跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/08 17:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佳榮
研究生(外文):Chia-Jung Wu
論文名稱:建立茶葉樣品中歐盟優先規範多環芳香族碳氫化合物的分析條件並進行樣品測定和風險評估
論文名稱(外文):Establishment of Analytical Conditions for the EU Priority Polycyclic Aromatic Hydrocarbons(PAHs) in Tea Samples for Sample Determination and Risk Assessment
指導教授:楊登傑楊登傑引用關係廖伯霖
指導教授(外文):Deng-Jye YangPo-Lin Liao
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:食品安全及健康風險評估研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:85
中文關鍵詞:多環芳香族碳氫化合物QuEChERS萃取法茶葉茶湯風險評估暴露限值
外文關鍵詞:Polycyclic aromatic hydrocarbonsQuEChERS extraction methodTea leavesTea infusionsRisk assessmentMargin of exposure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:295
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
多環芳香族碳氫化合物(polycyclic aromatic hydrocarbons, PAHs),由兩個或兩個以上的苯環組成,具有致癌性的PAHs已超過30種,這類化合物容易與空氣中的懸浮微粒結合,並沉降至植物的葉面上,在食品加工的高溫階段亦會產生。由茶葉沖泡製備的茶湯為全世界最受歡迎的飲料之一,且國人喝茶頻率也相當高,卻少有與茶葉中PAHs相關的研究,本研究將檢測茶葉及茶湯中歐盟優先規範的PAHs。由於PAHs生成易受高溫影響,本研究檢測茶葉不同加工階段、不同加工方式及不同沖泡條件對其PAHs的組成與含量變化,計算茶葉中PAHs之溶出率,並以暴露限值 (Margin of Exposure, MOE) 評估國人喝茶之PAHs健康風險。研究利用PAHs的螢光特性 (除cyclopenta[c,d]pyrene (CPP) 無螢光吸收),使用高效液相層析儀 (High Performance Liquid Chromatography, HPLC) 搭配螢光檢測器(Fluorescence Detector, FLD) 對茶葉中的PAHs進行檢測,並以QuEChERS (quick, easy, cheap, effective, rugged, safe) 前處理技術建立茶葉樣品中PAHs的快速萃取條件。結果顯示,在茶葉不同加工階段ΣPAH 4 (benzo[a]anthracene, chrysene, benzo[b]fluoranthene and benzo[a]pyrene)及ΣPAH 15 (EU 15+1 priority PAHs except CPP)最高為電焙12hr階段,分別為4.50 ng/g及6.83 ng/g;在茶葉不同加工方式ΣPAH4及ΣPAH15最高為炭焙,分別為14.33 ± 1.76 ng/g及23.05 ± 2.94 ng/g;在不同沖泡條件茶湯中PAHs,ΣPAH4及ΣPAH15最高含量均為100°C第一次沖泡,分別為0.014 ± 0.002 ng/mL及0.028 ± 0.004 ng/mL;在茶葉不同沖泡方式茶葉中BaP、ΣPAH 4及ΣPAH 15最高溶出率皆為100°C第一次沖泡,分別為5.0 %及6.1%。風險評估結果顯示在不同沖泡條件茶湯中的BaP、ΣPAH2、ΣPAH4及ΣPAH8之MOE值均大於10000,屬於低健康關注程度。因此,國人喝茶受PAHs造成健康上的影響不大。
Polycyclic aromatic hydrocarbons (PAHs) are composed of two or more benzene rings. More than 30 carcinogenic PAHs have been known. These compounds readily bind to aerosols in the air and drop to the leaves of plants; they are also produced during the high temperature stages of food processing. The tea is one of the most popular beverages in the world, and the frequency of tea drinking by Chinese people is quite high, but there are few studies related to PAHs in tea. This study determined the EU priority PAHs in tea samples and tea infusion. This study determined the changes of the composition and content of PAHs in different processing stages, different processing methods and different brewing conditions of tea, calculated the infusion rate of PAHs from tea samples, and the drinking risk of PAHs from tea infusion was assessed by the Margin of Exposure (MOE). PAHs have fluorescent properties except cyclopenta[c,d]pyrene (CPP). This study used high-performance liquid Chromatography (HPLC) with Fluorescence Detector (FLD) to determine PAHs in tea samples. In addition, QuEChERS (quick, easy, cheap, effective, rugged, safe) pretreatment technique was used to establish rapid extraction conditions for PAHs in tea samples. Regarding various manufacturing tea stages, electric baking stage for 12 hours with the highest levels of ΣPAH 4 (4.50 ng/g) and ΣPAH 15 (6.83 ng/g).For various manufacturing methods of tea, ΣPAH 4 (14.33 ± 1.76 ng/g) and ΣPAH 15 (23.05 ± 2.94 ng/g) were the highest in the charcoal baking tea. The first tea infusion brewed at 100 °C had the highest infusion rates of ΣPAH4 (5.0%, 0.014 ± 0.002 ng/mL) and ΣPAH15 (6.1%, 0.028 ± 0.004 ng/mL). The results of risk assessment showed that the MOE values of BaP, ΣPAH2, ΣPAH4 and ΣPAH15 in different brewing conditions were all more than 10,000, which were low levels of health concern. Therefore, the health concern of PAHs caused by drinking tea in Taiwan are not significant.
摘要……………………………………………………………………………………I
Abstract………………………………………………………………………………II
目錄…………………………………………………………………………………III
圖目錄………………………………………………………………………………X
表目錄………………………………………………………………………………XI
第一章 前言………………………………………………………………………… 1
第二章 文獻回顧…………………………………………………………………… 3
2.1 茶葉(Camellia sinensis Leaf) …………………………………………………3
2.1.1 茶葉簡介…………………………………………………………………3
2.1.2 茶葉分類…………………………………………………………………3
2.1.2.1 白茶(White tea) ……………………………………………………3
2.1.2.2 綠茶(Green tea) ……………………………………………………3
2.1.2.3 紅茶(Black tea) ……………………………………………………3
2.1.2.4 烏龍茶(Oolong tea) …………………………………………………3
2.1.2.5 普洱茶(Pu-erh tea) …………………………………………………3
2.1.3 茶葉特性…………………………………………………………………4
2.1.4 茶葉功效…………………………………………………………………4
2.1.5 茶葉加工過程……………………………………………………………5
2.1.6 茶葉PAHs………………………………………………………………7
2.2 多環芳香族碳氫化合物(Polycyclic aromatic hydrocarbons, PAHs) ………8
2.2.1 PAHs之化學性質…………………………………………………………8
2.2.2 PAHs之物理性質………………………………………………………8
2.2.3 PAHs之生成機制……………………………………………………9
2.2.3.1 熱裂解或不完全燃燒……………………………………………9
2.2.3.2 碳化………………………………………………………………10
2.2.4 PAHs之來源……………………………………………………………10
2.2.4.1 自然形成……………………………………………………………10
2.2.4.2 人為因素……………………………………………………………10
2.2.5 PAHs之生物毒性…………………………………………………………11
2.2.6 PAHs之法規規範…………………………………………………………13
2.3 儀器介紹……………………………………………………………………14
2.4 QuEChERS萃取………………………………………………………………14
2.4.1 均質………………………………………………………………………15
2.4.2 萃取………………………………………………………………………15
2.4.3 淨化………………………………………………………………………15
2.5 PAHs分析方法………………………………………………………………15
2.5.1 氣相層析(Gas Chromatography, GC)……………………………………15
2.5.2 液相層析(Liquid chromatography, LC)…………………………………16
2.6 風險評估……………………………………………………………………16
2.6.1 風險評估架構……………………………………………………………16
2.6.2 暴露限值(Margin of Exposure, MOE) …………………………………17
2.6.3 毒性當量因子(Toxic equivalency factors, TEFs) ……………………18
第三章 研究目的及實驗架構…………………………………………………… 19
3.1 研究目的……………………………………………………………………19
3.2 實驗架構……………………………………………………………………20
第四章 材料與方法…………………………………………………………………21
4.1 實驗材料……………………………………………………………………21
4.1.1 茶葉樣品…………………………………………………………………21
4.1.1.1 青心烏龍……………………………………………………………21
4.1.1.2 台茶12號(金萱) ……………………………………………………21
4.1.2 茶湯製備…………………………………………………………………21
4.2 化學藥品……………………………………………………………………22
4.2.1 EU 15+1 PAH混合標準品………………………………………………22
4.2.2 有機溶劑…………………………………………………………………22
4.2.2.1 乙腈(Acetonitrile, ACN) …………………………………………22
4.2.2.2 四氫呋喃(Tetrahydrofuran, THF) …………………………………22
4.2.2.3 乙酸(Acetic acid, AA) ……………………………………………22
4.2.2.4 丙酮(Acetone, ACE) ………………………………………………22
4.2.3 QuEChERS萃取粉劑套組………………………………………………22
4.3 儀器設備……………………………………………………………………23
4.3.1 高效液相層析儀搭配螢光檢測器(HPLC-FLD) ………………………23
4.3.1.1 幫浦…………………………………………………………………23
4.3.1.2 自動注射器…………………………………………………………23
4.3.1.3 螢光檢測器…………………………………………………………23
4.3.1.4 除氣裝置……………………………………………………………23
4.3.1.5 烘箱…………………………………………………………………23
4.3.1.6 層析管柱……………………………………………………………23
4.3.1.7 保護管………………………………………………………………23
4.3.2 渦流混合器………………………………………………………………23
4.3.3 粉碎機……………………………………………………………………23
4.3.4 離心機……………………………………………………………………23
4.3.5 純水機……………………………………………………………………23
4.3.6 抽氣裝置…………………………………………………………………23
4.3.7 電磁加熱攪拌器…………………………………………………………23
4.3.8 竹籠焙茶機………………………………………………………………23
4.3.9 超音波震盪器……………………………………………………………23
4.3.10 冷凍乾燥機……………………………………………………………23
4.4 實驗方法……………………………………………………………………24
4.4.1 EU 15+1 PAH標準溶液之配製…………………………………………24
4.4.2 HPLC移動相之配製……………………………………………………24
4.4.3 HPLC分離條件…………………………………………………………24
4.4.4 螢光偵測15種PAHs之最適條件………………………………………25
4.4.5 PAHs鑑別試驗及含量測定……………………………………………27
4.4.6 儀器分析方法確效……………………………………………………27
4.4.6.1 專一性……………………………………………………………27
4.4.6.2 儀器偵測極限……………………………………………………27
4.4.6.3 儀器定量極限………………………………………………………27
4.4.6.4 準確度………………………………………………………………28
4.4.6.5 精密度………………………………………………………………28
4.4.6.5.1 重複性…………………………………………………………28
4.4.6.5.2 中間精密度……………………………………………………28
4.4.7 QuEChERS 條件比較……………………………………………………29
4.4.7.1 茶葉…………………………………………………………………29
4.4.7.1.1 不同溶劑萃取茶葉……………………………………………29
4.4.7.1.2 不同溶劑體積萃取茶湯………………………………………29
4.4.7.2 茶湯…………………………………………………………………33
4.4.7.2.1 不同溶劑萃取茶湯……………………………………………33
4.4.7.2.2 不同溶劑體積萃取茶湯………………………………………33
4.4.8 分析方法確效……………………………………………………………36
4.4.8.1 專一性………………………………………………………………36
4.4.8.1.1 茶葉……………………………………………………………36 4.4.8.1.2 茶湯……………………………………………………………36
4.4.8.2 線性及範圍…………………………………………………………36
4.4.8.3 方法偵測極限………………………………………………………36
4.4.8.4 方法定量極限………………………………………………………36
4.4.8.5 準確度………………………………………………………………37
4.4.8.6 精密度………………………………………………………………37
4.4.8.6.1 重複性…………………………………………………………37
4.4.8.6.2 中間精密度……………………………………………………38
4.4.9 茶葉不同沖泡條件之方法建立………………………………………..38
4.4.10 茶葉及茶湯中PAHs含量測定…………………………………………40
4.4.10.1 分析茶葉不同加工階段之PAHs…………………………………40
4.4.10.2 分析茶葉不同加工方式之PAHs…………………………………40
4.4.10.3 溶出率……………………………………………………………40
4.5 統計分析……………………………………………………………………44
4.6 風險評估……………………………………………………………………44
4.6.1 公式計算…………………………………………………………………44
4.6.1.1 B[a]P的總TEQ計算…………………………………………………44
4.6.1.2 終生的暴露量………………………………………………………44
4.6.1.3 暴露限值的計算……………………………………………………45
4.6.2 毒性當量因子……………………………………………………………45
4.6.3 BMDL10選擇……………………………………………………………46
4.6.4 實際MOE計算…………………………………………………………46
第五章 結果與討論…………………………………………………………………47
5.1 儀器確效……………………………………………………………………47
5.1.1 專一性…………………………………………………………………47
5.1.2 線性及範圍………………………………………………………………47
5.1.3 儀器偵測極限及定量極限………………………………………………48
5.1.4 準確度……………………………………………………………………49
5.1.5 精密度……………………………………………………………………50
5.2 QuEChERS萃取條件優化……………………………………………………51
5.2.1 茶葉………………………………………………………………………51
5.2.1.1 萃取溶劑選擇………………………………………………………52
5.2.1.2 萃取溶劑體積選擇…………………………………………………52
5.2.2 茶湯………………………………………………………………………53
5.2.2.1 萃取溶劑選擇………………………………………………………53
5.2.2.2 萃取溶劑體積選擇…………………………………………………54
5.3 方法確效……………………………………………………………………56
5.3.1 茶葉………………………………………………………………………56 5.3.1.1 專一性………………………………………………………………56
5.3.1.2 線性及範圍…………………………………………………………56
5.3.1.3 方法偵測極限及方法定量極限……………………………………57
5.3.1.4 準確度………………………………………………………………58
5.3.1.5 精密度………………………………………………………………58
5.3.2 茶湯………………………………………………………………………60
5.3.2.1 專一性………………………………………………………………60
5.3.2.2 線性及範圍…………………………………………………………60
5.3.2.3 方法偵測極限及方法定量極限……………………………………60
5.3.2.4 準確度………………………………………………………………61
5.3.2.5 精密度………………………………………………………………62
5.4以不同條件沖泡茶葉基質添加EU 15+1 PAH standard檢測之PAHs含量及溶出率…………………………………………………………………………………..64
5.4.1 茶湯之PAHs含量………………………………………………………64
5.4.2 PAHs溶出率……………………………………………………………64
5.5 測定茶葉中PAHs的含量……………………………………………………68
5.5.1 金萱茶葉在不同加工階段的PAHs含量及變化………………………69
5.5.2 青心烏龍茶葉之不同加工方式…………………………………………70
5.5.3 炭焙青心烏龍茶葉之不同沖泡條件……………………………………72
5.5.3.1 不同沖泡條件茶湯PAHs含量比較…………………………………72
5.5.3.2 不同沖泡條件茶葉中PAHs溶出率比較……………………………73
5.6 風險評估……………………………………………………………………77
第六章 結論…………………………………………………………………………78
第七章 參考文獻……………………………………………………………………79











圖目錄
圖一、金萱茶葉加工過程之流程圖…………………………………………………6
圖二、風險評估架構圖……………………………………………………………17
圖四、不同溶劑萃取茶葉PAHs流程圖……………………………………………31
圖五、不同溶劑體積萃取茶葉PAHs之流程圖……………………………………32
圖六、不同溶劑萃取茶湯PAHs流程圖……………………………………………34
圖七、不同溶劑萃取茶湯PAHs之流程圖…………………………………………35
圖八、萃取不同加工階段茶葉PAHs之流程圖……………………………………41
圖九、萃取不同加工方式茶葉PAHs之流程圖……………………………………42
圖十、萃取不同沖泡條件茶湯PAHs之流程圖……………………………………43
圖十一、不同濃度PAHs標準品之層析圖…………………………………………47
圖十二、茶葉專一性之層析圖……………………………………………………56
圖十三、茶湯專一性之層析圖……………………………………………………60
圖十四、不同條件沖泡茶葉空白基質添加EU 15+1 PAH standard之層析圖…67
圖十五、不同加工階段茶葉之層圖………………………………………………70
圖十六、不同加工方式茶葉之層圖………………………………………………72
圖十七、茶葉100°C不同沖泡次數之層析圖………………………………………75
圖十八、茶葉不同沖泡溫度之層圖………………………………………………75








表目錄
表一、茶葉的一般組成………………………………………………………………4
表二、金萱茶葉不同加工階段之條件………………………………………………5
表三、食品樣本(n = 4,065)中BaP、PAH2、PAH4及PAH8的最低(LB)及最高(UB)檢出濃度(μg/kg)……………………………………………………………7
表四、歐盟優先規範之15+1 PAH……………………………………………………9
表五、歐盟優先規範之15+1 PAHs 致癌分類……………………………………12
表六、SCF、EU及EPA監測的PAHs種類比較及結構圖……………………………13
表七、歐盟對食品中PAH4分析方法之要求………………………………………14
表八、金萱茶葉各加工階段含水量變化……………………………………………21
表九、HPLC分離15種PAHs之條件…………………………………………………25
表十、螢光偵測15種PAHs的最適條件……………………………………………26
表十一、樣品中待測物濃度之變異係數(Coefficient of variation, CV, %)規範…29
表十二、樣品中待測物濃度之回收率規範…………………………………………37
表十三、各PAHs之毒性當量因子………………………………………………….45
表十四、餵食B6C3F1雌性小鼠Benzo(a)pyrene之腫瘤發生率……………………46
表十五、儀器確效-檢量線之線性及範圍…………………………………………48
表十六、儀器確效-儀器之偵測極限及定量極限…………………………………49
表十七、儀器確效-儀器之重複性及中間精密度結果……………………………51
表十八、不同溶劑萃取茶葉之結果…………………………………………………52表十九、不同溶劑體積萃取茶葉之結果……………………………………………53
表二十、不同溶劑萃取茶湯之結果…………………………………………………54
表二一、不同溶劑體積萃取茶湯之結果……………………………………………55
表二十二、茶葉及茶湯檢量線之線性及範圍………………………………………57
表二十三、茶葉萃取方法之偵測極限、定量極限、重複性及中間精密度結果…59
表二十四、茶湯萃取方法之重複性、中間精密度、偵測極限及定量極限結果… 63
表二十五、不同條件沖泡茶葉空白基質添加EU 15+1 PAH standard之茶葉PAHs含量結果………………………………………………………………………………..65
表二十六、不同條件沖泡茶葉空白基質添加EU 15+1 PAH standard之PAHs溶出率結果…………………………………………………………………………………..66
表二十七、不同加工階段茶葉中PAHs含量之結果………………………………69
表二十八、不同加工方式茶葉中PAHs含量之結果……………………………….71
表二十九、不同沖泡條件茶湯PAHs含量比較……………………………………74
表三十、不同沖泡條件茶葉中PAHs溶出率………………………………………76
表三十一、不同沖泡條件茶湯中PAHs的暴露限值(MOE)………………………77
行政院衛生福利部食品藥物管理署(TFDA)。2013。食品化學檢驗方法確效規範(第二次修正)。
行政院衛生福利部食品藥物管理署(TFDA)。2018。食品中污染物質及毒素衛生標準。
行政院農業委員會(Council of Agriculture, COA)。2016。一起識茶趣!茶葉入門篇。
國家攝食資料庫(National Food Consumption Database)。2017。茶葉飲料類攝食量檢索。
王櫻芳。2002。瀝青拌合至鋪面過程各階段之PAHs逸散特徵與鋪面勞工之暴露評估。成功大學環境醫學研究所。碩士論文。
顏丞凱。2004。以密閉式藻類毒性試驗評估多環芳香烴化合物之光誘導毒性效應。國立交通大學環境工程研究所。碩士論文。
黃河蒼。2016。發電機引擎使用添加廢食用油生質柴油排氣粒狀物上金屬及排氣多 環芳香烴化合物特性。國立屏東科技大學環境工程與科學研究所。碩士論文。
Abramsson-Zetterberg, L., Darnerud, P. O., & Wretling, S. (2014). Low intake of polycyclic aromatic hydrocarbons in Sweden: results based on market basket data and a barbecue study. Food Chem Toxicol, 74, 107-111.
Akpambang V.O., Purcaro G., L Lajide., Amoo I.A., Conte L.S., & Moret S. (2009). Determination of polycyclic aromatic hydrocarbons (PAHs) in commonly consumed Nigerian smoked/grilled fish and meat. Food Additives & Contaminants 26 (7), 1096-1103.
AOAC (2002). Official methods of analysis (17th ed.). Washington, DC: Association of Official Analytical Chemists.
Baird, W. M., Hooven, L. A., & Mahadevan, B. (2005). Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen, 45(2-3), 106-114.
Benford, D., Dinovi, M., & Setzer, R. W. (2010). Application of the margin-of-exposure (MoE) approach to substances in food that are genotoxic and carcinogenic e.g.: benzo[a]pyrene and polycyclic aromatic hydrocarbons. Food Chem Toxicol, 48 Suppl 1, S42-48. doi:10.1016/j.fct.2009.09.039
Biedermann M., Ingenhoff J.E., Barbanera M., Garbini D., & Grob K. (2011). Migration of Mineral Oil into Noodles from Recycled Fibres in the Paperboard Box and the Corrugated Board Transport Box as well as from Printing Inks: A Case Study. Packaging Technology and Science 24, 281-290.
Bjorseth, A. (editor), 1983, Handbook of Polycyclic Aromatic Hydrocarbons (New York: Marcel Dekker)
Chen, S., Kao, T. H., Chen, C. J., Huang, C. W., & Chen, B. H. (2013). Reduction of carcinogenic polycyclic aromatic hydrocarbons in meat by sugar-smoking and dietary exposure assessment in taiwan. J Agric Food Chem, 61(31), 7645-7653.
Das, D. N. 1962. Studies on the antibiotic activity of tea. J. Ind. Chem. Soc. 39:849–854.
de Lima, R. F., Dionello, R. G., Peralba Mdo, C., Barrionuevo, S., Radunz, L. L., & Reichert Junior, F. W. (2017). PAHs in corn grains submitted to drying with firewood. Food Chem, 215, 165-170. doi:10.1016/j.foodchem.2016.07.164
Dennis M.J., Massey R.C., Cripps G., Venn I., Howarth N., & Lee G. (1991). Factors affecting the polycyclic aromatic hydrocarbon content of cereals, fats and other food products. Food Additives & Contaminants 8, 517-530.
Drabova, L., Pulkrabova, J., Kalachova, K., Tomaniova, M., Kocourek, V., & Hajslova, J. (2012). Rapid determination of polycyclic aromatic hydrocarbons (PAHs) in tea using two-dimensional gas chromatography coupled with time of flight mass spectrometry. Talanta, 100, 207-216.
Duedahl-Olesen, L., Aaslyng, M., Meinert, L., Christensen, T., Jensen, A. H., & Binderup, M. L. (2015). Polycyclic aromatic hydrocarbons (PAH) in Danish barbecued meat. Food Control, 57, 169-176.
Embry, M. R., Bachman, A. N., Bell, D. R., Boobis, A. R., Cohen, S. M., Dellarco, M., . . . Doe, J. E. (2014). Risk assessment in the 21st century: roadmap and matrix. Crit Rev Toxicol, 44 Suppl 3, 6-16.
European Food Safety Authority. (2008). Scientific opinion of the panel on contaminants
in the food chain on a request from the European Commission on polycyclic aromatic
hydrocarbons in food. EFSA Journal 724, 1-114.
European Union 2011a (2011). Commission Regulation (EU) No 835/2011 of 19 August
2011 amending Regulation (EC) No 1881/2006 as regards maximum levels for polycyclic
aromatic hydrocarbons in foodstuffs. Off J Eur Union. L214:5.
FAO, 2006. Livestock’s Long Shadow. Environmental Issues and Options. Food and Agriculture Organization of the United Nations, Rome, Italy. Fisher, M.J., Rao, I.M., Ayarza, M.A., Lascano, C.E., Sanz, J.I., Thomas, R.J., Vera, R.R., 1994. Carbon storage by introduced deep-rooted grasses in the South American savannas. Nature 371, 236–238.
German-Hernandez, M., Pino, V., Anderson, J. L., & Afonso, A. M. (2011). Use of ionic liquid aggregates of 1-hexadecyl-3-butyl imidazolium bromide in a focused-microwave assisted extraction method followed by high-performance liquid chromatography with ultraviolet and fluorescence detection to determine the 15+1 EU priority PAHs in toasted cereals ("gofios"). Talanta, 85(2), 1199-1206.
Grob K., Biedermann M., Caramaschi A., & Pacciarelli B. (1991). LC‐GC analysis of the aromatics in a mineral oil fraction: Batching oil for jute bags. Journal of High Resolution Chromatography 14, 33-39.
Guatemala-Morales, G. M., Beltran-Medina, E. A., Murillo-Tovar, M. A., Ruiz-Palomino, P., Corona-Gonzalez, R. I., & Arriola-Guevara, E. (2016). Validation of analytical conditions for determination of polycyclic aromatic hydrocarbons in roasted coffee by gas chromatography-mass spectrometry. Food Chem, 197(Pt A), 747-753.
HAMILTON-MILLER, J. M. T. (1995). Antimicrobial Properties of Tea (Camellia sinensis L.) ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Nov. 1995, p. 2375–2377
Harvey, R. G. (1998). Environmental chemistry of PAHs, PAH and related compounds. The Handbook of Environmental Chemistry, vol. 3-I. Alasdair H. Neilson – Springer-Verlag, Berlin, pp. 2–10.
Howsham, M., Jones, K.C., 1998. Sources of PAHs in the environment. In: Nielsen, A.H. (Ed.), Handbook of Environmental Chemistry, Vol 3, Part 1, PAHs and Related
International Agency for Research on Cancer (IARC) (1983). ZARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 32, Part I. World Health Organization, Lyon, France.
IARC (2016a) Presentations related to the IARC Monographs. IARC Monographs, Evaluations. IARC, Lyon. Available online: http://monographs.iarc.fr/ENG/Publications/Evaluations.pdf. Accessed 25 October 2016
IARC (2016b) Agents classified by the IARC Monographs, Volumes 1– 116. Available online: http://monographs.iarc. fr/ENG/Classification/. Accessed 25 October 2016
IPCS (2006) Principles for evaluating health risk in children associated with exposure to chemical. Environmental Health Criteria 237. http://www.who.int/ipcs/publications/ehc/ehc237. pdf. Accessed 16 Feb 2012
Jacob, R. A.; Burri, B. J. Oxidative damage and defense. Am. J. Clin. Nutr. 1996, 63.
Janoszka, B. (2011). HPLC-fluorescence analysis of polycyclic aromatic hydrocarbons (PAHs) in pork meat and its gravy fried without additives and in the presence of onion and garlic. Food Chemistry, 126(3), 1344-1353.
JRC, 2011. ILCD Handbook-recommendation for Life Cycle Impact Assessment in the European Context. Joint Research Centre European Commission, Ispra, Italy. Available at: http://lct.jrc.ec.europa.eu/assessment/assessment/projects#consul tation_impact (accessed 20.05.13.)
Kao, T. H., Chen, S., Chen, C. J., Huang, C. W., & Chen, B. H. (2012). Evaluation of analysis of polycyclic aromatic hydrocarbons by the QuEChERS method and gas chromatography-mass spectrometry and their formation in poultry meat as affected by marinating and frying. J Agric Food Chem, 60(6), 1380-1389.
Kao, T. H., Chen, S., Huang, C. W., Chen, C. J., & Chen, B. H. (2014). Occurrence and exposure to polycyclic aromatic hydrocarbons in kindling-free-charcoal grilled meat products in Taiwan. Food Chem Toxicol, 71, 149-158.
Kayali-Sayadi,M.N., Rubio-Barroso, S., Cuesta-Jimenez M. P., & Polo-Díez, L. M. (1998). Rapid determination of polycyclic aromatic hydrocarbons in tea infusion samples by high-performance liquid chromatography and fluorimetric detection based on solid-phase extraction. Analyst, 1998, 123, 2145-2148. DOI: 10.1039/A803967D

Kislov, V. V., Sadovnikov, A. I., & Mebel, A. M. (2013). Formation mechanism of polycyclic aromatic hydrocarbons beyond the second aromatic ring. J Phys Chem A, 117(23), 4794-4816.
Liang, Y. C., Chen, Y.C., Lin, Y. L., Lin-Shiau, S. Y., Ho, C. T., & Lin J. K. (1999). Suppression of extracellular signals and cell proliferation by the black tea polyphenol, theaflavin-3,39-digallate. Carcinogenesis vol.20 no.4 pp.733–736, 1999
Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., . . . Ezzati, M. (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380(9859), 2224-2260.
Lin, D., & Zhu, L. (2004). Polycyclic Aromatic Hydrocarbons: Pollution and Source Analysis of a Black Tea. J. Agric. Food Chem. 2004, 52, 8268−8271
Lin, D., Tu, Y., & Zhu, L. (2005). Concentrations and health risk of polycyclic aromatic hydrocarbons in tea. Food Chem Toxicol, 43(1), 41-48.
Lin, D., & Zhu, L. (2006). Factors Affecting Transfer of Polycyclic Aromatic Hydrocarbons from Made Tea to Tea Infusion. J. Agric. Food Chem. 2006,54,
4350−4354
Liu, G., Niu, Z., Van Niekerk, D., Xue, J., & Zheng, L. (2008). Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis, and toxicology. Rev Environ Contam Toxicol, 192, 1-28. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/18020302
Manahan, S., Environmental Chemistry Books, Colei, CA, 1984
Manahan S., Environmental chemistry. 5th ed Chelsea, MI: Lewis Publishers, 1991.
Molle, D. R. D., Abballe, C., Gomes, F. M. L., Furlani, R. P. Z., & Tfouni, S. A. V. (2017). Polycyclic aromatic hydrocarbons in canola, sunflower and corn oils and estimated daily intake. Food Control, 81, 96-100.
Mondal, T. K., Bhattacharya, A., Sood A., & Ahuja P. S. (1998). Micropropagation of tea (Camellia sinensis (L.) O. Kuntze) using Thidiazuron. Plant Growth Regulation 26: 57–61, 1998.
Moret S., Grob K., & Conte L.S. (1996). On-line high-performance liquid chromatography-solvent evaporation - high-performance liquid chromatography - capillary gas chromatography - flame ionisation detection for the analysis of mineral oil polyaromatic hydrocarbons in fatty foods. Journal of Chromatography A 750, 361-368.
Mukoyama, M., Nakao, K., Hosoda, K., Suga, S., Saito, Y., Ogawa, Y., Shirakami, G ., Jougasaki, M., Obata, K., & Yasue H. (1991). Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest. 1991;87(4):1402-1412. https://doi.org/10.1172/JCI115146.
Nakahara, K., Kawabata, S., Ono, H., Ogura, K., Tanaka, T., Ooshima, T., & Hamada S., Inhibitory Effect of Oolong Tea Polyphenols on Glucosyltransferases of Mutans Streptococci. Applied And Environmental Microbiology, Apr. 1993, P. 968-973
Pincemaille, J., Schummer, C., Heinen, E., & Moris, G. (2014). Determination of polycyclic aromatic hydrocarbons in smoked and non-smoked black teas and tea infusions. Food Chem, 145, 807-813. doi:10.1016/j.foodchem.2013.08.121
Poster, D. L., Schantz, M. M., Sander, L. C., & Wise, S. A. (2006). Analysis of polycyclic aromatic hydrocarbons (PAHs) in environmental samples: a critical review of gas chromatographic (GC) methods. Anal Bioanal Chem, 386(4), 859-881. doi:10.1007/s00216-006-0771-0
Ramalhosa, M. J., Paíga, P., Morais, S., Delerue-Matos, C., Oliveira, M. B P. P., J. Sep. Sci. 32 (2009) 3529.
Rose, M., Holland, J., Dowding, A., Petch, S. R., White, S., Fernandes, A., & Mortimer, D. (2015). Investigation into the formation of PAHs in foods prepared in the home to determine the effects of frying, grilling, barbecuing, toasting and roasting. Food Chem Toxicol, 78, 1-9.
Roszko, M., Kaminska, M., Szymczyk, K., Jedrzejczak, R., 2018. Dietary risk evaluation for 28 polycyclic aromatic hydrocarbons (PAHs) in tea preparations made of teas available on the Polish retail market. J. Environ. Sci. Health B 53, 25e34.
Sanderson, G. W., Berkowitz J. E., Co, H., & Graham, H. N. (1972). Biochemistry of tea fermentation: products of the oxidation of tea flavanols in a model tea fermentation system. Thomas J. Lipton, inc., 800 Sylvan Ave., Englewood Cliffs, NJ 07632.
Shi, Y., Wu, H., Wang, C., Guo, X., Du, J., & Du, L. (2016). Determination of polycyclic aromatic hydrocarbons in coffee and tea samples by magnetic solid-phase extraction coupled with HPLC-FLD. Food Chem, 199, 75-80.
Sharangi, A.B. (2009). Medicinal and therapeutic potentialities of tea (Camellia sinensis L.). Food Research International 42, 529–535
Simon, R., Palme, S., & Anklam, E. (2007). Validation (in-house and collaborative) of a method based on liquid chromatography for the quantitation of 15 European-priority polycyclic aromatic hydrocarbons in smoke flavourings. Food Chemistry, 104(2), 876-887.
Skoog, A., Benner, R., 1997. Aldoses in various size fractions of marine organic matter: implications for carbon cycling. Limnol. Oceanogr. 42, 1803 – 1813.
Surma, M., Rociek, A.S., Cies´ lik, E., The application of d-SPE in the QuEChERS method for the determination of PAHs in food of animal origin with GC–MS detection, Eur. Food Res. Technol. 238 (2014) 1029–1036.
Toth, L., & Blaas, W., 1972. Effect of smoking technology of the content of carcinogenic hydrocarbons in smoked meat products. Fleischwirtschaft 52, 1419.
Wenzl, T., Simon, R., Anklam, E., & Kleiner, J. (2006). Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union. TrAC Trends in Analytical Chemistry, 25(7), 716-725.
WHO. Revised Global Burden of Disease 2002 Estimates.
http://www.who.int/healthinfo/bodgbd2002revised/en/index.html
(accessed Jan 13, 2006).
Wild, S.R., & Jones, K.C., (1994). The signi®cance of polynuclear aromatic hydrocarbons applied to agricultural soils in sewage sludges in the U.K. Waste Management and Research 12, 49±59.Windal, I., Boxus, L., & Hanot, V. (2008). Validation of the analysis of the 15+1 European-priority polycyclic aromatic hydrocarbons by donnor-acceptor complex chromatography and high-performance liquid chromatography-ultraviolet/fluorescence detection. J Chromatogr A, 1212(1-2), 16-22.
Wise, A. S., Sander, L. C., May, W. E., J. Chromatogr. 642 (1993) 329.
Zachara, A., Gałkowska, D., & Juszczak, L. (2017). Contamination of smoked meat and fish products from Polish market with polycyclic aromatic hydrocarbons. Food Control, 80, 45-51.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊