跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/14 10:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何欣霓
研究生(外文):Sin-Ni Ho
論文名稱:食品防腐劑山梨酸使肝臟脂肪酸代謝失調
論文名稱(外文):Food preservative sorbic acid deregulates the hepatic fatty acid metabolism
指導教授:高毓儒
指導教授(外文):Yu Ru Kou
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:60
中文關鍵詞:山梨酸脂肪酸代謝肝臟脂質代謝自噬作用失調肝臟脂質堆積
外文關鍵詞:sorbic acidhepatic fatty acid metabolismimpaired autophagylipid accumulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:587
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
食品防腐劑山梨酸使肝臟脂肪酸代謝失調

己二烯酸 (Sorbic acid, SA) 是世界各國經常使用的食品防腐劑之一,具有抗菌保鮮功效,添加於食品中可以延長賞味期限,常常被添加在醬油、果醬、冷凍肉類製品、醃製蔬菜、罐頭食品與飲料中。雖然己二烯酸在法定安全劑量內做為食品防腐劑不具有肝毒性,但目前仍然不清楚己二烯酸對人體脂質代謝會造成什麼影響? 因此,我的研究想要利用動物實驗來探討在安全食用劑量內的己二烯酸是否影響肝臟的脂質代謝。在此研究中,我們記錄餵食己二烯酸 4 週後 C57BL/6 小鼠的外觀與體重,並檢測血脂變化。我們也分離小鼠的肝臟進行組織切片,以油紅染色及 H&E 染色觀察己二烯酸對肝臟組織學的影響;此外,我們萃取肝臟中的脂質並利用試劑來檢測肝臟中三酸甘油脂、脂肪酸、甘油、總膽固醇、游離膽固醇及膽固醇脂的含量。最後我們使用西方墨點法來分析肝臟內與脂質代謝相關之蛋白質表現量。我們的結果顯示:連續餵食己二烯酸 (1 g/kg 食物量) 四週,不影響到體重、血脂與肝臟內膽固醇的含量,但會增加肝臟內三酸甘油脂的含量。肝臟內脂質代謝相關之蛋白質分析結果顯示:己二烯酸降低了肝臟內自行製造脂肪酸相關蛋白質 (固醇調節元件結合蛋白、乙醯輔酶 A 羧化酶、脂肪酸合成酶)、脂肪酸運送相關蛋白質 (肝臟型脂肪酸結合蛋白、分化簇 36) 與極低密度脂蛋白分泌相關蛋白質 (E 型載脂肪蛋白) 的表達;此外,肝臟內參與自噬作用相關蛋白質 (Beclin-1、微管相關蛋白 1A/1B 輕鏈 3A、自噬相關蛋白 5、自噬相關蛋白7) 與脂肪酸氧化路徑相關蛋白質 (醯基輔酶 A合成酶-1、肉鹼棕櫚醯轉移酶 1α、過氧化物酶體增殖物活化受體α、過氧化物酶體增殖物活化受體γ、過氧化物酶體增殖物啟動受體 γ輔啟動因子 1α) 的表現量也顯著的減少。整體而言,己二烯酸雖然使得肝臟製造的脂肪酸與攝入的脂肪酸減少,但由於極低密度脂蛋白分泌、脂質自噬作用與脂質氧化作用功能的下降,造成肝臟清除脂質的能力受到限制,使脂質無法順利排出肝臟,最終導致肝臟內脂質的堆積。
Food preservative sorbic acid deregulates the hepatic
fatty acid metabolism

Sorbic acid (SA) is one of the most common food preservatives all over the world. It can keep food fresh from bacterial growth and extend the storage life. SA is used in soy sauce, jam, frozen meat product, pickled vegetables, canned foods and beverages. SA has been proved that it is not toxic to hepatocytes under legal dosages, however, the effect of SA on lipid metabolism still unclear. Therefore, my study aimed to investigate the role of SA on the hepatic lipid metabolism in vivo. In this study, I observed body weight, appearance and blood lipids of C57BL/6 mice which fed with or without SA for four weeks. Besides, I used H&E staining to investigate the effect of SA on histology and the Oil Red O staining for examining the lipid accumulation in liver. I also evaluated the level of triglycerides, fatty acids, glycerol, total cholesterol, free cholesterol, and cholesterol ester from liver extraction by using conventional kits. Moreover, the expression of lipid metabolism-related proteins in liver was analyzed by western Blotting analysis. The results showed that continuous feeding of SA (1 g/kg diet) for four weeks increased the accumulation of triglycerides in liver without affecting the body weight and blood lipids. In addition, SA reduced the protein expression related to de novo fatty acid lipogenesis (sterol regulatory element-binding proteins, acetyl-coA carboxylase and fatty acid synthase) and fatty acid uptake (liver fatty acid-binding protein and CD36). Moreover, SA deregulated the expression of proteins involved in autophagy pathway (Beclin-1, LC3, autophagy related protein 5 and autophagy related protein 7) and β-oxidation pathway (acyl-CoA synthetase, carnitine palmitoyltransferase 1α, peroxisome proliferator-activated receptor α, peroxisome proliferator-activated receptor γ, peroxisome proliferator-activated receptor γ coactivator 1α). The secretion of low-density lipoprotein (apolipoprotein E) was also limited. In conclusion, SA might reduce the production and uptake of fatty acids in liver, but decreased effect on lipid clearance and metabolism, which results in hepatic lipid accumulation.
Contents

Table of Contents.............................. I
Acknowledgments................................ IV
Abbreviations.................................. V
Chinese Abstract............................... X
English Abstract............................... XII
1. Introduction................................ 1
1.1 Food PreservativeSorbic Acid (SA)......... 1
1.1.1 Functions and Applications of SA......... 1
1.1.2 Toxicity of SA........................... 2
1.1.3 Exposure to SA in diet................... 2
1.1.4 Metabolism of SA......................... 3
1.2 Prevalence of NAFLD and Its Progression.... 3
1.3 Fatty acid Metabolism and Fatty Liver...... 4
1.3.1 Lipid Metabolism in Liver................ 5
1.3.2 VLDL Metabolism in Liver................. 5
1.4 de novo Lipogenesis........................ 6
1.4.1 Contribution of Fatty Acid Lipogenesis in Fatty Liver ...6
1.4.2 Roles of SREBP and Associated Proteins in Lipogenesis ...6
1.4.3 Functions of ACC and FAS in Fatty Acid Synthesis... 6
1.4.4 Functions of DGAT in Triglycerides Synthesis..... 7
1.4.5 Functions of LDLR and HMGCR in Cholesterol Metabolism ...7
1.5 Fatty Acids β-oxidation.................... 8
1.5.1 β-oxidation in Mitochondria and Peroxisome....... 8
1.5.2 Regulations of β-oxidation By Transcription Factors ...9
1.5.3 Problems for impairment of β-oxidation........... 11
1.6 Catabolic Pathways of Lipid Droplets....... 11
1.6.1 Autophagy................................ 11
1.6.1.1 Role of Autophagy for Triglyceride Degradation... 12
1.6.1.2 Mechanism of Autophagy................. 12
1.6.2 Lipolysis................................ 13
1.6.2.1 Mechanism of Lipolysis................. 13
1.6.2.2 ATGL and HSL........................... 14
2. Aims........................................ 15
3. Materials and Methods....................... 16
3.1 Reagents and Antibodies.................... 16
3.2 Mice....................................... 17
3.3 Hematoxylin and Eosin Staining (H&E Staining)...... 17
3.4 Oil Red O Staining......................... 18
3.5 Serum Lipid Profile Analysis............... 19
3.6 Determination of Hepatic Lipids............ 20
3.7 Western Blot Analysis...................... 21
3.8 Statistical Analysis....................... 22
4. Results..................................... 23
4.1 Sorbic acid did not change the mice body weight, and the weight of liver, white adipose tissue and brown adipose tissue......... 23
4.2 Sorbic acid did not affect mice serum lipid........ 23
4.3 Sorbic acid increased the accumulation of natural lipid in liver using Oil Red O stain and liver extraction method ................23
4.4 Daily intake of sorbic acid led to decreased de novo lipogenesis in liver........................... 24
4.5 Sorbic acid played a role in fatty acid metabolism in liver.......................................... 25
4.6 Sorbic acid down regulates β-oxidation in liver.... 26
4.7 Sorbic acid significantly caused insufficiency of autophagy in liver..................... 27
5. Discussion.......................... 28
6. References.......................... 40
7. Figures
Figure 1. The lipid metabolism in liver
Figure 2. No significance of sorbic acid on mice body appearance, body weight, liver weight and fat tissue weight
Figure 3. Sorbic acid had no significance on serum lipid
Figure 4. Sorbic acid increased lipid accumulation in mice liver
Figure 5. Effect of sorbic acid on de novo triglyceride lipogenesis
Figure 6. Sorbic acid down regulated fatty acids secretion
Figure 7. Sorbic acid reduced the expression of important regulator and enzyme in β-oxidation pathway
Figure 8. Sorbic acid did not effect on lipolysis pathway but reduced the expression of indispensable protein involved in autophagy process
Figure 9. The conclusion of effects of SA on lipid accumulation in mice liver
Appendix
References

[1]Saad B, Bari MF, Saleh MI, Ahmad K, Talib MK. Simultaneous determination of preservatives (benzoic acid, sorbic acid,methylparaben and propylparaben) in foodstuffs using high-performance liquid chromatography. J Chromatogr A. 2005;1073(1-2):393-397.
[2]Kang HM, Kim MS, Hwang UK, Jeong CB, Lee JS. Effects of methylparaben, ethylparaben, and propylparaben on life
parameters and sex ratio in the marine copepod Tigriopus japonicus. Chemosphere. 2019;226:388-394. doi:
10.1016/j.chemosphere.2019.03.151.
[3]Mikami E, Goto T, Ohno T, Matsumoto H, Nishida M. Simultaneous analysis of dehydroacetic acid, benzoic acid, sorbic acidand salicylic acid in cosmetic products by solid-phase extraction and high-performance liquid chromatography. J Pharm Biomed Anal. 2002;28(2):261-267.
[4]EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources added to Food). Scientific Opinion on the re-evaluation of sorbic acid (E 200), potassium sorbate (E 202) and calcium sorbate (E 203) as food additives. EFSA Journal.2015;13(6):4144, 91 pp. doi: 10.2903/j.efsa.2015.4144
[5]Eklund T. The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J Appl
Bacteriol. 1983;54(3):383-389.
[6]Gaunt IF, Butterworth KR, Hardy J, Gangolli SD. Long-term toxicity of sorbic acid in the rat. Food Cosmet Toxicol.1975;13(1):31-45.
[7]Ling MP, Lien KW, Wu CH, Ni SP, Huang HY, Hsieh DP. Dietary exposure estimates for the food preservatives benzoic acid and sorbic acid in the total diet of Taiwan. J Agric Food Chem. 2015;63(7):2074-2082. doi: 10.1021/jf503987y.
[8]Ninth report of the joint FAO-WHO expert committee on food additives. Specifications for the identity and purity of food additives and their toxicological evaluation: some antimicrobials, antioxidants, emulsifiers, stabilizers, flour-treatment agents, acids, and bases. World Health Organ Tech Rep Ser. 1966;339:1-24.
[9]Joint FAO/WHO Expert Committee on Food Additives. Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents. FAO Nutr Meet Rep Ser. 1974;(53A):1-520.
[10]Luo ZF, Fang XL, Shu G, Wang SB, Zhu XT, Gao P, Chen LL, Chen CY, Xi QY, Zhang YL, Jiang QY. Sorbic acid improves growth performance and regulates insulin-like growth factor system gene expression in swine. J Anim Sci. 2011;89(8):2356-2364. doi:10.2527/jas.2010-3677.
[11]Farrell GC. Non-alcoholic steatohepatitis: what is it, and why is it important in the Asia-Pacific region? J
Gastroenterol Hepatol. 2003;18(2):124-138.
[12]Hsu CS, Kao JH. Non-alcoholic fatty liver disease: an emerging liver disease in Taiwan. J Formos Med Assoc. 2012;111 (10):527-535. doi: 10.1016/j.jfma.2012.07.002.
[13]Herath HMM, Kodikara I, Weerarathna TP, Liyanage G. Prevalence and associations of non-alcoholic fatty liver disease (NAFLD) in Sri Lankan patients with type 2 diabetes: A single center study. Diabetes Metab Syndr. 2019;13(1):246-250. doi:10.1016/j.dsx.2018.09.002.
[14]Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 2010;51(2):679-689.
[15]Calzadilla Bertot L, Adams LA. The Natural Course of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci. 2016;17(5). pii:E774. doi: 10.3390/ijms17050774.
[16]Kempiński R, Łukawska A, Krzyżanowski F, Ślósarz D, Poniewierka E. Clinical outcomes of non-alcoholic fatty liver disease: Polish-case control study. Adv Clin Exp Med. 2019. In press. doi: 10.17219/acem/106173.
[17]Ampuero J, Gallego-Durán R, Romero-Gómez M. Association of NAFLD with subclinical atherosclerosis and coronary-artery disease: meta-analysis. Rev Esp Enferm Dig. 2015;107(1):10-16.
[18]Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015;62(1 Suppl):S47-64. doi:10.1016/j.jhep.2014.12.012.
[19]Burt AD, Lackner C, Tiniakos DG. Diagnosis and Assessment of NAFLD: Definitions and Histopathological Classification. Semin Liver Dis. 2015;35(3):207-220. doi: 10.1055/s-0035-1562942.
[20]Benjamin A, Zubajlo R, Thomenius K, Dhyani M, Kaliannan K, Samir AE, Anthony BW. Non-invasive diagnosis of non-alcoholic fatty liver disease (NAFLD) using ultrasound image echogenicity. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:2920-2923. doi: 10.1109/EMBC.2017.8037468.
[21]Permutt Z1, Le TA, Peterson MR, Seki E, Brenner DA, Sirlin C, Loomba R. Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease - MRI accurately quantifies hepatic steatosis in NAFLD. Aliment Pharmacol Ther. 2012;36(1):22-29. doi: 10.1111/j.1365-2036.2012.05121.x.
[22]Betzel B, Drenth JP. A new noninvasive technique for estimating hepatic triglyceride: will liver biopsy become redundant in diagnosing non-alcoholic fatty liver disease? BMC Med. 2014;12:152. doi: 10.1186/s12916-014-0152-z.
[23]Stubbs CD, Smith AD. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta. 1984;779(1):89-137.
[24]McGarry JD, Foster DW. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem.
1980;49:395-420.
[25]Wruck W, Graffmann N, Kawala MA, Adjaye J. Concise Review: Current Status and Future Directions on Research Related to Nonalcoholic Fatty Liver Disease. Stem Cells. 2017;35(1):89-96. doi: 10.1002/stem.2454.
[26]Shojaee-Moradie F, Cuthbertson DJ, Barrett M, Jackson NC, Herring R, Thomas EL, Bell J, Kemp GJ, Wright J, Umpleby AM. Exercise Training Reduces Liver Fat and Increases Rates of VLDL Clearance But Not VLDL Production in NAFLD. J Clin Endocrinol
Metab. 2016;101(11):4219-4228.
[27]M Mahmood Hussain, Paul Rava, Meghan Walsh, Muhammad Rana, and Jahangir Iqbal. Multiple functions of microsomal
triglyceride transfer protein. Nutr Metab (Lond). 2012;9:14. doi: 10.1186/1743-7075-9-14.
[28]Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988;240 (4852):622-630.
[29]Tamura S, Shimomura I. Contribution of adipose tissue and de novo lipogenesis to nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1139-1142.
[30]Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F. SREBP transcription factors: master regulators of lipid
homeostasis. Biochimie. 2004;86(11):839-848.
[31]Zang M. (2016) ‘The Molecular Basis of Hepatic De Novo Lipogenesis in Insulin Resistance’ In: Ntambi J. (eds.).
Hepatic De Novo Lipogenesis and Regulation of Metabolism. Springer, Cham.
[32]Kim YM, Shin HT, Seo YH, Byun HO, Yoon SH, Lee IK, Hyun DH, Chung HY, Yoon G. Sterol Regulatory Element-binding Protein (SREBP)-1-mediated Lipogenesis Is Involved in Cell Senescence. J Biol Chem. 2010;285(38): 29069–29077.
[33]Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J
Gastroenterol. 2013;48(4):434441. doi: 10.1007/s00535-013-0758-5.
[34]Maciejewski BS, LaPerle JL, Chen D, Ghosh A, Zavadoski WJ, McDonald TS, Manion TB, Mather D, Patterson TA, Hanna M,Watkins S, Gibbs EM, Calle RA, Steppan CM.Pharmacological inhibition to examine the role of DGAT1 in dietary lipid absorption in rodents and humans. Am J Physiol Gastrointest Liver Physiol. 2013;304(11):G958-969. doi: 10.1152/ajpgi.00384.2012.
[35]Chitraju C, Walther TC, Farese RV Jr. The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes. J Lipid Res. 2019. In press. doi: 10.1194/jlr.M093112.
[36]Bhatt-Wessel B, Jordan TW, Miller JH, Peng L. Role of DGAT enzymes in triacylglycerol metabolism. Arch Biochem Biophys. 2018;655:1-11. doi:10.1016/j.abb.2018.08.001.
[37]Wang Z1, Yao T, Song Z. Involvement and mechanism of DGAT2 upregulation in the pathogenesis of alcoholic fatty liver disease. J Lipid Res. 2010;51(11):3158-3165. doi: 10.1194/jlr.M007948
[38]Herz J, Hamann U, Rogne S, Myklebost O, Gausepohl H, Stanley KK. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J. 1988;7(13):4119-4127.
[39]Van de Sluis B, Wijers M, Herz J. News on the molecular regulation and function of hepatic low-density lipoprotein
receptor and LDLR-related protein 1. Curr Opin Lipidol. 2017;28(3):241-247. doi: 10.1097/MOL.0000000000000411.
[40]Tavori H, Rashid S, Fazio S. On the Function and Homeostasis of PCSK9: Reciprocal Interaction with LDLR and Additional Lipid Effects. Atherosclerosis. 2015;238(2):264-270. doi: 10.1016/j.atherosclerosis.2014.12.017
[41]Bartuzi P, Billadeau DD, Favier R, Rong S, Dekker D, Fedoseienko A, Fieten H, Wijers M, Levels JH, Huijkman N,
Kloosterhuis N, van der Molen H, Brufau G, Groen AK, Elliott AM, Kuivenhoven JA, Plecko B, Grangl G, McGaughran J, Horton JD,Burstein E, Hofker MH, van de Sluis B. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL.Nat Commun. 2016;7:10961. doi: 10.1038/ncomms10961
[42]Larry R.Engelking. (2015) ‘Textbook of Veterinary Physiological Chemistry (Third Edition)’ in Elsevier (eds.).
[43]Buhaescu I, Izzedine H. Mevalonate pathway: A review of clinical and therapeutical implications. Clin Biochem. 2007;40 (9-10):575-584.
[44]Moczulski D, Majak I, Mamczur D. An overview of beta-oxidation disorders. Postepy Hig Med Dosw (Online). 2009;63:266-277.
[45]Phillips CM, Goumidi L, Bertrais S, Field MR, Cupples LA, Ordovas JM, Defoort C, Lovegrove JA, Drevon CA, Gibney MJ,Blaak EE, Kiec-Wilk B, Karlstrom B, Lopez-Miranda J, McManus R, Hercberg S, Lairon D, Planells R, Roche HM. Gene-nutrient interactions with dietary fat modulate the association between genetic variation of the ACSL1 gene and metabolic syndrome. J Lipid Res. 2010;51(7): 1793-1800. doi: 10.1194/jlr.M003046.
[46]Coleman RA, Lewin TM, Muoio DM. Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr. 2000;20:77-103.
[47]Schreurs M, Kuipers F, van der Leij FR. Regulatory enzymes of mitochondrial beta-oxidation as targets for treatment of the metabolic syndrome. Obes Rev. 2010;11(5):380-388.
[48]Houten SM, Wanders RJ. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inherit Metab Dis. 2010;33(5):469-477. doi: 10.1007/s10545-010-9061-2.
[49]Fan CY, Pan J, Chu R, Lee D, Kluckman KD, Usuda N, Singh I, Yeldandi AV, Rao MS, Maeda N, Reddy JK. Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene. J Biol Chem. 1996;271 (40):24698-24710.
[50]Xian-Feng Wu, Yuan Liu, Cheng-Fang Gao, Xin-Zhu Chen, Xiao-Pei Zhang, Wen-Yang Li. Novel alternative splicing variants of ACOX1 and their differential expression patterns in goats. Arch. Anim. Breed. 2018; 61:59-70. doi: 10.5194/aab-61-59-2018
[51]Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol. 2000;20(5):1868-1876.
[52]Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006; 116(3): 615-622.
[53]Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005;3(4):e101.
[54]De la Rosa Rodriguez MA, Kersten S. Regulation of lipid droplet-associated proteins by peroxisome proliferator-activated receptors. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt B):1212-1220. doi: 10.1016/j.bbalip.2017.07.007.
[55]Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T, and Gonzalez FJ. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor
α(PPARα). J Biol Chem. 1998;273(10):5678-5684.
[56]Fan W, Evans R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol. 2015;33:49-54. doi: 10.1016/j.ceb.2014.11.002.
[57]Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science. 2001;294(5548):1866-1870.
[58]Wang B, Yang Q, Harris CL, Nelson ML, Busboom JR, Zhu MJ, Du M. Nutrigenomic regulation of adipose tissue development- role of retinoic acid: A review. Meat Science. 2016;120:100-106. doi: 10.1016/j.meatsci.2016.04.003.
[59]Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K and Wahli W. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci U S A. 1993;90 (6):2160-2164.
[60]Hertz R, Bar-Tana J. Induction of peroxisomal beta-oxidation genes by retinoic acid in cultured rat hepatocytes. Biochem J. 1992;281 (Pt 1): 41-43.
[61]Duncan JG, Finck BN. The PPARα-PGC-1α Axis Controls Cardiac Energy Metabolism in Healthy and Diseased Myocardium. PPAR Res. 2008;2008:253817. doi: 10.1155/2008/253817.
[62]Fromenty B, Pessayre D. Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacol Ther. 1995;67(1):101-154.
[63]Medina-Gomez G, Gray S, Vidal-Puig A. Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor γ (PPARγ) and PPARcoactivator-1 (PGC1). Public Health Nutr. 2007;10(10A):1132-1137.
[64]Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR,
Kashani HH, Hashemi M, Owji AA, and Łos MJ. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol. 2014;112:24-49.
[65]Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, and Bao JK. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45(6):487-498.
[66]Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid
metabolism. Nature. 2009;458(7242):1131-1135.
[67]Singh R. Autophagy and regulation of lipid metabolism. Results Probl Cell Differ. 2010;52:35-46. doi: 10.1007/978-3-642-14426-4_4.
[68]Mao Y, Yu F, Wang J, Guo C, Fan X. Autophagy: a new target for nonalcoholic fatty liver disease therapy. Hepat Med.2016;8:27-37. doi: 10.2147/HMER.S98120
[69]Komatsu M. Liver autophagy: physiology and pathology. J Biochem. 2012;152(1):5-15. doi: 10.1093/jb/mvs059.
[70]Rautou PE, Mansouri A, Lebrec D, Durand F, Valla D, Moreau R. Autophagy in liver diseases. J Hepatol. 2010;53(6):1123-1134. doi: 10.1016/j.jhep.2010.07.006.
[71]Hansen M, Rubinsztein DC, Walker DW. Autophagy as a promoter of longevity: insights from model organisms. Nat Rev MolCell Biol. 2018;19(9):579-593. doi: 10.1038/s41580-018-0033-y.
[72]Quiroga AD, Lehner R. Pharmacological intervention of liver triacylglycerol lipolysis: The good, the bad and the ugly. Biochem Pharmacol. 2018;155:233-241. doi: 10.1016/j.bcp.2018.07.005.
[73]Quiroga AD, Lehner R. Role of endoplasmic reticulum neutral lipid hydrolases. Trends Endocrinol Metab. 2011;22(6):218-225. doi: 10.1016/j.tem.2011.03.003.
[74]Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306 (5700):1383-1386. doi: 10.1126/science.1100747
[75]Xia B, Cai GH, Yang H, Wang SP, Mitchell GA, Wu JW. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice. PLoS Genet. 2017;13(12):e1007110. doi: 10.1371/journal.pgen.1007110.
[76]Schnabel L, Kesse-Guyot E, Allès B, Touvier M, Srour B, Hercberg S, Buscail C, Julia C. Association Between
Ultraprocessed Food Consumption and Risk of Mortality Among Middle-aged Adults in France. JAMA Intern Med. 2019. In press. doi: 10.1001/jamainternmed.2018.7289.
[77]Animal health research institute, council of agriculture, executive yuan. Retrieved 2019, from
https://pigpm.nvri.gov.tw/fmodule/category.aspx?CategoryID=UcsFPBPZBhM%3D
[78]Seventeenth report of the joint FAO-WHO Expert Committee on Food Additives. Toxicological evaluation of certain food additives with a review of general principles and of specifications. World Health Organ Tech Rep Ser. 1974;539:1-40.
[79]Hanson RW, Reshef L. Glyceroneogenesis revisited. Biochimie. 2003;85(12):1199-1205.
[80]Lin EC. Glycerol utilization and its regulation in mammals. Annu Rev Biochem. 1977;46:765-795.
[81]Lebeck J. Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver. J Mol Endocrinol. 2014;52(2):R165-178. doi: 10.1530/JME-13-0268.
[82]Hibuse T, Maeda N, Nagasawa A, Funahashi T. Aquaporins and glycerol metabolism. Biochim Biophys Acta. 2006;1758(8):1004-1011.
[83]Gena P, Buono ND, D'Abbicco M, Mastrodonato M, Berardi M, Svelto M, Lopez L, Calamita G. Dynamical modeling of liver Aquaporin-9 expression and glycerol permeability in hepatic glucose metabolism. Eur J Cell Biol. 2017;96(1):61-69. doi: 10.1016/j.ejcb.2016.12.003.
[84]France M, Kwok S, Soran H, Williams S, Ho JH, Adam S, Canoy D, Liu Y, Durrington PN. Liver Fat Measured by MR
Spectroscopy: Estimate of Imprecision and Relationship with Serum Glycerol, Caeruloplasmin and Non-Esterified Fatty Acids. Int J Mol Sci. 2016;17(7). pii: E1089. doi: 10.3390/ijms17071089.
[85]Loh K, Tam S, Murray-Segal L, Huynh K, Meikle PJ, Scott JW, van Denderen B, Chen Z, Steel R, LeBlond ND, Burkovsky LA, O'Dwyer C, Nunes JRC, Steinberg GR, Fullerton MD, Galic S, Kemp BE. Inhibition of Adenosine Monophosphate-Activated Protein Kinase-3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Signaling Leads to Hypercholesterolemia and Promotes Hepatic Steatosis and Insulin Resistance. Hepatol Commun. 2018;3(1):84-98. doi: 10.1002/hep4.1279.
[86]Moon YA. The SCAP/SREBP Pathway: A Mediator of Hepatic Steatosis. Endocrinol Metab (Seoul). 2017;32(1):6-10. doi:
10.3803/EnM.2017.32.1.6.
[87]Espenshade PJ, Hughes AL. Regulation of sterol synthesis in eukaryotes. Annu Rev Genet. 2007;41:401-427.
[88]Walther TC, Farese RV Jr. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem. 2012;81:687-714. doi:
10.1146/annurev-biochem-061009-102430.
[89]Soni KG, Mardones GA, Sougrat R, Smirnova E, Jackson CL, Bonifacino JS. Coatomer-dependent protein delivery to lipid droplets. J Cell Sci. 2009;122(Pt 11):1834-1841. doi: 10.1242/jcs.045849.
[90]McFie PJ, Banman SL, Stone SJ. Diacylglycerol acyltransferase-2 contains a c-terminal sequence that interacts with lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(9):1068-1081. doi: 10.1016/j.bbalip.2018.06.008.
[91]Monetti M, Levin MC, Watt MJ, Sajan MP, Marmor S, Hubbard BK, Stevens RD, Bain JR, Newgard CB, Farese RV Sr, Hevener AL, Farese RV Jr. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver.Cell Metab. 2007;6(1):69-78.
[92]Stone SJ, Myers HM, Watkins SM, Brown BE, Feingold KR, Elias PM, Farese RV Jr. Lipopenia and skin barrier abnormalitiesin DGAT2-deficient mice. J Biol Chem. 2004;279(12):11767-11776.
[93]Blue ML, Williams DL, Zucker S, Khan SA, Blum CB. Apolipoprotein E synthesis in human kidney, adrenal gland, and liver.Proc Natl Acad Sci U S A. 1983;80(1):283-287.
[94]Morton AM, Furtado JD, Mendivil CO, Sacks FM. Dietary unsaturated fat increases HDL metabolic pathways involving apoEfavorable to reverse cholesterol transport. JCI nsight. 2019;4(7). pii: 124620. doi: 10.1172/jci.insight.124620.
[95]Mensenkamp AR, Jong MC, van Goor H, van Luyn MJ, Bloks V, Havinga R, Voshol PJ, Hofker MH, van Dijk KW, Havekes LM,Kuipers F. Apolipoprotein E participates in the regulation of very low density lipoprotein-triglyceride secretion by the liver. J Biol Chem. 1999;274(50):35711-35718.
[96]Kuipers F, Jong MC, Lin Y, Eck M, Havinga R, Bloks V, Verkade HJ, Hofker MH, Moshage H, Berkel TJ, Vonk RJ, Havekes LM. Impaired secretion of very low density lipoprotein-triglycerides by apolipoprotein E- deficient mouse hepatocytes. J Clin Invest. 1997; 100(11): 2915-2922.
[97]Fazio S, Linton MF, Hasty AH, Swift LL. Recycling of apolipoprotein E in mouse liver. J Biol Chem. 1999;274(12):8247-8253.
[98]Zhu MY, Hasty AH, Harris C, Linton MF, Fazio S, Swift LL. Physiological relevance of apolipoprotein E recycling: studies in primary mouse hepatocytes. Metabolism. 2005;54(10):1309-1315.
[99]Swift LL, Farkas MH, Major AS, Valyi-Nagy K, Linton MF, Fazio S. A recycling pathway for resecretion of internalized apolipoprotein E in liver cells. J Biol Chem. 2001;276(25):22965-22970.
[100]Wanders RJ, Waterham HR, Ferdinandusse S. Metabolic Interplay between Peroxisomes and Other Subcellular OrganellesIncluding Mitochondria and the Endoplasmic Reticulum. Front Cell Dev Biol. 2016;3:83. doi: 10.3389/fcell.2015.00083.
[101]Krey G, Braissant O, L'Horset F, Kalkhoven E, Perroud M, Parker MG, Wahli W. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol. 1997;11(6):779-791.
[102]Sanderson LM, de Groot PJ, Hooiveld GJ, Koppen A, Kalkhoven E, Müller M, Kersten S. Effect of synthetic dietary triglycerides: a novel research paradigm for nutrigenomics. PLoS One. 2008;3(2):e1681. doi: 10.1371/journal.pone.0001681.
[103]Kersten S. Integrated physiology and systems biology of PPARα. Mol Metab. 2014;3(4):354-371. doi:
10.1016/j.molmet.2014.02.002.
[104]Kleemann R, Gervois PP, Verschuren L, Staels B, Princen HM, Kooistra T. Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFkappa B-C/EBP-beta complex formation. Blood. 2003;101 (2):545-551.
[105]Wang F, Mullican SE, DiSpirito JR, Peed LC, and Lazar MA. Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARγ. Proc Natl Acad Sci U S A. 2013;110(46):18656-18661. doi: 10.1073/pnas.1314863110.
[106]Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S, Suzuki Y, Saito H, Kohgo Y, Okumura T. Increased
expression of PPAR in high fat diet-induced liver steatosis in mice. Biochem Biophys Res Commun. 2005;336(1):215-222.
[107]Matsusue K, Haluzik M, Lambert G, Yim SH, Gavrilova O, Ward JM, Brewer B Jr, Reitman ML, Gonzalez FJ. Liver-specific disruption of PPAR in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest. 2003;111 (5):737-747.
[108]Meng HW, You HM, Yang Y, Zhang YL, Meng XM, Ma TT, Huang C, Li J. 4-Methylcoumarin-[5,6-g]-hesperetin attenuates inflammatory responses in alcoholic hepatitis through PPAR-γ activation. Toxicology. 2019;421:9-21. doi:
10.1016/j.tox.2019.04.004.
[109]Abbasi A, Moghadam AA, Kahrarian Z, Abbsavaran R, Yari K, Alizadeh E. Molecular effects of leptin on peroxisome
proliferator activated receptor gamma (PPAR-γ) mRNA expression in rat's adipose and liver tissue. Cell Mol Biol (Noisy-le-grand). 2017;63(7):89-93. doi: 10.14715/cmb/2017.63.7.15.
[110]Fan W, Evans R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol. 2015;33:49-54. doi: 10.1016/j.ceb.2014.11.002.
[111]Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. Gastroenterology. 2016;150(2):328-339. doi:10.1053/j.gastro.2015.09.042.
[112]Gual P, Gilgenkrantz H, Lotersztajn S. Autophagy in chronic liver diseases: the two faces of Janus. Am J Physiol Cell Physiol. 2017;312(3):C263-C273. doi: 10.1152/ajpcell.00295.2016.
[113]Kim JH, Hong SB, Lee JK, Han S, Roh KH, Lee KE, Kim YK, Choi EJ, Song HK. Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners. Autophagy. 2015;11(1):75-87. doi:
10.4161/15548627.2014.984276.
[114]Ye X, Zhou XJ, Zhang H. Exploring the Role of Autophagy-Related Gene 5 (ATG5) Yields Important Insights Into Autophagy in Autoimmune/Autoinflammatory Diseases. Front Immunol. 2018;9:2334. doi: 10.3389/fimmu.2018.02334.
[115]González-Rodríguez A, Mayoral R, Agra N, Valdecantos MP, Pardo V, Miquilena-Colina ME, Vargas-Castrillón J, Lo Iacono O, Corazzari M, Fimia GM, Piacentini M, Muntané J, Boscá L, García-Monzón C, Martín-Sanz P, Valverde ÁM. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014;5:e1179. doi:
10.1038/cddis.2014.162.
[116]Marvyn PM, Mardian EB, Bradley RM, A Marks K, Duncan RE. Data on hepatic lipolysis, adipose triglyceride lipase, and hormone-sensitive lipase in fasted and non-fasted C57BL/6J female mice. Data Brief. 2016;7:721-725. doi:
10.1016/j.dib.2016.03.033.
[117] McDonough PM, Maciejewski-Lenoir D, Hartig SM, Hanna RA, Whittaker R, Heisel A, Nicoll JB, Buehrer BM, Christensen K, Mancini MG, Mancini MA, Edwards DP, Price JH. Differential phosphorylation of perilipin 1A at the initiation of lipolysis revealed by novel monoclonal antibodies and high content analysis. PLoS One. 2013;8(2):e55511. doi: 10.1371/journal.pone.0055511.
[118]Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans. 2003;31(Pt 6):1120-1124.
[119]Greenberg AS, Shen WJ, Muliro K, Patel S, Souza SC, Roth RA, Kraemer FB. Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem. 2001;276(48):45456-45461.
[120]Garton AJ, Campbell DG, Carling D, Hardie DG, Colbran RJ, Yeaman SJ. Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. Eur J Biochem. 1989;179(1):249-254.
[121]Yamada E, Singh R. Mapping autophagy on to your metabolic radar. Diabetes. 2012;61(2):272-280. doi: 10.2337/db11-1199.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top