|
1 Akhtar, S., Sarker, M. R. & Hossain, A. Microbiological food safety: a dilemma of developing societies. Critical Reviews in Microbiology 40, 348-359, doi:10.3109/1040841X.2012.742036 (2014). 2 Kirk, M. D. et al. World Health Organization Estimates of the Global and Regional Disease Burden of 22 Foodborne Bacterial, Protozoal, and Viral Diseases, 2010: A Data Synthesis. PLOS Medicine 12, e1001921, doi:10.1371/journal.pmed.1001921 (2015). 3 Dewey-Mattia, D., Manikonda, K., Hall, A. J., Wise, M. E. & Crowe, S. J. Surveillance for Foodborne Disease Outbreaks - United States, 2009-2015. Morbidity and mortality weekly report. Surveillance summaries (Washington, D.C. : 2002) 67, 1-11, doi:10.15585/mmwr.ss6710a1 (2018). 4 Fukuda, K. Food safety in a globalized world. Bulletin of the World Health Organization 93, 212-212, doi:10.2471/BLT.15.154831 (2015). 5 Guillén, M. D., Sopelana, P. & Palencia, G. Polycyclic Aromatic Hydrocarbons and Olive Pomace Oil. Journal of Agricultural and Food Chemistry 52, 2123-2132, doi:10.1021/jf035259q (2004). 6 Pei, X. et al. The China melamine milk scandal and its implications for food safety regulation. Food Policy 36, 412-420, doi:https://doi.org/10.1016/j.foodpol.2011.03.008 (2011). 7 Kupferschmidt, K. Dioxin scandal triggers food debate in Germany. CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne 183, E221-E222, doi:10.1503/cmaj.109-3801 (2011). 8 Deng, W. et al. [Quick determination of fipronil and its metabolites in eggs by gas chromatography-triple quadrupole mass spectrometry]. Se Pu 36, 547-551, doi:10.3724/sp.j.1123.2017.09043 (2018). 9 van Larebeke, N. et al. The Belgian PCB and dioxin incident of January-June 1999: exposure data and potential impact on health. Environmental Health Perspectives 109, 265-273, doi:10.1289/ehp.01109265 (2001). 10 Hussain, M. A. & Dawson, C. O. Economic Impact of Food Safety Outbreaks on Food Businesses. Foods (Basel, Switzerland) 2, 585-589, doi:10.3390/foods2040585 (2013). 11 McBride, D. L. Safety Concerns About Food Additives and Children's Health. Journal of Pediatric Nursing 45, 76-77, doi:https://doi.org/10.1016/j.pedn.2018.09.008 (2019). 12 Gu, C., Lan, T., Shi, H. & Lu, Y. Portable Detection of Melamine in Milk Using a Personal Glucose Meter Based on an in Vitro Selected Structure-Switching Aptamer. Analytical Chemistry 87, 7676-7682, doi:10.1021/acs.analchem.5b01085 (2015). 13 Hu, Y. et al. Detection of melamine in milk using molecularly imprinted polymers–surface enhanced Raman spectroscopy. Food Chemistry 176, 123-129, doi:https://doi.org/10.1016/j.foodchem.2014.12.051 (2015). 14 Wu, C.-F. et al. Interaction of melamine and di-(2-ethylhexyl) phthalate exposure on markers of early renal damage in children: The 2011 Taiwan food scandal. Environmental Pollution 235, 453-461, doi:https://doi.org/10.1016/j.envpol.2017.12.107 (2018). 15 Tsai, H.-J. et al. Intake of phthalate-tainted foods and microalbuminuria in children: The 2011 Taiwan food scandal. Environment International 89-90, 129-137, doi:https://doi.org/10.1016/j.envint.2016.01.015 (2016). 16 Piskorska-Pliszczynska, J. et al. Pentachlorophenol from an old henhouse as a dioxin source in eggs and related human exposure. Environmental Pollution 208, 404-412, doi:https://doi.org/10.1016/j.envpol.2015.10.007 (2016). 17 Vries, M. D., Kwakkel, R. P. & Kijlstra, A. Dioxins in organic eggs: a review. NJAS - Wageningen Journal of Life Sciences 54, 207-221, doi:https://doi.org/10.1016/S1573-5214(06)80023-0 (2006). 18 G Stafford, E. et al. Consequences of fipronil exposure in egg-laying hens. Journal of the American Veterinary Medical Association 253, 57-60, doi:10.2460/javma.253.1.57 (2018). 19 European Food Safety, A., Reich, H. & Triacchini, G. A. Occurrence of residues of fipronil and other acaricides in chicken eggs and poultry muscle/fat. EFSA Journal 16, e05164, doi:10.2903/j.efsa.2018.5164 (2018). 20 Ling, S., Zhang, J., Hu, L. & Zhang, R. Effect of fipronil on the reproduction, feeding, and relative fitness of brown planthopper, Nilaparvata lugens. Applied Entomology and Zoology 44, 543-548, doi:10.1303/aez.2009.543 (2009). 21 Wang, N. et al. Determination of fipronil and its metabolites in eggs by UPLC-QqLIT-MS/MS with multistage mass spectrometry mode. Journal of Liquid Chromatography & Related Technologies 41, 544-551, doi:10.1080/10826076.2018.1485041 (2018). 22 Hingmire, S., Oulkar, D. P., Utture, S. C., Ahammed Shabeer, T. P. & Banerjee, K. Residue analysis of fipronil and difenoconazole in okra by liquid chromatography tandem mass spectrometry and their food safety evaluation. Food Chemistry 176, 145-151, doi:https://doi.org/10.1016/j.foodchem.2014.12.049 (2015). 23 Duhan, A., Kumari, B. & Duhan, S. Determination of Residues of Fipronil and Its Metabolites in Cauliflower by Using Gas Chromatography-Tandem Mass Spectrometry. 94, 260-266, doi:10.1007/s00128-014-1447-7 (2015). 24 Vasylieva, N., Ahn, K. C., Barnych, B., Gee, S. J. & Hammock, B. D. Development of an Immunoassay for the Detection of the Phenylpyrazole Insecticide Fipronil. Environmental Science & Technology 49, 10038-10047, doi:10.1021/acs.est.5b01005 (2015). 25 S. Ratra, G., Kamita, S. & Casida, J. Role of Human GABAA Receptor β3 Subunit in Insecticide Toxicity. Toxicology and applied pharmacology 172, 233-240, doi:10.1006/taap.2001.9154 (2001). 26 Gupta, R. C. et al. Chapter 26 - Insecticides. Biomarkers in Toxicology (Second Edition), 455-475, doi:https://doi.org/10.1016/B978-0-12-814655-2.00026-8 (2019). 27 Eiden, A. L. et al. Determination of metabolic resistance mechanisms in pyrethroid-resistant and fipronil-tolerant brown dog ticks. Medical and Veterinary Entomology 31, 243-251, doi:10.1111/mve.12240 (2017). 28 Carithers, D., Crawford, J., Everett, W. & Gross, S. Efficacy and speed of kill of a combination of fipronil/(S)-methoprene/pyriproxyfen against Ctenocephalides felis flea infestations on dogs from day 2 to day 30 post-treatment, compared with a combination of fipronil/(S)-methoprene. International Journal of Applied Research in Veterinary Medicine 15, 108-115, doi:10.1186/s13071-019-3512-x (2017). 29 Kaur, R., Mandal, K., Kumar, R. & Singh, B. Analytical Method for Determination of Fipronil and its Metabolites in Vegetables Using the QuEChERS Method and Gas Chromatography/Mass Spectrometry. 98, 464-471, doi:10.5740/jaoacint.13-066 (2015). 30 Peng, X.-T., Li, Y.-N., Xia, H., Peng, L.-J. & Feng, Y.-Q. Rapid and sensitive detection of fipronil and its metabolites in edible oils by solid-phase extraction based on humic acid bonded silica combined with gas chromatography with electron capture detection. Journal of Separation Science 39, 2196-2203, doi:10.1002/jssc.201501250 (2016). 31 Gupta, R. C. & Anadón, A. Chapter 42 - Fipronil. Veterinary Toxicology (Third Edition), 533-538, doi:https://doi.org/10.1016/B978-0-12-811410-0.00042-8 (2018). 32 Lee, S.-J. et al. Acute illnesses associated with exposure to fipronil-surveillance data from 11 states in the United States, 2001-2007. Clinical toxicology (Philadelphia, Pa.) 48, 737-744, doi:10.3109/15563650.2010.507548 (2010). 33 Kim, Y. A. et al. Distribution of fipronil in humans, and adverse health outcomes of in utero fipronil sulfone exposure in newborns. International Journal of Hygiene and Environmental Health 222, 524-532, doi:https://doi.org/10.1016/j.ijheh.2019.01.009 (2019). 34 Hodgson, E. Chapter 1 - Introduction to Pesticide Biotransformation and Disposition. Pesticide Biotransformation and Disposition, 1-3, doi:https://doi.org/10.1016/B978-0-12-385481-0.00001-0 (2012). 35 Meshram, B. D., Agrawal, A., Adil, S., Ranvir, S. & Sande, K. K. Biosensor and its Application in Food and Dairy Industry: A Review. 7, 3305-3324, doi:10.20546/ijcmas.2018.702.397 (2018). 36 AlKahtani, R. N. The implications and applications of nanotechnology in dentistry: A review. The Saudi Dental Journal 30, 107-116, doi:https://doi.org/10.1016/j.sdentj.2018.01.002 (2018). 37 Myszka, D. G. Improving biosensor analysis. Journal of Molecular Recognition 12, 279-284, doi:10.1002/(SICI)1099-1352(199909/10)12:5<279::AID-JMR473>3.0.CO;2-3 (1999). 38 Kumar, H. & Rani, N. Enzyme-based electrochemical biosensors for food safety: a review. 29, doi:10.2147/NDD.S64847 (2016). 39 Thévenot, D. R., Toth, K., Durst, R. A. & Wilson, G. S. Electrochemical biosensors: recommended definitions and classification1International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical Chemistry).1. Biosensors and Bioelectronics 16, 121-131, doi:https://doi.org/10.1016/S0956-5663(01)00115-4 (2001). 40 Berggren, C., Bjarnason, B. & Johansson, G. Capacitive Biosensors. 13, 173-180, doi:10.1002/1521-4109(200103)13:3<173::AID-ELAN173>3.0.CO;2-B (2001). 41 Hoffmann, E. d. Mass Spectrometry. Kirk‐Othmer Encyclopedia of Chemical Technology, doi:10.1002/0471238961.1301191913151518.a01.pub2 (2005). 42 Beavis, R. C. & Chait, B. T. Rapid, sensitive analysis of protein mixtures by mass spectrometry. Proceedings of the National Academy of Sciences 87, 6873, doi: 10.1073/pnas.87.17.6873 (1990). 43 Domon, B. & Aebersold, R. Mass Spectrometry and Protein Analysis. Science 312, 212, doi:10.1126/science.1124619 (2006). 44 Van Gyseghem, E. et al. Determining orthogonal chromatographic systems prior to the development of methods to characterise impurities in drug substances. Journal of Chromatography A 988, 77-93, doi:https://doi.org/10.1016/S0021-9673(02)02012-5 (2003). 45 R. Deans, D. A New Technique in Heart Cutting in Gas Chromatography. 1, 18-22, doi:10.1007/BF02259005 (1968). 46 de Zeeuw, J., de Nijs, R. C. M. & Henrich, L. T. Adsorption Chromatography on PLOT (Porous-Layer Open-Tubular) Columns: A New Look at the Future of Capillary GC. Journal of Chromatographic Science 25, 71-83, doi:10.1093/chromsci/25.2.71 (1987). 47 Wesseler, E. P., Iltis, R. & Clark, L. C. The solubility of oxygen in highly fluorinated liquids. Journal of Fluorine Chemistry 9, 137-146, doi:https://doi.org/10.1016/S0022-1139(00)82152-1 (1977). 48 Atay, T., Song, J.-H. & Nurmikko, A. V. Strongly Interacting Plasmon Nanoparticle Pairs: From Dipole−Dipole Interaction to Conductively Coupled Regime. Nano Letters 4, 1627-1631, doi:10.1021/nl049215n (2004). 49 Lyon, L. A., Musick, M. D. & Natan, M. J. Colloidal Au-Enhanced Surface Plasmon Resonance Immunosensing. Analytical Chemistry 70, 5177-5183, doi:10.1021/ac9809940 (1998). 50 Dodekatos, G., Schünemann, S. & Tüysüz, H. Surface Plasmon-Assisted Solar Energy Conversion. 371, doi:10.1007/128_2015_642 (2015). 51 Losic, D., Mitchell, J. G. & Voelcker, N. H. Fabrication of gold nanostructures by templating from porous diatom frustules. New Journal of Chemistry 30, 908-914, doi:10.1039/B600073H (2006). 52 Sherry, L. J. et al. Localized Surface Plasmon Resonance Spectroscopy of Single Silver Nanocubes. Nano Letters 5, 2034-2038, doi:10.1021/nl0515753 (2005). 53 Pradhan, N., Das Adhikari, S., Nag, A. & Sarma, D. D. Luminescence, Plasmonic, and Magnetic Properties of Doped Semiconductor Nanocrystals. Angewandte Chemie International Edition 56, 7038-7054, doi:10.1002/anie.201611526 (2017). 54 Sharma, B., Frontiera, R. R., Henry, A.-I., Ringe, E. & Van Duyne, R. P. SERS: Materials, applications, and the future. Materials Today 15, 16-25, doi:https://doi.org/10.1016/S1369-7021(12)70017-2 (2012). 55 Mitsushio, M., Miyashita, K. & Higo, M. Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al. Sensors and Actuators A: Physical 125, 296-303, doi:https://doi.org/10.1016/j.sna.2005.08.019 (2006). 56 Roy, P. k., Huang, Y.-F. & Chattopadhyay, S. Detection of melamine on fractals of unmodified gold nanoparticles by surface-enhanced Raman scattering. 19, 11002, doi:10.1117/1.JBO.19.1.011002 (2014). 57 Sajanlal, P. R., Sreeprasad, T. S., Samal, A. K. & Pradeep, T. Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Rev 2, 10.3402/nano.v3402i3400.5883, doi:10.3402/nano.v2i0.5883 (2011). 58 Narayanan, R. & El-Sayed, M. A. Shape-Dependent Catalytic Activity of Platinum Nanoparticles in Colloidal Solution. Nano Letters 4, 1343-1348, doi:10.1021/nl0495256 (2004). 59 Cui, C. et al. Octahedral PtNi Nanoparticle Catalysts: Exceptional Oxygen Reduction Activity by Tuning the Alloy Particle Surface Composition. Nano Letters 12, 5885-5889, doi:10.1021/nl3032795 (2012). 60 Shankar, S. S. et al. Biological synthesis of triangular gold nanoprisms. Nature Materials 3, 482-488, doi:10.1038/nmat1152 (2004). 61 Nagarajan, S. & Arumugam Kuppusamy, K. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India. Journal of Nanobiotechnology 11, 39, doi:10.1186/1477-3155-11-39 (2013). 62 Kato, K., Ono, A., Inami, W. & Kawata, Y. Plasmonic nanofocusing using a metal-coated axicon prism. Opt. Express 18, 13580-13585, doi:10.1364/OE.18.013580 (2010). 63 Yuan, Y. & Smalyukh, I. I. Topological nanocolloids with facile electric switching of plasmonic properties. Opt. Lett. 40, 5630-5633, doi:10.1364/OL.40.005630 (2015). 64 Wu, C. & Xu, Q.-H. Stable and Functionable Mesoporous Silica-Coated Gold Nanorods as Sensitive Localized Surface Plasmon Resonance (LSPR) Nanosensors. Langmuir 25, 9441-9446, doi:10.1021/la900646n (2009). 65 Billot, L. et al. Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement. Chemical Physics Letters 422, 303-307, doi:https://doi.org/10.1016/j.cplett.2006.02.041 (2006). 66 Zhang, H., Zhou, J., Zou, W. & He, M. Surface plasmon amplification characteristics of an active three-layer nanoshell-based spaser. Journal of Applied Physics 112, 074309, doi:10.1063/1.4757416 (2012). 67 Rodríguez-Lorenzo, L., Romo-Herrera, J. M., Pérez-Juste, J., Alvarez-Puebla, R. A. & Liz-Marzán, L. M. Reshaping and LSPR tuning of Au nanostars in the presence of CTAB. Journal of Materials Chemistry 21, 11544-11549, doi:10.1039/C1JM10603A (2011). 68 Petryayeva, E. & Krull, U. J. Localized surface plasmon resonance: Nanostructures, bioassays and biosensing—A review. Analytica Chimica Acta 706, 8-24, doi:https://doi.org/10.1016/j.aca.2011.08.020 (2011). 69 Karlsson, R. & Stahlberg, R. Surface Plasmon Resonance Detection and Multispot Sensing for Direct Monitoring of Interactions Involving Low-Molecular-Weight Analytes and for Determination of Low Affinities. Analytical Biochemistry 228, 274-280, doi:https://doi.org/10.1006/abio.1995.1350 (1995). 70 Matsui, J. et al. SPR Sensor Chip for Detection of Small Molecules Using Molecularly Imprinted Polymer with Embedded Gold Nanoparticles. Analytical Chemistry 77, 4282-4285, doi:10.1021/ac050227i (2005). 71 Pollet, J. et al. Fiber optic SPR biosensing of DNA hybridization and DNA–protein interactions. Biosensors and Bioelectronics 25, 864-869, doi:https://doi.org/10.1016/j.bios.2009.08.045 (2009). 72 Dykman, L. & Khlebtsov, N. ChemInform Abstract: Gold Nanoparticles in Biomedical Applications: Recent Advances and Perspectives. 41, 2256-2282, doi:10.1039/c1cs15166e (2012). 73 Campion, A. & Kambhampati, P. Surface-enhanced Raman scattering. Chemical Society Reviews 27, 241-250, doi:10.1039/A827241Z (1998). 74 Bumbrah, G. S. & Sharma, R. M. Raman spectroscopy – Basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egyptian Journal of Forensic Sciences 6, 209-215, doi:https://doi.org/10.1016/j.ejfs.2015.06.001 (2016). 75 Singh, R. & Riess, F. The 1930 Nobel Prize for Physics: A close decision? Notes and Records of the Royal Society of London 55, 267-283, doi:10.1098/rsnr.2001.0143 (2001). 76 Ember, K. J. I. et al. Raman spectroscopy and regenerative medicine: a review. npj Regenerative Medicine 2, 12, doi:10.1038/s41536-017-0014-3 (2017). 77 Kim, Y.-i. et al. Endoscopic imaging using surface-enhanced Raman scattering. European Journal of Nanomedicine 9, 91, doi:10.1515/ejnm-2017-0005 (2017). 78 Szymanski, H. A. Spectroscopy and Molecular Structure (King, Gerald W.). Journal of Chemical Education 41, 692, doi:10.1021/ed041p692.1 (1964). 79 Thygesen, L. G., Løkke, M. M., Micklander, E. & Engelsen, S. B. Vibrational microspectroscopy of food. Raman vs. FT-IR. Trends in Food Science & Technology 14, 50-57, doi:https://doi.org/10.1016/S0924-2244(02)00243-1 (2003). 80 Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 26, 163-166, doi:https://doi.org/10.1016/0009-2614(74)85388-1 (1974). 81 Haynes, C. L. Surface-Enhanced Raman Scattering: Physics and Applications Edited by Katrin Kneipp (Harvard University Medical School, Boston), Martin Moskovits (University of California, Santa Barbara), and Harald Kneipp (Harvard University Medical School). Springer: Berlin, Heidelberg, New York. 2006. xviii + 464 pp. $219.00. ISBN 3-540-33566-8. Journal of the American Chemical Society 129, 2197-2198, doi:10.1021/ja069825k (2007). 82 Ding, S.-Y., You, E.-M., Tian, Z.-Q. & Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chemical Society Reviews 46, 4042-4076, doi:10.1039/C7CS00238F (2017). 83 Nuntawong, N. et al. Surface-enhanced Raman scattering substrate of silver nanoparticles depositing on AAO template fabricated by magnetron sputtering. Vacuum 84, 1415-1418, doi:https://doi.org/10.1016/j.vacuum.2009.12.020 (2010). 84 Pitsillides, C. M., Joe, E. K., Wei, X., Anderson, R. R. & Lin, C. P. Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles. Biophysical Journal 84, 4023-4032, doi:https://doi.org/10.1016/S0006-3495(03)75128-5 (2003). 85 Garcia-Vidal, F. & B. Pendry, J. Collective Theory of Surface Enhanced Raman Scattering. 77, 1163-1166, doi:10.1103/PhysRevLett.77.1163 (1996). 86 Taleb, A., Russier, V., Courty, A. & Pileni, M. P. Collective optical properties of silver nanoparticles organized in two-dimensional superlattices. Physical Review B 59, 13350-13358, doi:10.1103/PhysRevB.59.13350 (1999). 87 Haynes, C. L. et al. Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays. The Journal of Physical Chemistry B 107, 7337-7342, doi:10.1021/jp034234r (2003). 88 Liu, S. et al. Large-scale fabrication of polymer/Ag core–shell nanorod array as flexible SERS substrate by combining direct nanoimprint and electroless deposition. 115, doi:10.1007/s00339-013-7917-7 (2013). 89 Park, M. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nature Nanotechnology 7, 803, doi:10.1038/nnano.2012.206 https://www.nature.com/articles/nnano.2012.206#supplementary-information (2012). 90 Fan, Z. et al. A Three-Dimensional Carbon Nanotube/Graphene Sandwich and Its Application as Electrode in Supercapacitors. Advanced Materials 22, 3723-3728, doi:10.1002/adma.201001029 (2010). 91 Liao, W.-J., Roy, P. k. & Chattopadhyay, S. An ink-jet printed surface enhanced Raman scattering paper for food screening. 4, doi:10.1039/C4RA04821K (2014). 92 Christian, P. & Bromfield, M. Preparation of small silver, gold and copper nanoparticles which disperse in both polar and non-polar solvents. Journal of Materials Chemistry 20, 1135-1139, doi:10.1039/B920301J (2010). 93 Huh, Y. S., Chung, A. J. & Erickson, D. Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluidics and Nanofluidics 6, 285, doi:10.1007/s10404-008-0392-3 (2009). 94 Mortensen, G. K., Main, K. M., Andersson, A.-M., Leffers, H. & Skakkebæk, N. E. Determination of phthalate monoesters in human milk, consumer milk, and infant formula by tandem mass spectrometry (LC–MS–MS). Analytical and Bioanalytical Chemistry 382, 1084-1092, doi:10.1007/s00216-005-3218-0 (2005). 95 Yoshioka, N., Akiyama, Y. & Teranishi, K. Rapid simultaneous determination of o-phenylphenol, diphenyl, thiabendazole, imazalil and its major metabolite in citrus fruits by liquid chromatography-mass spectrometry using atmospheric pressure photoionization. Journal of Chromatography A 1022, 145-150, doi:https://doi.org/10.1016/j.chroma.2003.09.021 (2004). 96 Ekman, E. et al. Determination of 5-hydroxythiabendazole in human urine as a biomarker of exposure to thiabendazole using LC/MS/MS. Journal of Chromatography B 973, 61-67, doi:https://doi.org/10.1016/j.jchromb.2014.10.003 (2014). 97 Qin, L. et al. Designing, fabricating, and imaging Raman hot spots. 103, 13300-13303, doi:10.1073/pnas.0605889103 %J Proceedings of the National Academy of Sciences (2006). 98 Chattopadhyay, S., Lo, H.-C., Hsu, C.-H., Chen, L.-C. & Chen, K.-H. Surface-Enhanced Raman Spectroscopy Using Self-Assembled Silver Nanoparticles on Silicon Nanotips. Chemistry of Materials 17, 553-559, doi:10.1021/cm049269y (2005). 99 Huang, Y.-F., Chen, C.-Y., Chen, L.-C., Chen, K.-H. & Chattopadhyay, S. Plasmon management in index engineered 2.5D hybrid nanostructures for surface-enhanced Raman scattering. Npg Asia Materials 6, e123, doi:10.1038/am.2014.67 https://www.nature.com/articles/am201467#supplementary-information (2014). 100 Jiwei, Q. et al. Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing. 8, 437, doi:10.1186/1556-276x-8-437 (2013). 101 Tanahashi, I. & Harada, Y. Naturally inspired SERS substrates fabricated by photocatalytically depositing silver nanoparticles on cicada wings. Nanoscale Research Letters 9, 298, doi:10.1186/1556-276X-9-298 (2014). 102 Guo, L. et al. Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering. 115, 213101, doi:10.1063/1.4880956 (2014). 103 He, D., Hu, B., Yao, Q.-F., Wang, K. & Yu, S.-H. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles. ACS Nano 3, 3993-4002, doi:10.1021/nn900812f (2009). 104 Hankus, M. E., Stratis-Cullum, D. N. & Pellegrino, P. M. Surface enhanced Raman scattering (SERS)-based next generation commercially available substrate: physical characterization and biological application. SPIE NanoScience + Engineering 8099 (2011). 105 Matulaitienė, I. et al. Potential dependence of SERS spectra of reduced graphene oxide adsorbed on self-assembled monolayer at gold electrode. Chemical Physics Letters 590, 141-145, doi:https://doi.org/10.1016/j.cplett.2013.10.068 (2013). 106 Hu, C. et al. Fabrication of a graphene oxide–gold nanorod hybrid material by electrostatic self-assembly for surface-enhanced Raman scattering. Carbon 51, 255-264, doi:https://doi.org/10.1016/j.carbon.2012.08.051 (2013). 107 Ling, X. et al. Can Graphene be used as a Substrate for Raman Enhancement? Nano Letters 10, 553-561, doi:10.1021/nl903414x (2010). 108 Xu, W. et al. Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy. 25, 928-933, doi:10.1002/adma.201204355 (2013). 109 Ling, X. & Zhang, J. First-Layer Effect in Graphene-Enhanced Raman Scattering. 6, 2020-2025, doi:10.1002/smll.201000918 (2010). 110 Caires, A. J., Alves, D. C. B., Fantini, C., Ferlauto, A. S. & Ladeira, L. O. One-pot in situ photochemical synthesis of graphene oxide/gold nanorod nanocomposites for surface-enhanced Raman spectroscopy. RSC Advances 5, 46552-46557, doi:10.1039/C4RA17207H (2015). 111 Huang, J. et al. Nanocomposites of size-controlled gold nanoparticles and graphene oxide: Formation and applications in SERS and catalysis. Nanoscale 2, 2733-2738, doi:10.1039/C0NR00473A (2010). 112 Ren, W., Fang, Y. & Wang, E. A Binary Functional Substrate for Enrichment and Ultrasensitive SERS Spectroscopic Detection of Folic Acid Using Graphene Oxide/Ag Nanoparticle Hybrids. ACS Nano 5, 6425-6433, doi:10.1021/nn201606r (2011). 113 Chen, S., Li, X., Zhao, Y., Chang, L. & Qi, J. Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering. Carbon 81, 767-772, doi:https://doi.org/10.1016/j.carbon.2014.10.021 (2015). 114 Qian, Z., Cheng, Y., Zhou, X., Wu, J. & Xu, G. Fabrication of graphene oxide/Ag hybrids and their surface-enhanced Raman scattering characteristics. Journal of Colloid and Interface Science 397, 103-107, doi:https://doi.org/10.1016/j.jcis.2013.01.049 (2013). 115 Zhang, L., Jiang, C. & Zhang, Z. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring. Nanoscale 5, 3773-3779, doi:10.1039/C3NR00631J (2013). 116 Liu, Z. et al. Fe3O4@Graphene Oxide@Ag Particles for Surface Magnet Solid-Phase Extraction Surface-Enhanced Raman Scattering (SMSPE-SERS): From Sample Pretreatment to Detection All-in-One. ACS Applied Materials & Interfaces 8, 14160-14168, doi:10.1021/acsami.6b02944 (2016). 117 Cao, J., Sun, T. & Grattan, K. T. V. Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sensors and Actuators B: Chemical 195, 332-351, doi:https://doi.org/10.1016/j.snb.2014.01.056 (2014). 118 Liu, X., Cao, L., Song, W., Ai, K. & Lu, L. Functionalizing Metal Nanostructured Film with Graphene Oxide for Ultrasensitive Detection of Aromatic Molecules by Surface-Enhanced Raman Spectroscopy. ACS Applied Materials & Interfaces 3, 2944-2952, doi:10.1021/am200737b (2011). 119 Bamrungsap, S. et al. Visual colorimetric sensing system based on the self-assembly of gold nanorods and graphene oxide for heparin detection using a polycationic polymer as a molecular probe. Analytical Methods 11, 1387-1392, doi:10.1039/C8AY02129E (2019). 120 Kao, F.-H. et al. In Vivo and in Vitro Demonstration of Gold Nanorod Aided Photothermal Presoftening of B16F10 Melanoma for Efficient Chemotherapy Using Doxorubicin Loaded Graphene Oxide. ACS Applied Bio Materials 2, 533-543, doi:10.1021/acsabm.8b00701 (2019). 121 Willets, K. A. & Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annual Review of Physical Chemistry 58, 267-297, doi:10.1146/annurev.physchem.58.032806.104607 (2007). 122 Nikoobakht, B. & El-Sayed, M. A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials 15, 1957-1962, doi:10.1021/cm020732l (2003). 123 Liu, S.-Y., Tian, X.-D., Zhang, Y. & Li, J.-F. Quantitative Surface-Enhanced Raman Spectroscopy through the Interface-Assisted Self-Assembly of Three-Dimensional Silver Nanorod Substrates. Analytical Chemistry 90, 7275-7282, doi:10.1021/acs.analchem.8b00488 (2018). 124 Thermo scientific. Spike-and-recovery and linearity-of-dilution assessment, <https://www.thermofisher.com/tw/zt/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/overview-elisa/spike-recovery-linearity-assessment.html> (2007). 125 Thompson, J., Crossley, A., Nellist, P. D. & Nicolosi, V. Single-step exfoliation and chemical functionalisation of graphene and hBN nanosheets with nickel phthalocyanine. Journal of Materials Chemistry 22, 23246-23253, doi:10.1039/C2JM34854C (2012). 126 Ricciardella, F., Massera, E., Polichetti, T., Miglietta, M. L. & Di Francia, G. A calibrated graphene-based chemi-sensor for sub parts-per-million NO2 detection operating at room temperature. Applied Physics Letters 104, 183502, doi:10.1063/1.4875557 (2014). 127 Wang, S. et al. Three-photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging. Theranostics 5, 251-266, doi:10.7150/thno.10396 (2015). 128 Daniel, M.-C. & Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis, And Nanotechnology. 104, 293-346, doi:10.1021/cr030698+ (2004). 129 Gole, A. & Murphy, C. J. Seed-Mediated Synthesis of Gold Nanorods: Role of the Size and Nature of the Seed. Chemistry of Materials 16, 3633-3640, doi:10.1021/cm0492336 (2004). 130 Li, J.-J., An, H.-Q., Zhu, J. & Zhao, J.-W. Improve the surface enhanced Raman scattering of gold nanorods decorated graphene oxide: The effect of CTAB on the electronic transition. Applied Surface Science 347, 856-860, doi:https://doi.org/10.1016/j.apsusc.2015.04.194 (2015). 131 Gurunathan, S., Han, J. W., Eppakayala, V. & Kim, J. H. Biocompatibility of microbially reduced graphene oxide in primary mouse embryonic fibroblast cells. Colloids Surf B Biointerfaces 105, 58-66, doi:10.1016/j.colsurfb.2012.12.036 (2013). 132 Huang, X., Neretina, S. & El-Sayed, M. A. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21, 4880-4910, doi:10.1002/adma.200802789 (2009). 133 Wang, L.-P., Kuo, S.-C., Jeng, U. S. & Lai, Y.-H. Adsorption of p-nitrothiophenol on mesostructured polyoxometalate–silicate–surfactant composites containing Au nanoparticles: study of surface-enhanced Raman scattering activity. RSC Advances 5, 37323-37329, doi:10.1039/C5RA04754D (2015). 134 Zhu, Y. et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22, 3906-3924, doi:10.1002/adma.201001068 (2010). 135 Zhu, J., Gao, J., Li, J.-J. & Zhao, J.-W. Improve the surface-enhanced Raman scattering from rhodamine 6G adsorbed gold nanostars with vimineous branches. Applied Surface Science 322, 136-142, doi:https://doi.org/10.1016/j.apsusc.2014.10.095 (2014). 136 Zhang, Y., Ahn, J., Liu, J. & Qin, D. Syntheses, Plasmonic Properties, and Catalytic Applications of Ag–Rh Core-Frame Nanocubes and Rh Nanoboxes with Highly Porous Walls. Chemistry of Materials 30, 2151-2159, doi:10.1021/acs.chemmater.8b00602 (2018). 137 Metzger, M., Leibowitz, G., Wainstein, J., Glaser, B. & Raz, I. Reproducibility of Glucose Measurements Using the Glucose Sensor. Diabetes Care 25, 1185, doi:10.2337/diacare.25.7.1185 (2002). 138 Jarvis, R. M. et al. Towards quantitatively reproducible substrates for SERS. Analyst 133, 1449-1452, doi:10.1039/B800340H (2008). 139 Pandey, S. K. & Kim, K.-H. The Relative Performance of NDIR-based Sensors in the Near Real-time Analysis of CO₂ in Air. Sensors (Basel, Switzerland) 7, 1683-1696, doi:10.3390/s7091683 (2007). 140 Yang, Z., Suzuki, H., Sasaki, S., Karube, I. J. A. M. & Biotechnology. Disposable sensor for biochemical oxygen demand. 46, 10-14, doi:10.1007/s002530050776 (1996). 141 Tu, Q. et al. A simple and rapid method for detecting the pesticide fipronil on egg shells and in liquid eggs by Raman microscopy. Food Control 96, 16-21, doi:https://doi.org/10.1016/j.foodcont.2018.08.025 (2019). 142 Ly, N. H., Nguyen, T. H., Nghi, N. Đ., Kim, Y.-H. & Joo, S.-W. Surface-Enhanced Raman Scattering Detection of Fipronil Pesticide Adsorbed on Silver Nanoparticles. 19, 1355, doi:https://doi.org/10.3390/s19061355 (2019). 143 Ozaki, Y., Cho, R., Ikegaya, K., Muraishi, S. & Kawauchi, K. Potential of Near-Infrared Fourier Transform Raman Spectroscopy in Food Analysis. Appl. Spectrosc. 46, 1503-1507, doi:10.1366/000370292789619368 (1992). 144 Cluff, K. et al. Determination of yolk contamination in liquid egg white using Raman spectroscopy. 95, pew095, doi:10.3382/ps/pew095 (2016). 145 Nevin, A. et al. Raman Spectra of Proteinaceous Materials Used in Paintings: A Multivariate Analytical Approach for Classification and Identification. Analytical Chemistry 79, 6143-6151, doi:10.1021/ac070373j (2007). 146 Vandenabeele, P. et al. Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Analytica Chimica Acta 407, 261-274, doi:https://doi.org/10.1016/S0003-2670(99)00827-2 (2000). 147 Carlesi, S., Becucci, M. & Ricci, M. Vibrational Spectroscopies and Chemometry for Nondestructive Identification and Differentiation of Painting Binders. 2017, 1-10, doi:10.1155/2017/3475659 (2017).
|