式快餐店、中式自助餐廳與街頭食品餐車之呼吸道效應HI推估值分布範圍皆可能大於1,尤其街頭食品餐車廚房工作者之呼吸道風險最高,HI推估值為35.80 (10.80 – 131.61)。本研究之結果對於膳食與呼吸暴露多種醛類引起混合性風險提出全面性見解,本論文研究成果有助於針對醛類辨識高關注度之食品清單,使政府能夠實施可行之食品安全管理策略。
Frying is a popular method of cooking and processing foods where edible oil is used as the heat transfer medium, in direct contact with the food. It is known that the degradation of edible oils through triglycerides in frying processes generates many harmful low molecular weight aldehydes in food and the air, including formaldehyde (FA), acetaldehyde (AA) and acrolein (AC). However, no studies so far have been assessed simultaneously the mixture risks of multiple aldehydes caused by diet and inhalation exposures. Therefore, the purpose of this study was (1) to assess the mixture risks of co-exposure to FA, AA, and AC through dietary intake of fried foods for different age populations in Taiwan, (2) to assess the mixture risks posed by inhalation of FA, AA, and AC in cooking workplaces, and (3) to identify which fried foods pose the greater dietary exposure risk.
In this study, the massive food consumption database from the Nutrition and Health Survey in Taiwan was used to conduct a total dietary study-like investigation for designing a sampling list of fried foods that most commonly consumed by Taiwanese. Concentrations of FA, AA, and AC in fried foods were analyzed using the solid-phase micro-extraction and gas chromatography/mass spectrometry. Then, the dietary intakes of FA, AA, and AC for children, teenagers, adults, and elderly persons were estimated by using the measured concentration data, consumption rates, and body weights. On the other hand, the concentration data of three aldehydes in three commercial cooking workplaces was obtained from a Taiwan study. The inhalation exposure concentration of FA, AA, and AC for adult workers in three cooking workplaces can then be estimated. Finally, the hazard index (HI) method was used to characterize the mixture risks of FA, AA, and AC from (1) dietary intake for various age populations and (2) inhalation exposure for kitchen workers. Moreover, the Risk Assessment in the 21st Century (RISK21) approach was applied to perform risk prioritization of the different fried foods.
The analysis results showed that the order of aldehyde concentration in fried foods was as follows: AA > FA > AC. The fried bread stick had the highest AA level, with 479.94 (95% confidence interval: 356.55 – 604.87 mg/kg). The highest content of FA was found in instant noodles (5.87, 4.59 – 7.16 mg/kg), whereas French fries had the highest AC level (0.83, 0.83 – 1.85 mg/kg). This study found that the joint toxic actions of the FA–AA–AC mixture are gastrointestinal and respiratory effects. The risk assessment results indicated that children had the highest gastrointestinal risk through dietary intake of fried foods, with HI estimates of 1.12 (95% confidence interval: 0.11 – 5.33). The results of RISK21 showed that FA, AA, and AC in instant noodles was listed as high priority for gastrointestinal risk for children. In terms of mixture risk of inhalation exposure, the results indicated that HI estimates of respiratory risk for kitchen workers in Western fast food restaurants, Chinese buffet restaurants, and street food cart had the potential to be greater than 1. In particular, the kitchen workers in street food cart had the highest respiratory risk, with HI estimates of 35.80 (10.80 – 131.61). The findings in this study provides the comprehensive insights into the underlying mixture risks of multiple aldehydes posed by diet and inhalation exposures. The work in this study helps to identify high priority list of food items for aldehydes, allowing the government to implement the possible strategies for food safety management.
目錄
誌謝 I
中文摘要 III
英文摘要 V
目錄 VII
表目錄 X
圖目錄 XII
符號說明 XV
壹、前言 1
貳、動機與目的 2
2.1 研究動機 2
2.2 研究目的 3
參、文獻回顧 4
3.1 食品中醛類之來源 4
3.2 醛類之健康效應 5
3.2.1 甲醛 5
3.2.2 乙醛 6
3.2.3 丙烯醛 7
3.3 食品醛類分析方法 10
3.4 總膳食調查 12
3.5 健康風險評估 14
3.5.1 機率風險評估 16
3.5.2 二十一世紀風險評估 17
肆、材料與方法 20
4.1 研究架構 20
4.2 採樣方法 23
4.3 食品樣本分析 25
4.3.1 樣本前處理 25
4.3.2 固相微萃取 25
4.3.3 氣相層析串聯質譜儀 26
4.4 空氣醛類樣本濃度 27
4.5 暴露評估 29
4.5.1 膳食暴露 29
4.5.2 呼吸暴露 29
4.6 危害特徵描述 31
4.7 風險特徵描述 35
4.7.1 混合性風險評估 35
4.7.2 風險排序 36
伍、結果 39
5.1 採樣清單 39
5.2 油炸食品醛類濃度 41
5.3 醛類膳食及呼吸暴露量 46
5.3.1 醛類膳食攝入量 46
5.3.2 醛類呼吸暴露量 58
5.4 混合性健康風險評估 61
5.4.1 膳食暴露 61
5.4.2 呼吸暴露 64
5.5 油炸食品風險排序 67
陸、討論 72
6.1 總膳食調查之探討 72
6.2 食品醛類濃度與分析方法之探討 73
6.3 呼吸暴露三種醛類之風險探討 75
6.4 研究限制 76
柒、結論 77
捌、未來研究建議 79
參考文獻 81
表目錄
表3.1 甲醛、乙醛與丙烯醛於各研究之POD整理表 9
表3.2 食品中醛類分析方法之文獻整理
表4.1 基於關鍵動物與流行病學研究文獻之甲醛於膳食暴露與呼吸暴露之不良反應整理 30
表4.2 基於關鍵研究文獻之乙醛於膳食暴露與呼吸暴露之不良反應整理 31
表4.3 基於重要研究文獻之丙烯醛於膳食暴露與呼吸暴露之不良反應整理 32
表5.1 TDS-like核心食品採樣清單 38
表5.2 食品中醛類之分析定性與定量參數
表5.3 臺灣不同年齡族群對不同食品之攝食率(ingestion rate, IRa,k) 43
表5.4 推估臺灣4 – 12歲孩童族群之甲醛、乙醛及丙烯醛每日膳食暴露量(dietary intake, DIa,k) 46
表5.5 推估臺灣13 – 18歲青少年族群之甲醛、乙醛及丙烯醛每日膳食暴露量(dietary intake, DIa,k) 47
表5.6 推估臺灣19 – 64歲成年族群之甲醛、乙醛及丙烯醛每日膳食暴露量(dietary intake, DIa,k) 48
表5.7 推估臺灣≥ 65歲老年族群之甲醛、乙醛及丙烯醛每日膳食暴露量(dietary intake, DIa,k) 49
表5.8 西式快餐店、中式自助餐廳以及街頭食品餐車餐廳廚房之甲醛、乙醛與丙烯醛空氣濃度(引用自Wu et al., 2019) 54
表5.9 孩童、青少年、成年人以及老年人族群膳食暴露甲醛、乙醛與丙烯醛之腸胃道損傷危害係數(HI) 57
表5.10 西式快餐店、中式自助餐廳與街頭食品餐車之危害係數 56
表6.1 本研究分析丙烯醛之方法與過去文獻之比較 65
圖目錄
圖3.1 RISK21方法學之概念架構路線圖 19
圖4.1 暴露甲醛、乙醛與丙烯醛之風險評估研究架構流程圖 22
圖4.2 各類食品採樣後及前處理流程圖 24
圖4.3 個人採樣器之流程圖(引用自Wu et al., 2019) 28
圖4.4 甲醛、乙醛及丙烯醛於(A)一般情境與(B)嚴格情境下之RISK21矩陣圖與其對應之暴露安全限值 38
圖5.1 於乾淨基質下以SPME-GC/MS對經PFBHA衍生化醛類標準品進行分析之層析圖譜:(A)濃度50ppb之甲醛(m/z 195),滯留時間為8.31分鐘、(B) 濃度50ppb之丙烯醛(m/z 221),滯留時間為23.86分鐘 43
圖5.2 於乾淨基質下以SPME-GC/MS對經PFBHA衍生化醛類標準品進行分析之層析圖譜:(A)濃度50ppb之乙醛(m/z 209),鏡相異構物滯留時間分別為11.08與11.30分鐘、(B) 濃度50ppb之乙醛內標準品(m/z 211),滯留時間分別為11.08與11.30分鐘 44
圖5.3 食品中甲醛、乙醛與丙烯醛濃度之盒鬚圖:(A)泡麵、(B)炸雞類製品、(C) 薯條、(D)甜不辣、(E)油條、(F)洋芋片(符號縮寫:FA: formaldehyde; AA: acetaldehyde; AC: acrolein) 45
圖5.4 臺灣不同年齡族群之食品攝食率(ingestion rate, IRa,k)盒鬚圖:(A)泡麵、(B) 炸雞類製品、(C)薯條、(D)甜不辣、(E)油條及(F)洋芋片 50
圖5.5 推估臺灣不同年齡族群之甲醛、乙醛與丙烯醛之每日膳食暴露量(dietary intake, DIa,k)盒鬚圖:(A)泡麵、(B)炸雞類製品 (符號縮寫:FA: formaldehyde; AA: acetaldehyde; AC: acrolein) 55
圖5.6 推估臺灣不同年齡族群之甲醛、乙醛與丙烯醛之每日膳食暴露量(dietary intake, DIa,k)盒鬚圖:(A)薯條、(B)甜不辣(符號縮寫:FA: formaldehyde; AA: acetaldehyde; AC: acrolein) 56
圖5.7 推估臺灣不同年齡族群之甲醛、乙醛與丙烯醛之每日膳食暴露量(dietary intake, DIa,k)盒鬚圖:(A)油條、(B)洋芋片(符號縮寫:FA: formaldehyde; AA: acetaldehyde; AC: acrolein) 57
圖5.8 西式快餐店、中式自助餐廳以及街頭食品餐車之暴露濃度盒鬚圖(符號縮寫:FA: formaldehyde; AA: acetaldehyde; AC: acrolein) 60
圖5.9 四個年齡層族群經食用油炸食品暴露甲醛、乙醛與丙烯醛之腸胃道損傷混合性風險(HI) 63
圖5.10 廚房工作者於不同類型餐廳經呼吸暴露甲醛、乙醛與丙烯醛之混合性風險盒鬚圖: (A)西式快餐店、(B)中式自助餐廳及(C)街頭食品餐車 (符號縮寫:FA: formaldehyde; AA: acetaldehyde; AC: acrolein) 66
圖5.11 4–12歲孩童族群於(A)一般情境及(B)嚴格情境,膳食暴露甲醛(FA, formaldehyde)之食品風險排序RISK21矩陣圖 69
圖5.12 4 – 12歲孩童族群於(A)一般情境及(B)嚴格情境,膳食暴露乙醛(AA, acetaldehyde)之食品風險排序RISK21矩陣圖 70
圖5.13 4 – 12歲孩童族群於(A)一般情境及(B)嚴格情境,膳食暴露丙烯醛(AC, acrolein)之食品風險排序RISK21矩陣圖 71
Anamarija IM, Ivana JS, Marijana BS, Aleksandra ČM M. 2013. Headspace Gas Chromatographic Method for Aldehyde Determination in Crackers. Food Analytical Methods 6: 61–68.
Andreu-Sevilla A, Hartmann A, Sayas E. Burló-Carbonell F, Delgado-EstrellaJuan P, Valverde JM, Ángel A. 2008. Mathematical quantification of total carotenoids in Sioma oil using color coordinates and multiple linear regression during deep-frying simulations. European Food Research and Technology 226: 1283–1291.
Appelman LM, Woutersen RA, Feron VJ. 1982. Inhalation toxicity of acetaldehyde in rats. I. Acute and subacute studies. Toxicology 23: 293–307.
Appelman LM, Woutersen RA, Feron VJ, Hooftman RN, Notten WRF. 1986. Effect of variable versus fixed exposure levels on the toxicity of acetaldehyde in rats. Journal of Applied Toxicology 6: 331–336.
Abraham K, Andres S, Palavenskas R, Berg K, Appel KE. 2011. Toxicology and risk assessment of acrolein in food. Molecular Nutrition and Food Research 55: 1277–1290.
Cheng JH, Lee YS, Chen KS. 2016. Carbonyl compounds in dining areas, kitchens and exhaust streams in restaurants with varying cooking methods in Kaohsiung, Taiwan. Journal of Environmental Sciences 41: 218–226.
Chen CC, Tsai CL, Chang CC, Ni SP, Chen YT, Chiang CF. 2017. Sampling design by the core-food approach for the Taiwan total diet study on veterinary drugs. Food Additives and Contaminants: Part A 34: 939–949.
CIIT (Chemical Industry Institute of Toxicology). 1981. Final report on a chronic inhalation toxicology study in rats and mice exposed to formaldehyde. CIIT docket #10922. Colombus, OH: Battelle Colombus Laboratories.
Dellarco M, Zaleski R, Gaborek BJ, Qian H, Bellin CA, Egeghy P, Hear N. ,Jolliet O, Lander DR, Sunger N, Stylianou KS. Tanir JY. 2017. Using exposure bands for rapid decision making in the RISK21 tiered exposure assessment. Critical Reviews in Toxicology 47: 317–341.
EFSA (European Food Safety Authority), Food and Agriculture Organization (FAO) and World Health Organization (WHO). 2011. Towards a harmonized total diet study approach: a guidance document. EFSA Journal 9: 2450.
EFSA (European Food Safety Authority). 2012. Statement on the applicability of the margin of exposure approach for the safety assessment of impurities which are both genotoxin and carcinogenic in substances added to food/feed. EFSA Journal 10: 2578.
Embry MR, Bachman AN, Bell DR, Boobis AR, Cohen SM, Dellarco M, Dewhurst IC, Doerrer NG, Hines RN, Moretto A, et al. 2014. Risk assessment in the 21st century: roadmap and matrix. Critical Reviews in Toxicology 44: 6–16.
Esterbauer H, Schauur JS, Zollner H. 1991. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehydes. Free Radical Biology and Medicine 11: 81–128.
FAO/WHO (Food and Agriculture Organization of the United Nations/ World Health Organization) 2009. Principles and methods for the risk assessment of chemicals in food. EHC 240. Available at: http://www.who.int/foodsafety/chem/principles/en/index1.html
Feron VJ, Kruysee A, Til HP, Immel HR. 1978. Reported exposure to acrolein vapor: Subacute studies in hamsters, rats and rabbits. Toxicology 9: 47–57.
Feron VJ, Kruysse A, HC Dreef-van der Meulen. 1979. Repeated exposure to furfural vapour: 13-week study in Syrian golden hamsters. Zentralblatt fur Bakteriologie, Mikrobiologie und Hygiene 1. Abt. Originale B: Hygiene 168: 442–451.
Frankel EN. 1998. Lipid Oxidation. The Oily Press, Dundee, Scotland, pp. 56–57.
Fritach MD. 1981. Oral Retinoids in Dermatology. International Journal of Dermatology 20: 314–329.
Fritsch C. 1981. Measurements of frying fat deterioration: A brief review. Journal of the American Oil Chemists’ Socirty 58: 272–274.
Fujisaki M, Endo Y, Fujimoto K. 2002. Retardation of volatile aldehyde formation in the exhaust of frying oil by heating under low oxygen atmospheres. Journal of the American Oil Chemists’ Society 79: 909–914.
Fullana A, Carbonell-Barrachina AA, Sidhu S. 2004. Comparison of Volatile Aldehydes Present in the Cooking Fumes of Extra Virgin Olive, Olive, and Canola Oils. Journal of Agricultural and Food Chemistry 52: 5207–5214.
Gibson JE. 1984. Coordinated toxicology: An example study with formaldehyde. Concepts Toxicology 1: 276–282.
Gosetti F, Chiuminatto U, Mazzucco E, Robotti E, Calabrese G, Gennaro MC, Marengo E. 2011. Simultaneous determination of thirteen polycyclic aromatic hydrocarbons and twelve aldehydes in cooked food by an automated on-line solid phase extraction ultra high performance liquid chromatography tandem mass spectrometry. Journal of Chromatography A 1218: 6308–6318.
Griffith R, Hammond EG. 1989. Generation of Swiss cheese flavor components by reaction of amino acids with carbonyl components. Journal of Dairy Science 72: 604–6113.
Halliwell B, Gutteridge JMC. 1998. Free Radical in Biology and Medicine. Oxford 144–160.
Huang Y, Ho SSH, Ho KF, Lee SC, Yu JZ, Louie PKK. 2011. Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong. Journal of Hazardous Materials 186: 344–351.
IARC (International Agency for Research on Cancer) 2006. Formaldehyde, 2-butoxyethanol and 1-tertbutoxypropan-2-ol. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 88: 1–478.
IARC. (International Agency for Research on Cancer) 2012. Agents Classified by the IARC Monographs. Available at: http://monographs.iarc.fr/ENG/Monographs/PDFs/index.php.
Jia L, Liu Z, Sun L, Miller SS, Ames BN, Cotman CW, Liu J. 2007. Acrolein, a toxicant in cigarette smoke, causes oxidative damage and mitochondrial dysfunction in RPE cells: protection by (R)-alpha-lipoic acid. Investigative Ophthalmology and Visual Science 48: 339–348.
Kruysse A, Feron VJ, Til HP. 1975. Repeated exposure to acetaldehyde vapor. Studies in Syrian golden hamsters. Archives of Environmental and Occupational Health 31: 449–452.
Kehrer JP, Biswal SS. 2000. The molecular effects of acrolein. Toxicological Sciences 57: 6–15.
Kerns WD, Pavkov KL, Donofrio DJ, Gralla EJ.; Swenberg JA. 1983. Carcinogenicity of formaldehyde in rats and mice after long-term inhalation exposure. Cancer Research 43: 4382–4392.
Lijinsky W, Reuber MD. 1987. Chronic carcinogenesis studies of acrolein and related compounds. Toxicology and Industrial Health 3: 337–345.
Lane RH, Smathers JL. 1991. Monitoring aldehyde production during frying by reversed-phase liquid chromatography. Journal-Association of Official Analytical Chemists 74: 957–960.
Liu W, Zhang L, Turpin BJ, Weisel CP, Morandi MT. 2006. Estimating contributions of indoor and outdoor sources to indoor carbonyl concentrations in three urban areas of the United States. Atmospheric Environment 40: 2202–2214.
Liang CP, Jang CS, Chen JS, Wang SW, Lee JJ, Liu CW. 2013. Probabilistic health risk assessment for ingestion of seafood farmed in arsenic contaminated groundwater in Taiwan. Environmental Geochemistry and Health 35: 455–464.
Matysiak-Budnik T, Jokelainen K, Kärkkäinen P, Mäkisalo H, Ohisalo J,Salaspuro M 1996. Hepatotoxicity and absorption of extrahepatic ac-etaldehyde in rats. The Journal of Pathology 178: 469–474.
Moreira RG, Castell‐Perez ME, Barrufet MA. 1999. Fried product processing and characteristics. In: Deep‐fat frying: fundamentals and applications. Gaithersburg , Md.: Chapman and Hall Food Science Book 11–31.
NZFSA (New Zealand Food Safety Authority) 2005. New Zealand total diet survey agricultural compound residues, selected contaminants and nutrients. https://www.mpi.govt.nz/law-and-policy/legal-overviews/food-safety/.
NTP (National Toxicology Program). 2006. NTP Technical Report on the comparative toxicity studies of allyl acetate (CAS No. 591-87-7), allyl alcohol (CAS No. 107-18-6) and acrolein (CAS No. 107-02-8) administered by gavage to F344/N rats and B6C3F1 mice. United States Department of Health and Human Services.
Osório VM, de Lourdes. 2011. Determination of acrolein in french fries by solid-phase microextraction gas chromatography and mass spectrometry. Journal of Chromatography A 1218: 3332–3336.
Osório VM, de Lourdes Cardeal Z. 2013. Using SPME-GC/MS to evaluate acrolein production in cassava and pork sausage fried in different vegetable oils. Journal of the American Oil Chemists’ Society 90: 1795–1800.
Pennington JAT, Caper SG, Parfitt CH. 1996. History of the food and drug administration’s total diet study (part II), 1987-1993. Journal of the Association of Official Analytical Chemists International 76: 163–170.
Peng CY, Lan CH, Lin PC, Kuo YC. 2017. Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes. Journal of Hazardous Materials 324: 160.
Paiano V, Bianchi G, Davoli E, Negri E, Fanelli R, Fattore E. 2014. Risk assessment for the Italian population of acetaldehyde in alcoholic and non-alcoholic beverages. Food Chemistry 154: 26–31.
Pastoor TP, Bachman AN, Bell DR, Cohen SM, Dellarco M, Dewhurst IC. Doe JE, Doerrer NG, Embry MR, Hines RN, Moretto A, Phillips RD, Rowlands JC, Tanir JY, Wolf DC, Boobis AR. 2014. A 21st century roadmap for human health risk assessment. Critical Reviews in Toxicology 44:1–5.
Rowlands JC, Sander M, Bus JS. FutureTox Organizing Committee. 2014. FutureTox: building the road for 21st century toxicity and risk assessment practices. Toxicological sciences 137: 269–277.
See SW, Balasubramanian R. 2008. Chemical characteristics of fine particles emitted from different gas cooking methods. Atmospheric Environment 42: 8852–8862.
Siti Aminah A, Zailina H, Fatimah AB. 2013. Health Risk Assessment of Adults Consuming Commercial Fish Contaminated with Formaldehyde. Food and Public Health 3: 52–58.
Solomon KR, Girsy JP, Lapoint TW, Giddings JM, Richards RP. 2013. Ecological risk assessment of atrazine in North American surface waters. Environmental Toxicology and Chemistry 32: 10–11.
Stehle S, Knäbel A, Schulz R. 2013. Probabilistic risk assessment of insecticide concentrations in agricultural surface waters: A critical appraisal. Environmental Monitoring and Assessment 185:6295–6310.
Steward MG, O’Connor A. 2012. Probabilistic risk assessment and service life performance management of load bearing biomedical implants. Reliability Engineering and System Safety 108: 499–55.
Svendsen K, Jensen HN, Sivertsen I, Sjaastad AK. 2002. Exposure to Cooking Fumes in Restaurant Kitchen in Norway. Annals of Occupational Hygiene 46: 395–400.
Svendsen K, Sjaastad AK, Sivertsen I. 2003. Respiratory symptoms in kitchen workers. American Journal of Industrial Medicine 43: 436–439.
TFDA (Taiwan Food and Drug Administration). 2013. Total Pesticide Residue Survey and Risk Assessment in 2013 and Establishment of TDS Basic Food Sample Bank. Retrieved from: https://www.grb.gov.tw/search/planDetail?id=2847489.
TFDA (Taiwan Food and Drug Administration). 2010. Establishment of a Health Risk Assessment Model for Chinese Food Additives. Retrieved from: https://www.grb.gov.tw/search/planDetail?id=2096435.
Til HP, Woutersen RA, Feron VJ, Clary JJ. 1988. Evaluation of the oral toxicity of acetaldehyde and formaldehyde in a 4-week drinking-water study in rats. Food and Chemical Toxicology 26: 447–452.
Til HP, Woutersen RA, Feron VJ, Hollanders VHM, Falke HE. 1989. Two-year drinking-water study of formaldehyde in rats. Food and Chemical Toxicology 27: 77–87.
Thomson BM, Vannoort RW, Haslemore RM. 2008. Dietary exposure and trends of exposure to nutrient elements iodine, iron, selenium and sodium from the 2003–4 New Zealand Total Diet Survey. British Journal of Nutrition 99: 614–625.
Uebelacker M, Lachenmeier DW. 2011. Quantitative determination of acetaldehyde in foods using automated digestion with simulated gastric fluid followed by headspace gas chromatography. Journal of Analytical Methods in Chemistry 2011: 907317.
Umano K, Shibamoto T. 1987. Analysis of acrolein from heated cooking oils and beef fat. Journal of Agricultural and Food Chemistry 35: 909–912.
USEPA (United States Environmental Protection Agency). 1984. Risk Assessment and Management: Framework for Decision Making. EPA/600/9-85/002. Washington, DC: United States Environmental Protection Agency.
USEPA (United States Environmental Protection Agency). 1989. Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part A). Report No. EPA/540/1-89/002. . Washington, DC: United States Environmental Protection Agency.
USEPA (United States Environmental Protection Agency). 1990. Formaldehyde (CASRN 50-00-0). In support of summary information on the integrated risk information system (IRIS). EPA/635/R-07/009F. Washington, DC: United States Environmental Protection Agency.
USEPA (United States Environmental Protection Agency). 1997. Guiding principles for Monte Carlo analysis. EPA/630/R-97/001. Washington, DC: United States Environmental Protection Agency.
USEPA (United States Environmental Protection Agency). 2014. Risk assessment forum white paper: probabilistic risk assessment methods and case studies. EPA/100/R-09/001A. Washington, DC: United States Environmental Protection Agency.
USEPA (United States Environmental Protection Agency). 1999. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. 2nd ed. Compendium Method TO-11A. EPA/625/R-96/010b. Washington, DC: United States Environmental Protection Agency.
USEPA (United States Environmental Protection Agency). 2009. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual. EPA-540-R-070-002. Washington, DC: United States Environmental Protection Agency.
USFDA (United States Food and Drug Administration) 2008. Pesticide monitoring program-FY 2008.
Vainiotalo S, Matveinen K. 1993. Cooking fumes as hygienic problem in the food and catering industries. American Industrial Hygiene Association Journal 54: 376–382.
Weerkamp A, Klijn N, Neeter R, Smit G. 1996. Properties of mesophilic lactic acid bacteria from raw milk and naturally fermented raw milk products. Neth Milk Dairy J 50: 319–332.
Woutersen RA, Appelman LM, Garderen-Hoetmer AV, Feron VJ. 1986. Inhalation toxicity of acetaldehyde in rats. III. Carcinogenicity study, Toxicology 41: 213–231.
WHO (World Health Organization). 1987. Air quality guidelines for Europe, WHO Reg. Publ. Eur. Ser. No. 23, World Health Organization Regional Office for Europe, Copenhagen, 426 pp.
WHO (World Health Organization). 2002. GEMS/Food total diet studies: report of the 2nd International Workshop on Total Diet Studies. Brisbane, Australia: World http://www.who.int/foodsafety/publications/chem/en/tds_feb2002.pdf.
WHO (World Health Organization). 2009. Principles and Methods for the Risk Assessment of Chemicals in Food. Environmental Health Criteria 240. Geneva, Switzerland: World Health Organization.
Wu P, Chiang T. 1999. The analysis of polycylic hydrocarbons derived from cooking fumes by HPLC with uv deterction and wavelength programming. Tajen Journal 17: 195–198.
Wu MT, Lin PC, Pan CH, Peng CY. 2019. Risk assessment of personal exposure to polycyclic aromatic hydrocarbons and aldehydes in three commercial cooking workplaces. Scientific Reports 9: 1661.
Watzek, N, Baum M, Berger F, Eisenbrand G. 2011. Acrolein and acrylamide: Comparison of the exposure via determination of mercapturic acids in urine after consumption of potato crisps. Naunyn-Schmiedeberg's Archives of Pharmacology 383: 94–95.
Xie J, Marano KM, Wilson CL, Liu H, Gan H, Xie F, et al. 2012. Aprobabilistic risk assessment approach used to prioritize chemical constituents in mainstream smoke of cigarettes sold in China. Regulatory Toxicology and Pharmacology 62: 355–362.
Yen GC, Wu SC. 2003. Reduction of mutagenicity of the fumes from cooking oil by degumming treatment. LWT-Food Science and Technology 36: 29–35.
Zhu X, Wang K, Zhu J, Koga M. 2001. Analysis of cooking oil fumes by ultraviolet spectrometry and gas chromatography–mass spectrometry. Journal of Agricultural and Food Chemistry 49: 4790–4794.
Zhang J, Sturla SJ, Lacroix C, Schwab C. 2018. Gut microbial glycerol metabolism as an endogenous acrolein source. MBio. 9: e01947–17.
電子全文 電子全文(網際網路公開日期:20240725)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔