|
References
[1]Saad B, Bari MF, Saleh MI, Ahmad K, Talib MK. Simultaneous determination of preservatives (benzoic acid, sorbic acid,methylparaben and propylparaben) in foodstuffs using high-performance liquid chromatography. J Chromatogr A. 2005;1073(1-2):393-397. [2]Kang HM, Kim MS, Hwang UK, Jeong CB, Lee JS. Effects of methylparaben, ethylparaben, and propylparaben on life parameters and sex ratio in the marine copepod Tigriopus japonicus. Chemosphere. 2019;226:388-394. doi: 10.1016/j.chemosphere.2019.03.151. [3]Mikami E, Goto T, Ohno T, Matsumoto H, Nishida M. Simultaneous analysis of dehydroacetic acid, benzoic acid, sorbic acidand salicylic acid in cosmetic products by solid-phase extraction and high-performance liquid chromatography. J Pharm Biomed Anal. 2002;28(2):261-267. [4]EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources added to Food). Scientific Opinion on the re-evaluation of sorbic acid (E 200), potassium sorbate (E 202) and calcium sorbate (E 203) as food additives. EFSA Journal.2015;13(6):4144, 91 pp. doi: 10.2903/j.efsa.2015.4144 [5]Eklund T. The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J Appl Bacteriol. 1983;54(3):383-389. [6]Gaunt IF, Butterworth KR, Hardy J, Gangolli SD. Long-term toxicity of sorbic acid in the rat. Food Cosmet Toxicol.1975;13(1):31-45. [7]Ling MP, Lien KW, Wu CH, Ni SP, Huang HY, Hsieh DP. Dietary exposure estimates for the food preservatives benzoic acid and sorbic acid in the total diet of Taiwan. J Agric Food Chem. 2015;63(7):2074-2082. doi: 10.1021/jf503987y. [8]Ninth report of the joint FAO-WHO expert committee on food additives. Specifications for the identity and purity of food additives and their toxicological evaluation: some antimicrobials, antioxidants, emulsifiers, stabilizers, flour-treatment agents, acids, and bases. World Health Organ Tech Rep Ser. 1966;339:1-24. [9]Joint FAO/WHO Expert Committee on Food Additives. Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents. FAO Nutr Meet Rep Ser. 1974;(53A):1-520. [10]Luo ZF, Fang XL, Shu G, Wang SB, Zhu XT, Gao P, Chen LL, Chen CY, Xi QY, Zhang YL, Jiang QY. Sorbic acid improves growth performance and regulates insulin-like growth factor system gene expression in swine. J Anim Sci. 2011;89(8):2356-2364. doi:10.2527/jas.2010-3677. [11]Farrell GC. Non-alcoholic steatohepatitis: what is it, and why is it important in the Asia-Pacific region? J Gastroenterol Hepatol. 2003;18(2):124-138. [12]Hsu CS, Kao JH. Non-alcoholic fatty liver disease: an emerging liver disease in Taiwan. J Formos Med Assoc. 2012;111 (10):527-535. doi: 10.1016/j.jfma.2012.07.002. [13]Herath HMM, Kodikara I, Weerarathna TP, Liyanage G. Prevalence and associations of non-alcoholic fatty liver disease (NAFLD) in Sri Lankan patients with type 2 diabetes: A single center study. Diabetes Metab Syndr. 2019;13(1):246-250. doi:10.1016/j.dsx.2018.09.002. [14]Fabbrini E, Sullivan S, Klein S. Obesity and nonalcoholic fatty liver disease: biochemical, metabolic, and clinical implications. Hepatology. 2010;51(2):679-689. [15]Calzadilla Bertot L, Adams LA. The Natural Course of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci. 2016;17(5). pii:E774. doi: 10.3390/ijms17050774. [16]Kempiński R, Łukawska A, Krzyżanowski F, Ślósarz D, Poniewierka E. Clinical outcomes of non-alcoholic fatty liver disease: Polish-case control study. Adv Clin Exp Med. 2019. In press. doi: 10.17219/acem/106173. [17]Ampuero J, Gallego-Durán R, Romero-Gómez M. Association of NAFLD with subclinical atherosclerosis and coronary-artery disease: meta-analysis. Rev Esp Enferm Dig. 2015;107(1):10-16. [18]Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015;62(1 Suppl):S47-64. doi:10.1016/j.jhep.2014.12.012. [19]Burt AD, Lackner C, Tiniakos DG. Diagnosis and Assessment of NAFLD: Definitions and Histopathological Classification. Semin Liver Dis. 2015;35(3):207-220. doi: 10.1055/s-0035-1562942. [20]Benjamin A, Zubajlo R, Thomenius K, Dhyani M, Kaliannan K, Samir AE, Anthony BW. Non-invasive diagnosis of non-alcoholic fatty liver disease (NAFLD) using ultrasound image echogenicity. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:2920-2923. doi: 10.1109/EMBC.2017.8037468. [21]Permutt Z1, Le TA, Peterson MR, Seki E, Brenner DA, Sirlin C, Loomba R. Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease - MRI accurately quantifies hepatic steatosis in NAFLD. Aliment Pharmacol Ther. 2012;36(1):22-29. doi: 10.1111/j.1365-2036.2012.05121.x. [22]Betzel B, Drenth JP. A new noninvasive technique for estimating hepatic triglyceride: will liver biopsy become redundant in diagnosing non-alcoholic fatty liver disease? BMC Med. 2014;12:152. doi: 10.1186/s12916-014-0152-z. [23]Stubbs CD, Smith AD. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochim Biophys Acta. 1984;779(1):89-137. [24]McGarry JD, Foster DW. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem. 1980;49:395-420. [25]Wruck W, Graffmann N, Kawala MA, Adjaye J. Concise Review: Current Status and Future Directions on Research Related to Nonalcoholic Fatty Liver Disease. Stem Cells. 2017;35(1):89-96. doi: 10.1002/stem.2454. [26]Shojaee-Moradie F, Cuthbertson DJ, Barrett M, Jackson NC, Herring R, Thomas EL, Bell J, Kemp GJ, Wright J, Umpleby AM. Exercise Training Reduces Liver Fat and Increases Rates of VLDL Clearance But Not VLDL Production in NAFLD. J Clin Endocrinol Metab. 2016;101(11):4219-4228. [27]M Mahmood Hussain, Paul Rava, Meghan Walsh, Muhammad Rana, and Jahangir Iqbal. Multiple functions of microsomal triglyceride transfer protein. Nutr Metab (Lond). 2012;9:14. doi: 10.1186/1743-7075-9-14. [28]Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988;240 (4852):622-630. [29]Tamura S, Shimomura I. Contribution of adipose tissue and de novo lipogenesis to nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1139-1142. [30]Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie. 2004;86(11):839-848. [31]Zang M. (2016) ‘The Molecular Basis of Hepatic De Novo Lipogenesis in Insulin Resistance’ In: Ntambi J. (eds.). Hepatic De Novo Lipogenesis and Regulation of Metabolism. Springer, Cham. [32]Kim YM, Shin HT, Seo YH, Byun HO, Yoon SH, Lee IK, Hyun DH, Chung HY, Yoon G. Sterol Regulatory Element-binding Protein (SREBP)-1-mediated Lipogenesis Is Involved in Cell Senescence. J Biol Chem. 2010;285(38): 29069–29077. [33]Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol. 2013;48(4):434441. doi: 10.1007/s00535-013-0758-5. [34]Maciejewski BS, LaPerle JL, Chen D, Ghosh A, Zavadoski WJ, McDonald TS, Manion TB, Mather D, Patterson TA, Hanna M,Watkins S, Gibbs EM, Calle RA, Steppan CM.Pharmacological inhibition to examine the role of DGAT1 in dietary lipid absorption in rodents and humans. Am J Physiol Gastrointest Liver Physiol. 2013;304(11):G958-969. doi: 10.1152/ajpgi.00384.2012. [35]Chitraju C, Walther TC, Farese RV Jr. The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes. J Lipid Res. 2019. In press. doi: 10.1194/jlr.M093112. [36]Bhatt-Wessel B, Jordan TW, Miller JH, Peng L. Role of DGAT enzymes in triacylglycerol metabolism. Arch Biochem Biophys. 2018;655:1-11. doi:10.1016/j.abb.2018.08.001. [37]Wang Z1, Yao T, Song Z. Involvement and mechanism of DGAT2 upregulation in the pathogenesis of alcoholic fatty liver disease. J Lipid Res. 2010;51(11):3158-3165. doi: 10.1194/jlr.M007948 [38]Herz J, Hamann U, Rogne S, Myklebost O, Gausepohl H, Stanley KK. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J. 1988;7(13):4119-4127. [39]Van de Sluis B, Wijers M, Herz J. News on the molecular regulation and function of hepatic low-density lipoprotein receptor and LDLR-related protein 1. Curr Opin Lipidol. 2017;28(3):241-247. doi: 10.1097/MOL.0000000000000411. [40]Tavori H, Rashid S, Fazio S. On the Function and Homeostasis of PCSK9: Reciprocal Interaction with LDLR and Additional Lipid Effects. Atherosclerosis. 2015;238(2):264-270. doi: 10.1016/j.atherosclerosis.2014.12.017 [41]Bartuzi P, Billadeau DD, Favier R, Rong S, Dekker D, Fedoseienko A, Fieten H, Wijers M, Levels JH, Huijkman N, Kloosterhuis N, van der Molen H, Brufau G, Groen AK, Elliott AM, Kuivenhoven JA, Plecko B, Grangl G, McGaughran J, Horton JD,Burstein E, Hofker MH, van de Sluis B. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL.Nat Commun. 2016;7:10961. doi: 10.1038/ncomms10961 [42]Larry R.Engelking. (2015) ‘Textbook of Veterinary Physiological Chemistry (Third Edition)’ in Elsevier (eds.). [43]Buhaescu I, Izzedine H. Mevalonate pathway: A review of clinical and therapeutical implications. Clin Biochem. 2007;40 (9-10):575-584. [44]Moczulski D, Majak I, Mamczur D. An overview of beta-oxidation disorders. Postepy Hig Med Dosw (Online). 2009;63:266-277. [45]Phillips CM, Goumidi L, Bertrais S, Field MR, Cupples LA, Ordovas JM, Defoort C, Lovegrove JA, Drevon CA, Gibney MJ,Blaak EE, Kiec-Wilk B, Karlstrom B, Lopez-Miranda J, McManus R, Hercberg S, Lairon D, Planells R, Roche HM. Gene-nutrient interactions with dietary fat modulate the association between genetic variation of the ACSL1 gene and metabolic syndrome. J Lipid Res. 2010;51(7): 1793-1800. doi: 10.1194/jlr.M003046. [46]Coleman RA, Lewin TM, Muoio DM. Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu Rev Nutr. 2000;20:77-103. [47]Schreurs M, Kuipers F, van der Leij FR. Regulatory enzymes of mitochondrial beta-oxidation as targets for treatment of the metabolic syndrome. Obes Rev. 2010;11(5):380-388. [48]Houten SM, Wanders RJ. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J Inherit Metab Dis. 2010;33(5):469-477. doi: 10.1007/s10545-010-9061-2. [49]Fan CY, Pan J, Chu R, Lee D, Kluckman KD, Usuda N, Singh I, Yeldandi AV, Rao MS, Maeda N, Reddy JK. Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene. J Biol Chem. 1996;271 (40):24698-24710. [50]Xian-Feng Wu, Yuan Liu, Cheng-Fang Gao, Xin-Zhu Chen, Xiao-Pei Zhang, Wen-Yang Li. Novel alternative splicing variants of ACOX1 and their differential expression patterns in goats. Arch. Anim. Breed. 2018; 61:59-70. doi: 10.5194/aab-61-59-2018 [51]Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol. 2000;20(5):1868-1876. [52]Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest. 2006; 116(3): 615-622. [53]Leone TC, Lehman JJ, Finck BN, Schaeffer PJ, Wende AR, Boudina S, Courtois M, Wozniak DF, Sambandam N, Bernal-Mizrachi C, Chen Z, Holloszy JO, Medeiros DM, Schmidt RE, Saffitz JE, Abel ED, Semenkovich CF, Kelly DP. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005;3(4):e101. [54]De la Rosa Rodriguez MA, Kersten S. Regulation of lipid droplet-associated proteins by peroxisome proliferator-activated receptors. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt B):1212-1220. doi: 10.1016/j.bbalip.2017.07.007. [55]Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T, and Gonzalez FJ. Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor α(PPARα). J Biol Chem. 1998;273(10):5678-5684. [56]Fan W, Evans R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol. 2015;33:49-54. doi: 10.1016/j.ceb.2014.11.002. [57]Chawla A, Repa JJ, Evans RM, Mangelsdorf DJ. Nuclear receptors and lipid physiology: opening the X-files. Science. 2001;294(5548):1866-1870. [58]Wang B, Yang Q, Harris CL, Nelson ML, Busboom JR, Zhu MJ, Du M. Nutrigenomic regulation of adipose tissue development- role of retinoic acid: A review. Meat Science. 2016;120:100-106. doi: 10.1016/j.meatsci.2016.04.003. [59]Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K and Wahli W. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci U S A. 1993;90 (6):2160-2164. [60]Hertz R, Bar-Tana J. Induction of peroxisomal beta-oxidation genes by retinoic acid in cultured rat hepatocytes. Biochem J. 1992;281 (Pt 1): 41-43. [61]Duncan JG, Finck BN. The PPARα-PGC-1α Axis Controls Cardiac Energy Metabolism in Healthy and Diseased Myocardium. PPAR Res. 2008;2008:253817. doi: 10.1155/2008/253817. [62]Fromenty B, Pessayre D. Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacol Ther. 1995;67(1):101-154. [63]Medina-Gomez G, Gray S, Vidal-Puig A. Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor γ (PPARγ) and PPARcoactivator-1 (PGC1). Public Health Nutr. 2007;10(10A):1132-1137. [64]Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH, Hashemi M, Owji AA, and Łos MJ. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol. 2014;112:24-49. [65]Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, and Bao JK. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45(6):487-498. [66]Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131-1135. [67]Singh R. Autophagy and regulation of lipid metabolism. Results Probl Cell Differ. 2010;52:35-46. doi: 10.1007/978-3-642-14426-4_4. [68]Mao Y, Yu F, Wang J, Guo C, Fan X. Autophagy: a new target for nonalcoholic fatty liver disease therapy. Hepat Med.2016;8:27-37. doi: 10.2147/HMER.S98120 [69]Komatsu M. Liver autophagy: physiology and pathology. J Biochem. 2012;152(1):5-15. doi: 10.1093/jb/mvs059. [70]Rautou PE, Mansouri A, Lebrec D, Durand F, Valla D, Moreau R. Autophagy in liver diseases. J Hepatol. 2010;53(6):1123-1134. doi: 10.1016/j.jhep.2010.07.006. [71]Hansen M, Rubinsztein DC, Walker DW. Autophagy as a promoter of longevity: insights from model organisms. Nat Rev MolCell Biol. 2018;19(9):579-593. doi: 10.1038/s41580-018-0033-y. [72]Quiroga AD, Lehner R. Pharmacological intervention of liver triacylglycerol lipolysis: The good, the bad and the ugly. Biochem Pharmacol. 2018;155:233-241. doi: 10.1016/j.bcp.2018.07.005. [73]Quiroga AD, Lehner R. Role of endoplasmic reticulum neutral lipid hydrolases. Trends Endocrinol Metab. 2011;22(6):218-225. doi: 10.1016/j.tem.2011.03.003. [74]Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 2004;306 (5700):1383-1386. doi: 10.1126/science.1100747 [75]Xia B, Cai GH, Yang H, Wang SP, Mitchell GA, Wu JW. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice. PLoS Genet. 2017;13(12):e1007110. doi: 10.1371/journal.pgen.1007110. [76]Schnabel L, Kesse-Guyot E, Allès B, Touvier M, Srour B, Hercberg S, Buscail C, Julia C. Association Between Ultraprocessed Food Consumption and Risk of Mortality Among Middle-aged Adults in France. JAMA Intern Med. 2019. In press. doi: 10.1001/jamainternmed.2018.7289. [77]Animal health research institute, council of agriculture, executive yuan. Retrieved 2019, from https://pigpm.nvri.gov.tw/fmodule/category.aspx?CategoryID=UcsFPBPZBhM%3D [78]Seventeenth report of the joint FAO-WHO Expert Committee on Food Additives. Toxicological evaluation of certain food additives with a review of general principles and of specifications. World Health Organ Tech Rep Ser. 1974;539:1-40. [79]Hanson RW, Reshef L. Glyceroneogenesis revisited. Biochimie. 2003;85(12):1199-1205. [80]Lin EC. Glycerol utilization and its regulation in mammals. Annu Rev Biochem. 1977;46:765-795. [81]Lebeck J. Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver. J Mol Endocrinol. 2014;52(2):R165-178. doi: 10.1530/JME-13-0268. [82]Hibuse T, Maeda N, Nagasawa A, Funahashi T. Aquaporins and glycerol metabolism. Biochim Biophys Acta. 2006;1758(8):1004-1011. [83]Gena P, Buono ND, D'Abbicco M, Mastrodonato M, Berardi M, Svelto M, Lopez L, Calamita G. Dynamical modeling of liver Aquaporin-9 expression and glycerol permeability in hepatic glucose metabolism. Eur J Cell Biol. 2017;96(1):61-69. doi: 10.1016/j.ejcb.2016.12.003. [84]France M, Kwok S, Soran H, Williams S, Ho JH, Adam S, Canoy D, Liu Y, Durrington PN. Liver Fat Measured by MR Spectroscopy: Estimate of Imprecision and Relationship with Serum Glycerol, Caeruloplasmin and Non-Esterified Fatty Acids. Int J Mol Sci. 2016;17(7). pii: E1089. doi: 10.3390/ijms17071089. [85]Loh K, Tam S, Murray-Segal L, Huynh K, Meikle PJ, Scott JW, van Denderen B, Chen Z, Steel R, LeBlond ND, Burkovsky LA, O'Dwyer C, Nunes JRC, Steinberg GR, Fullerton MD, Galic S, Kemp BE. Inhibition of Adenosine Monophosphate-Activated Protein Kinase-3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Signaling Leads to Hypercholesterolemia and Promotes Hepatic Steatosis and Insulin Resistance. Hepatol Commun. 2018;3(1):84-98. doi: 10.1002/hep4.1279. [86]Moon YA. The SCAP/SREBP Pathway: A Mediator of Hepatic Steatosis. Endocrinol Metab (Seoul). 2017;32(1):6-10. doi: 10.3803/EnM.2017.32.1.6. [87]Espenshade PJ, Hughes AL. Regulation of sterol synthesis in eukaryotes. Annu Rev Genet. 2007;41:401-427. [88]Walther TC, Farese RV Jr. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem. 2012;81:687-714. doi: 10.1146/annurev-biochem-061009-102430. [89]Soni KG, Mardones GA, Sougrat R, Smirnova E, Jackson CL, Bonifacino JS. Coatomer-dependent protein delivery to lipid droplets. J Cell Sci. 2009;122(Pt 11):1834-1841. doi: 10.1242/jcs.045849. [90]McFie PJ, Banman SL, Stone SJ. Diacylglycerol acyltransferase-2 contains a c-terminal sequence that interacts with lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(9):1068-1081. doi: 10.1016/j.bbalip.2018.06.008. [91]Monetti M, Levin MC, Watt MJ, Sajan MP, Marmor S, Hubbard BK, Stevens RD, Bain JR, Newgard CB, Farese RV Sr, Hevener AL, Farese RV Jr. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver.Cell Metab. 2007;6(1):69-78. [92]Stone SJ, Myers HM, Watkins SM, Brown BE, Feingold KR, Elias PM, Farese RV Jr. Lipopenia and skin barrier abnormalitiesin DGAT2-deficient mice. J Biol Chem. 2004;279(12):11767-11776. [93]Blue ML, Williams DL, Zucker S, Khan SA, Blum CB. Apolipoprotein E synthesis in human kidney, adrenal gland, and liver.Proc Natl Acad Sci U S A. 1983;80(1):283-287. [94]Morton AM, Furtado JD, Mendivil CO, Sacks FM. Dietary unsaturated fat increases HDL metabolic pathways involving apoEfavorable to reverse cholesterol transport. JCI nsight. 2019;4(7). pii: 124620. doi: 10.1172/jci.insight.124620. [95]Mensenkamp AR, Jong MC, van Goor H, van Luyn MJ, Bloks V, Havinga R, Voshol PJ, Hofker MH, van Dijk KW, Havekes LM,Kuipers F. Apolipoprotein E participates in the regulation of very low density lipoprotein-triglyceride secretion by the liver. J Biol Chem. 1999;274(50):35711-35718. [96]Kuipers F, Jong MC, Lin Y, Eck M, Havinga R, Bloks V, Verkade HJ, Hofker MH, Moshage H, Berkel TJ, Vonk RJ, Havekes LM. Impaired secretion of very low density lipoprotein-triglycerides by apolipoprotein E- deficient mouse hepatocytes. J Clin Invest. 1997; 100(11): 2915-2922. [97]Fazio S, Linton MF, Hasty AH, Swift LL. Recycling of apolipoprotein E in mouse liver. J Biol Chem. 1999;274(12):8247-8253. [98]Zhu MY, Hasty AH, Harris C, Linton MF, Fazio S, Swift LL. Physiological relevance of apolipoprotein E recycling: studies in primary mouse hepatocytes. Metabolism. 2005;54(10):1309-1315. [99]Swift LL, Farkas MH, Major AS, Valyi-Nagy K, Linton MF, Fazio S. A recycling pathway for resecretion of internalized apolipoprotein E in liver cells. J Biol Chem. 2001;276(25):22965-22970. [100]Wanders RJ, Waterham HR, Ferdinandusse S. Metabolic Interplay between Peroxisomes and Other Subcellular OrganellesIncluding Mitochondria and the Endoplasmic Reticulum. Front Cell Dev Biol. 2016;3:83. doi: 10.3389/fcell.2015.00083. [101]Krey G, Braissant O, L'Horset F, Kalkhoven E, Perroud M, Parker MG, Wahli W. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol. 1997;11(6):779-791. [102]Sanderson LM, de Groot PJ, Hooiveld GJ, Koppen A, Kalkhoven E, Müller M, Kersten S. Effect of synthetic dietary triglycerides: a novel research paradigm for nutrigenomics. PLoS One. 2008;3(2):e1681. doi: 10.1371/journal.pone.0001681. [103]Kersten S. Integrated physiology and systems biology of PPARα. Mol Metab. 2014;3(4):354-371. doi: 10.1016/j.molmet.2014.02.002. [104]Kleemann R, Gervois PP, Verschuren L, Staels B, Princen HM, Kooistra T. Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFkappa B-C/EBP-beta complex formation. Blood. 2003;101 (2):545-551. [105]Wang F, Mullican SE, DiSpirito JR, Peed LC, and Lazar MA. Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARγ. Proc Natl Acad Sci U S A. 2013;110(46):18656-18661. doi: 10.1073/pnas.1314863110. [106]Inoue M, Ohtake T, Motomura W, Takahashi N, Hosoki Y, Miyoshi S, Suzuki Y, Saito H, Kohgo Y, Okumura T. Increased expression of PPAR in high fat diet-induced liver steatosis in mice. Biochem Biophys Res Commun. 2005;336(1):215-222. [107]Matsusue K, Haluzik M, Lambert G, Yim SH, Gavrilova O, Ward JM, Brewer B Jr, Reitman ML, Gonzalez FJ. Liver-specific disruption of PPAR in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest. 2003;111 (5):737-747. [108]Meng HW, You HM, Yang Y, Zhang YL, Meng XM, Ma TT, Huang C, Li J. 4-Methylcoumarin-[5,6-g]-hesperetin attenuates inflammatory responses in alcoholic hepatitis through PPAR-γ activation. Toxicology. 2019;421:9-21. doi: 10.1016/j.tox.2019.04.004. [109]Abbasi A, Moghadam AA, Kahrarian Z, Abbsavaran R, Yari K, Alizadeh E. Molecular effects of leptin on peroxisome proliferator activated receptor gamma (PPAR-γ) mRNA expression in rat's adipose and liver tissue. Cell Mol Biol (Noisy-le-grand). 2017;63(7):89-93. doi: 10.14715/cmb/2017.63.7.15. [110]Fan W, Evans R. PPARs and ERRs: molecular mediators of mitochondrial metabolism. Curr Opin Cell Biol. 2015;33:49-54. doi: 10.1016/j.ceb.2014.11.002. [111]Madrigal-Matute J, Cuervo AM. Regulation of Liver Metabolism by Autophagy. Gastroenterology. 2016;150(2):328-339. doi:10.1053/j.gastro.2015.09.042. [112]Gual P, Gilgenkrantz H, Lotersztajn S. Autophagy in chronic liver diseases: the two faces of Janus. Am J Physiol Cell Physiol. 2017;312(3):C263-C273. doi: 10.1152/ajpcell.00295.2016. [113]Kim JH, Hong SB, Lee JK, Han S, Roh KH, Lee KE, Kim YK, Choi EJ, Song HK. Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners. Autophagy. 2015;11(1):75-87. doi: 10.4161/15548627.2014.984276. [114]Ye X, Zhou XJ, Zhang H. Exploring the Role of Autophagy-Related Gene 5 (ATG5) Yields Important Insights Into Autophagy in Autoimmune/Autoinflammatory Diseases. Front Immunol. 2018;9:2334. doi: 10.3389/fimmu.2018.02334. [115]González-Rodríguez A, Mayoral R, Agra N, Valdecantos MP, Pardo V, Miquilena-Colina ME, Vargas-Castrillón J, Lo Iacono O, Corazzari M, Fimia GM, Piacentini M, Muntané J, Boscá L, García-Monzón C, Martín-Sanz P, Valverde ÁM. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014;5:e1179. doi: 10.1038/cddis.2014.162. [116]Marvyn PM, Mardian EB, Bradley RM, A Marks K, Duncan RE. Data on hepatic lipolysis, adipose triglyceride lipase, and hormone-sensitive lipase in fasted and non-fasted C57BL/6J female mice. Data Brief. 2016;7:721-725. doi: 10.1016/j.dib.2016.03.033. [117] McDonough PM, Maciejewski-Lenoir D, Hartig SM, Hanna RA, Whittaker R, Heisel A, Nicoll JB, Buehrer BM, Christensen K, Mancini MG, Mancini MA, Edwards DP, Price JH. Differential phosphorylation of perilipin 1A at the initiation of lipolysis revealed by novel monoclonal antibodies and high content analysis. PLoS One. 2013;8(2):e55511. doi: 10.1371/journal.pone.0055511. [118]Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem Soc Trans. 2003;31(Pt 6):1120-1124. [119]Greenberg AS, Shen WJ, Muliro K, Patel S, Souza SC, Roth RA, Kraemer FB. Stimulation of lipolysis and hormone-sensitive lipase via the extracellular signal-regulated kinase pathway. J Biol Chem. 2001;276(48):45456-45461. [120]Garton AJ, Campbell DG, Carling D, Hardie DG, Colbran RJ, Yeaman SJ. Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism. Eur J Biochem. 1989;179(1):249-254. [121]Yamada E, Singh R. Mapping autophagy on to your metabolic radar. Diabetes. 2012;61(2):272-280. doi: 10.2337/db11-1199.
|