跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/21 02:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴曉琪
研究生(外文):Hiu-Ki Lai
論文名稱:應用極化靈敏光學同調斷層攝影術於食道癌檢測
論文名稱(外文):Detection of esophagus cancer using polarization-sensitive optical coherence tomography
指導教授:郭文娟郭文娟引用關係
指導教授(外文):Wen-Chuan Kuo
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生醫光電研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:69
中文關鍵詞:極化靈敏光學同調斷層攝影術食道癌
外文關鍵詞:polarization-sensitive optical coherence tomographyesophagus cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前腸胃科醫生普遍以內視鏡作食道癌腫瘤初步判斷,在找到懷疑病灶後,再以侵入式的活體組織切片作病理檢查確定癌細胞的存在,步驟繁複且需要切割組織才能取得病理變化資訊。且使用一般白光內視鏡檢查的誤診情況嚴重,過去研究顯示共6943例病例中有7.8%在確診前3至36個月內曾接受內鏡檢查卻沒被診斷為食道癌。另外,市面上雖然有多種影像加強型內視鏡可供選擇,但仍存在使用不方便或操作困難等缺點,且目前尚無內視鏡技術能準確判斷腫瘤邊界及範圍。光學同調斷層掃描技術 (Optical coherence tomography, OCT) 為一種光學斷層造影術,自1991年被提出後已普遍運用於臨床眼科檢查,目前 OCT應用於腫瘤偵測正在發展中,如口腔癌、肺癌、乳腺癌及食道癌等。在過去文獻已發現正常組織和腫瘤組織在光偏振特性上存有差異,但此特性尚未於早期食道癌診斷上研究,因此本實驗利用 OCT 在微觀尺度上非侵入性、高解析的成像特性,並配合光偏振特性作極化靈敏 (Polarization sensitive, PS) 成像,檢測小鼠離體食道和人體食道檢體結構的光強度及雙折射的深度資訊,作為早期食道癌腫瘤檢測觀察工具。透過本研究,我們提供小鼠和人體早期食道癌檢體的光學結構影像和相位延遲影像,並以三維重建後投影的方式呈現量化參數,包括相位延遲標準差(standard deviation of phase retardation)及厚度圖(Thickness map) 以區分正常組織與食道癌病變組織之邊界。
At present, gastroenterologists generally use endoscopy as a preliminary judgment for esophageal cancer. After finding the suspected lesion, the invasive biopsy is used for pathological examination to determine the presence of cancer cells. The steps are complicated, and the tissue needs to be cut to obtain deep structural changes. The misdiagnosis of endoscopic examination is serious. In the past, it was found that 7.8% of the total 6943 cases had undergone endoscopy within 3 to 36 months before diagnosis, but were not diagnosed as esophageal cancer. In addition, although there are many types of endoscopes available on the market, each endoscope has the possibility of false positives. The images show that the range of esophageal cancer tumors is not the same, and the cancer border cannot be distinguished. Optical coherence tomography (OCT) is an optical tomography technique that has been commonly used in clinical ophthalmologic examination since its introduction in 1991. Currently, OCT is used in the development of tumor detection, such as oral cancer, lung cancer, and breast cancer. Since the past literature has pointed out that there are differences in the polarization properties of normal tissues and tumor tissues, and OCT can be used to observe the internal structure of the esophagus, this experiment uses OCT to achieve non-invasive, high-resolution imaging characteristics on a microscopic scale. Moreover, with polarization characteristics for polarization-sensitive (PS) imaging, the light intensity and birefringence depth information of the isolated esophagus and human esophageal specimen structure are detected, and it is used as an observation tool for esophageal cancer detection. Through this study, we provide optical structure images and phase-delay images of mouse and human esophageal cancer specimens, and present quantitative parameters in three-dimensional reconstruction and en-face projection, including phase standard deviation and thickness map to distinguish the boundary between normal tissue and esophageal cancerous tissue.
目錄
中文摘要 i
英文摘要 ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 ix
第 1 章 緒論 1
1.1 食道癌 1
1.1.1 簡介 1
1.1.2 臨床診斷方式 2
1.2 研究動機與目的 4
第 2 章 背景理論 6
2.1 光學同調斷層掃描術(OCT)簡介 6
2.1.1 極化靈敏光學同調斷層掃描技術(PSOCT) 7
2.2 極化靈敏原理 9
2.2.1 極化狀態 9
2.2.2 雙折射晶體 10
2.3 癌症與光學特性的關係 11
2.3.1 光散射差異 12
2.3.2 厚度變化 12
2.3.3 極化改變 13
2.4 OCT應用於食道癌論文回顧 15
第 3 章 系統架構與實驗參數 17
3.1 系統架構簡介 17
3.2 影像處理 19
3.3 參數定義 21
3.3.1 相位延遲標準差 21
3.3.2 厚度分佈 21
3.4 小鼠模型 21
3.5 人體檢體來源 22
第 4 章 影像重建與結果討論 24
4.1 小鼠實驗結果 24
4.1.1 PSOCT Enface投影與螢光激發照片比較 25
4.1.2 PSOCT 二維成像與組織切片對照驗證 32
4.2 人體檢體實驗結果 39
4.2.1 PSOCT 相位延遲標準差enface投影與窄頻內視鏡照片比較 39
4.2.2 PSOCT 二維切面與組織切片對照驗證 44
4.3 討論 59
4.3.1 相位延遲標準差與厚度分佈比較 59
4.3.2 小鼠離體和人體檢體結果比較 61
4.3.3 應用不同處理方式對相位延遲enface影像結果比較 61
第 5 章 總結與未來展望 63
5.1 總結 63
5.2 未來展望 63
參考文獻 65

圖目錄
圖 1 1 2016年台灣食道癌症相關個案報告[7] 2
圖 1 2具有食道鱗狀細胞癌病變的食道內視鏡影像 2
圖 1 3 具有食道病變的食道內視鏡影像 3
圖 1 4經放大之窄頻內視鏡成像從I型到V-N型病例的上皮內乳頭毛細血管環分類。[12] 3
圖 2 1麥克森干涉儀示意圖 6
圖 2 2基礎PS-OCT架構圖 7
圖 2 3 TM MODE與TE MODE之入射光、折射光及反射光示意圖。 9
圖 2 4光經過雙折射特性物質示意圖 11
圖 2 5正常組纖與食道鱗狀細胞癌病變位置之拉曼光譜比較。[34] 12
圖 2 6良性與惡性食道CT影像與特徵比較。[37](惡性食道包括食道癌) 13
圖 2 7舌頭二維PSOCT成像 13
圖 2 8 通過PSOCT和MT染色分別評估區分四類口腔組織期別回歸圖[38] 14
圖 2 9燒傷疤痕一般照片與相位延遲ENFACE成像 [39] 14
圖 2 10離體豬食道OCT光強度成像以及厚度分佈圖。[40] 16
圖 3 1實驗室SWEPT SOURCE PS-OCT架構圖 17
圖 3 2影像處理流程 19
圖 3 3影像處理流程 20
圖 3 4犧牲老鼠後取出的食道 22
圖 3 5軟木板上的人體食道檢體 23
圖 4 1 小鼠正常食道PSOCT ENFACE投影與螢光激發照片比較。 27
圖 4 2小鼠上皮增生食 道PSOCT ENFACE投影與螢光激發照片比較。 28
圖 4 3 (I)小鼠食道癌食道PSOCT ENFACE投影與螢光激發照片比較。 29
圖 4 4 (II)小鼠食道癌食道PSOCT ENFACE投影與螢光激發照片比較。 30
圖 4 5 (III)小鼠食道癌食道PSOCT ENFACE投影與螢光激發照片比較。 31
圖 4 6小鼠正常食道PSOCT 二維成像與組織切片比較 34
圖 4 7小鼠上皮增生食道PSOCT 二維成像與組織切片比較 35
圖 4 8 (I)小鼠食道癌病變食道PSOCT 二維成像與組織切片比較 36
圖 4 9 (II)小鼠食道癌病變食道PSOCT 二維成像與組織切片比較 37
圖 4 10 (III)小鼠食道癌病變食道PSOCT 二維成像與組織切片比較 38
圖 4 11 (I)人體檢體食道癌PSOCT ENFACE投影與窄頻內視鏡照片比較。 41
圖 4 12 (II)人體檢體食道癌PSOCT ENFACE投影與窄頻內視鏡照片比較。 42
圖 4 13 (III)人體檢體食道癌PSOCT ENFACE投影與窄頻內視鏡照片比較。 43
圖 4 14 (I)人體檢體食道癌病理切片位置示意圖 45
圖 4 15 不同位置下(I)人體檢體食道癌PSOCT二維成像與組織切片比較 49
圖 4 16 (II)人體檢體食道癌病理切片位置示意圖 50
圖 4 17不同位置下(II)人體檢體食道癌PSOCT二維成像與組織切片比較 53
圖 4 18 (III)人體檢體食道癌病理切片位置示意圖 54
圖 4 19不同位置下(III)人體檢體食道癌PSOCT二維成像與組織切片比較 57
圖 4 20 各人體檢體食道癌PSOCT二維成像與組織切片結構比較 58
圖 4 21小鼠食道癌PSOCT 影像與組織切片 60
圖 4 22隨固定深度變化的相位延遲斜率回歸、平均值與標準差ENFACE影像比較 62

表目錄
表 2 1 極化狀態與瓊斯矩陣描述 10
1. Ro T.H, Mathew M.A, and Misra S, Value of screening endoscopy in evaluation of esophageal, gastric and colon cancers. World J Gastroenterol, 2015. 21(33): p. 9693-706.
2. Vioque J, Barber X, Bolumar F, Porta M, Santibáñez M, de la Hera MG, et al., Esophageal cancer risk by type of alcohol drinking and smoking: a case-control study in Spain. BMC Cancer, 2008. 8: p. 221.
3. Iyer RB, Silverman PM, Tamm EP, Dunnington JS, and DuBrow RA, Diagnosis, staging, and follow-up of esophageal cancer. AJR Am J Roentgenol, 2003. 181(3): p. 785-93.
4. Hewer T, Rose E, Ghadirian P, Castegnaro M, Malaveille C, Bartsch H, et al., Ingested mutagens from opium and tobacco pyrolysis products and cancer of the oesophagus. Lancet, 1978. 2(8088): p. 494-6.
5. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, and Jemal A, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2018. 68(6): p. 394-424.
6. American Cancer Society, Global Cancer Facts & Figures 3rd Edition. 2015.
7. Health Promotion Administration Ministry Of Health And Welfare, Cancer Registry Annual Report, 2016 Taiwan. 2018.
8. Kitagawa Y, Uno T, Oyama T, Kato K, Kato H, Kawakubo H, et al., Esophageal cancer practice guidelines 2017 edited by the Japan esophageal society: part 2. Esophagus, 2019. 16(1): p. 25-43.
9. Ide E, Carneiro FO, Frazão MS, Chaves DM, Sallum RA, de Moura EG, et al., Endoscopic Detection of Early Esophageal Squamous Cell Carcinoma in Patients with Achalasia: Narrow-Band Imaging versus Lugol's Staining. J Oncol, 2013. 2013: p. 736756.
10. Goda K.I, Tajiri H, Kaise M, Kato M, and Takubo K, Flat And Small Squamous Cell Carcinoma Of The Esophagus Detected And Diagnosed By Endoscopy With Narrow‐Band Imaging System. Digestive Endoscopy, 2006. 18(s1): p. S9-S12.
11. Chai N.L, Ling-Hu E.Q, Morita Y, Obata D, Toyonaga T, Azuma T, et al., Magnifying endoscopy in upper gastroenterology for assessing lesions before completing endoscopic removal. World J Gastroenterol, 2012. 18(12): p. 1295-307.
12. Dubuc J, Legoux J, Winnock M, Seyrig J, Barbier J, Barrioz T, et al., Endoscopic screening for esophageal squamous-cell carcinoma in high-risk patients: a prospective study conducted in 62 French endoscopy centers. Endoscopy, 2006. 38(7): p. 690-5.
13. Fagundes R.B, de Barros S.G, Pütten A.C, Mello E.S, Wagner M, Bassi L.A, et al., Occult dysplasia is disclosed by Lugol chromoendoscopy in alcoholics at high risk for squamous cell carcinoma of the esophagus. Endoscopy, 1999. 31(4): p. 281-5.
14. Kameyama H, Murakami M, Shimizu Y, Fukoe Y, Ree U, Ree M, et al., The Efficacy and Diagnostic Significance of Sodium Thiosulphate Solution Spraying After Iodine Dyeing of the Esophagus. Digestive Endoscopy, 1994. 6(2): p. 181-186.
15. Kondo H, Fukuda H, Ono H, Gotoda T, Saito D, Takahiro K, et al., Sodium thiosulfate solution spray for relief of irritation caused by Lugol's stain in chromoendoscopy. Gastrointest Endosc, 2001. 53(2): p. 199-202.
16. Takahashi H, Arimura Y, Masao H, Okahara S, Tanuma T, Kodaira J, et al., Endoscopic submucosal dissection is superior to conventional endoscopic resection as a curative treatment for early squamous cell carcinoma of the esophagus (with video). Gastrointest Endosc, 2010. 72(2): p. 255-64, 264.e1-2.
17. Ishihara R, Iishi H, Uedo N, Takeuchi Y, Yamamoto S, Yamada T, et al., Comparison of EMR and endoscopic submucosal dissection for en bloc resection of early esophageal cancers in Japan. Gastrointest Endosc, 2008. 68(6): p. 1066-72.
18. Takano J.H, Yakushiji T, Kamiyama I, Nomura T, Katakura A, Takano N, et al., Detecting early oral cancer: narrowband imaging system observation of the oral mucosa microvasculature. International Journal of Oral and Maxillofacial Surgery, 2010. 39(3): p. 208-213.
19. Chadwick G, Groene O, Hoare J, Hardwick R.H, Riley S, Crosby T.D, et al., A population-based, retrospective, cohort study of esophageal cancer missed at endoscopy. Endoscopy, 2014. 46(7): p. 553-60.
20. Duan L, Marvdashti T, Lee A, Tang J.Y, and Ellerbee A.K, Automated identification of basal cell carcinoma by polarization-sensitive optical coherence tomography. Biomedical optics express, 2014. 5(10): p. 3717-3729.
21. Huang D, Swanson E.A, Lin C.P, Schuman J.S, Stinson W.G, Chang W, et al., Optical coherence tomography. Science, 1991. 254(5035): p. 1178-81.
22. Hagag A.M, Gao S.S, Jia Y, and Huang D, Optical coherence tomography angiography: Technical principles and clinical applications in ophthalmology. Taiwan journal of ophthalmology, 2017. 7(3): p. 115-129.
23. Toto L, Borrelli E, Di Antonio L, Carpineto P, Mastropasqua R, Retinal Vascular Plexuses' Changes In Dry Age-Related Macular Degeneration, Evaluated By Means Of Optical Coherence Tomography Angiography. Retina, 2016. 36(8): p. 1566-72.
24. Jesser C.A, Boppart S.A, Pitris C, Stamper D.L, Nielsen G.P, Brezinski M.E, et al., High resolution imaging of transitional cell carcinoma with optical coherence tomography: feasibility for the evaluation of bladder pathology. Br J Radiol, 1999. 72(864): p. 1170-6.
25. D'Amico A.V, Weinstein M, Li X, Richie J.P, and Fujimoto J, Optical coherence tomography as a method for identifying benign and malignant microscopic structures in the prostate gland. Urology, 2000. 55(5): p. 783-7.
26. Gladkova N.D, Petrova G.A, Nikulin N.K, Radenska-Lopovok S.G, Snopova L.B, Chumakov Y.P, et al., In vivo optical coherence tomography imaging of human skin: norm and pathology. Skin Res Technol, 2000. 6(1): p. 6-16.
27. Escobar P.F, Belinson J.L, White A, Shakhova N.M, Feldchtein F.I, Kareta M.V, et al., Diagnostic efficacy of optical coherence tomography in the management of preinvasive and invasive cancer of uterine cervix and vulva. Int J Gynecol Cancer, 2004. 14(3): p. 470-4.
28. Williamson J.P, McLaughlin R.A, Phillips M.J, Armstrong J.J, Becker S, Walsh J.H, et al., Using optical coherence tomography to improve diagnostic and therapeutic bronchoscopy. Chest, 2009. 136(1): p. 272-276.
29. Kim C.S, Wilder-Smith P, Ahn Y.C, Liaw L.H, Chen Z, and Kwon Y.J, Enhanced detection of early-stage oral cancer in vivo by optical coherence tomography using multimodal delivery of gold nanoparticles. J Biomed Opt, 2009. 14(3): p. 034008.
30. Kut C, Chaichana K.L, Xi J, Raza S.M, Ye X, McVeigh E.R, et al., Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography. Sci Transl Med, 2015. 7(292): p. 292ra100.
31. de Boer J.F, Hitzenberger C.K, and Yasuno Y, Polarization sensitive optical coherence tomography - a review [Invited]. Biomedical optics express, 2017. 8(3): p. 1838-1873.
32. Davé D.P, Akkin T, Milner T.E, Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. Journal of the Optical Society of America B, 1992. 9(6): p. 903-908.
33. Hitzenberger C, Goetzinger E, Sticker M, Pircher M, and Fercher A, Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Optics Express, 2001. 9(13): p. 780-790.
34. Wang J, Lin K, Zheng W, Ho K.Y, Teh M, Yeoh K.G, et al., Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy improves in vivo diagnosis of esophageal squamous cell carcinoma at endoscopy. Scientific reports, 2015. 5: p. 12957-12957.
35. Karmazanovsky G.G, Buryakina S.A, Kondratiev E.V, Yang Q, Ruchkin D.V, Kalinin D.V, Value of two-phase dynamic multidetector computed tomography in differential diagnosis of post-inflammatory strictures from esophageal cancer. World journal of gastroenterology, 2015. 21(29): p. 8878-8887.
36. Yoon Y, Jang W.H, Xiao P, Kim B, Wang T, Li Q, et al., In vivo wide-field reflectance/fluorescence imaging and polarization-sensitive optical coherence tomography of human oral cavity with a forward-viewing probe. Biomedical optics express, 2015. 6(2): p. 524-535.
37. Lee A.M, Cahill L, Liu K, MacAulay C, Poh C, and Lane P, Wide-field in vivo oral OCT imaging. Biomedical optics express, 2015. 6(7): p. 2664-2674.
38. Sharma P, Verma Y, Sahu K, Kumar S, Varma A.V, Kumawat J, et al., Human ex-vivo oral tissue imaging using spectral domain polarization sensitive optical coherence tomography. Lasers Med Sci, 2017. 32(1): p. 143-150.
39. Gong P, Chin L, Es'haghian S, Liew Y.M, Wood F.M, Sampson D.D, et al., Imaging of skin birefringence for human scar assessment using polarization-sensitive optical coherence tomography aided by vascular masking. J Biomed Opt, 2014. 19(12): p. 126014.
40. Lee H.C, Ahsen O.O, Liu J.J, Tsai T.H, Huang Q, Mashimo H, et al., Assessment of the radiofrequency ablation dynamics of esophageal tissue with optical coherence tomography. Journal of biomedical optics, 2017. 22(7): p. 76001-76001.
41. Sergeev A, Gelikonov V, Gelikonov G, Feldchtein F, Kuranov R, Gladkova N, et al., In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa. Opt Express, 1997. 1(13): p. 432-40.
42. Brand S, Poneros J.M, Bouma B.E, Tearney G.J, Compton C.C, Nishioka N.S, Optical coherence tomography in the gastrointestinal tract. Endoscopy, 2000. 32(10): p. 796-803.
43. Evans J.A, Poneros J.M, Bouma B.E, Bressner J, Halpern E.F, Shishkov M, et al., Optical Coherence Tomography to Identify Intramucosal Carcinoma and High-Grade Dysplasia in Barrett’s Esophagus. Clinical Gastroenterology and Hepatology, 2006. 4(1): p. 38-43.
44. Hatta W, Uno K, Koike T, Yokosawa S, Iijima K, Imatani A, et al., Optical coherence tomography for the staging of tumor infiltration in superficial esophageal squamous cell carcinoma. Gastrointestinal Endoscopy, 2010. 71(6): p. 899-906.
45. Su J.W, Lin Y.H, Chiang C.P, Lee J.M, Hsieh C.M, Hsieh M.S, et al., Precancerous esophageal epithelia are associated with significantly increased scattering coefficients. Biomed Opt Express, 2015. 6(10): p. 3795-805.
46. Trasischker W, Zotter S, Torzicky T, Baumann B, Haindl R, Pircher M, et al., Single input state polarization sensitive swept source optical coherence tomography based on an all single mode fiber interferometer. Biomed Opt Express, 2014. 5(8): p. 2798-809.
47. South F.A, Chaney E.J, Marjanovic M, Adie S.G, and Boppart S.A, Differentiation of ex vivo human breast tissue using polarization-sensitive optical coherence tomography. Biomed Opt Express, 2014. 5(10): p. 3417-26.
48. Manesh S.K, Darling C.L, Fried D, Nondestructive assessment of dentin demineralization using polarization-sensitive optical coherence tomography after exposure to fluoride and laser irradiation. J Biomed Mater Res B Appl Biomater, 2009. 90(2): p. 802-12.
49. Roberts P, Sugita M, Deák G, Baumann B, Zotter S, Pircher M, et al., Automated Identification and Quantification of Subretinal Fibrosis in Neovascular Age-Related Macular Degeneration Using Polarization-Sensitive OCT. Invest Ophthalmol Vis Sci, 2016. 57(4): p. 1699-705.
50. Götzinger E, Pircher M, Baumann B, Hirn C, Vass C, and Hitzenberger C.K, Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison. J Biophotonics, 2008. 1(2): p. 129-39.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top