跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/16 22:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳珮宜
研究生(外文):Pei-Yi Chen
論文名稱:神經膠細胞經由NPAS蛋白Trachealess/NPAS1/3 和 Dysfusion/NPAS4調控神經肌肉交接處之突觸的型態
論文名稱(外文):Glia modulate synapse remodeling at Drosophila neuromuscular junctions via NPAS proteins Trachealess/NPAS1/3 and Dysfusion/NPAS4
指導教授:簡正鼎簡正鼎引用關係
指導教授(外文):Cheng-Ting Chien
學位類別:博士
校院名稱:國立陽明大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:102
中文關鍵詞:神經膠細胞神經肌肉交接處突觸
外文關鍵詞:GliaNeuromuscular junctionsynapseNPASTrachealessDysfusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
神經突觸的發育以及功能往往會受到環境的影響。此外,神經膠細胞在調控神經突觸的形態及功能扮演很重要的角色。然而,神經膠細胞如何偵測環境的改變,進而影響神經突觸的發育及功能,仍是需要探討的問題。在此論文中,我們觀察到兩株基因突變果蠅:trachealess/NPAS1/3 和 dysfusion/NPAS4的神經肌肉結合處 (neuromuscular junctions) 之神經突觸,無論在形態上或功能上,都有很明顯的變化。在trachealess (trh) 的基因突變果蠅中,我們觀察到神經突觸小結 (synaptic boutons) 的型態有異常的變化:型態較小的突觸小結聚集在正常型態的突觸小結附近,此異常聚集的小型突觸小結稱為衛星小結 (satellite boutons)。我們進一步地分析導致此衛星小結之異常型態的原因。在trh基因突變果蠅中,果蠅的氣管系統,亦即呼吸系統,有很嚴重的結構缺陷,部分斷裂的氣管導致果蠅處於低氧的狀態,此低氧狀態進而影響果蠅的神經膠細胞型態,包覆更多的神經突觸小結。缺氧誘導因子 (hypoxia-inducible factor (HIF)-1/Similar (Sima)) 的過度表現促使 Wnt/Wingless (Wg) 訊號在神經膠細胞內增加,導致衛星小結的形成。然而,衛星小結的增加仍維持著神經突觸小結的正常功能,例如:神經傳導物質的傳送。而神經傳導物質的傳送,對於果蠅幼蟲的爬行是很重要的關鍵。另外,我們發現dysfusion (dys) 表現在神經膠細胞中,亦會調控神經突觸的發育,在dys基因突變果蠅中,同樣會造成衛星小結的增加。
Synaptic structure and activity are sensitive to environmental alterations. Modulation of synaptic morphology and function is often induced by signals from glia. However, the process by which glia mediate synaptic responses to environmental perturbations such as hypoxia remains unknown. Here, I used Drosophila neuromuscular junctions (NMJs), which are enwrapped and remodeled by the glia, as a model to address this question.
First part of my study shows that in the mutant for Trachealess (Trh), the Drosophila homolog for NPAS1 and NPAS3, smaller synaptic boutons form clusters named satellite boutons appear at larval NMJs, which is induced by the reduction of internal oxygen levels due to defective tracheal branches. Thus, the satellite bouton phenotype in the trh mutant is suppressed by hyperoxia, and recapitulated in wild-type larvae raised under hypoxia. I further show that hypoxia-inducible factor (HIF)-1/Similar (Sima) is critical in mediating hypoxia-induced satellite bouton formation. Sima upregulates the level of the Wnt/Wingless (Wg) signal in glia, leading to reorganized microtubule structures within presynaptic sites. Finally, hypoxia-induced satellite boutons maintain normal synaptic transmission at the NMJs, which is crucial for coordinated larval locomotion. Interestingly, the trh mutant shows uncoordinated crawling, which might result from the differential morphological and physiological changes of anterior and posterior segments. Nevertheless, the critical evidence for the correlation between differential morphology and the uncoordinated crawling is limited and needed further study.
Second, I show that satellite bouton appeared in the mutant for Dysfusion (Dys), the Drosophila homolog for NPAS4. Interestingly, Dys might be expressed in glia to influence synapse formation.
Acknowledgments..................................................................................................i
中文摘要.........................................................................................................ii
Abstract.........................................................................................................iii
Chapter 1 Introduction...........................................................................................1
1.1 Tripartite synapse coupling with tracheal system.............................................................1
1.2 The development of tracheal system...........................................................................3
1.3 Using Drosophila larval neuromuscular junctions as a model to study synapse development......................5
1.4 The role of glia in the synapse formation....................................................................10
1.5 Hypoxia responses in various systems.........................................................................12
1.6 The role of NPAS1/3 and NPAS4 in the mammals and Drosophila melanogaster.....................................15
1.7 Crawling behavior............................................................................................17
Chapter 2 Materials and Methods..................................................................................19
2.1 Fly stocks...................................................................................................19
2.2 Hypoxia or hyperoxia rearing condition.......................................................................19
2.3 Immunostaining...............................................................................................20
2.4 Heat fixation................................................................................................21
2.5 Image processing and Data analysis...........................................................................22
2.6 RT-PCR.......................................................................................................23
2.7 Western blot.................................................................................................24
2.8 Electrophysiological recordings..............................................................................25
2.9 Crawling behavior............................................................................................25
2.10 Statistics..................................................................................................26
Chapter 3 Results................................................................................................27
3.1 trh modulates synaptic bouton formation non-cell autonomously................................................27
3.2 Hypoxia induces satellite bouton formation...................................................................29
3.3 Glial HIF-1/Sima mediates satellite bouton formation.......................................................30
3.4 Wg signals mediate glial Sima activity to modulate bouton morphology.........................................32
3.5 Presynaptic Wg signaling modulates bouton morphology in the trh mutant.......................................34
3.6 Impaired crawling behavior in the trh mutant.................................................................35
3.7 Dys regulates synaptic bouton morphology in glia.............................................................37
Chapter 4 Discussion.............................................................................................39
4.1 Hypoxia caused by the defective tracheal system induces abnormal synapses in the trh mutant..................39
4.2 Glia play a critical role in satellite bouton formation in response to hypoxia...............................40
4.3 Glial invasions onto synaptic boutons associate with synapse growth..........................................41
4.4 Sima elevates Wg signal expression in glia to modulate the satellite bouton formation........................43
4.5 Hypoxia disturbs synaptic function...........................................................................44
4.6 Satellite bouton phenotype in the trh mutant.................................................................45
4.7 Differential morphological and physiological changes of anterior and posterior segments in the trh NMJs......46
4.8 Glial Dys modulates the NMJ development......................................................................48
List of Figures
Figure 1. Satellite bouton formation at trh NMJs.................................................................50
Figure 2. Presynaptic and postsynaptic structures at trh NMJs....................................................52
Figure 3. Satellite bouton formation is non-cell autonomously regulated by trh in trachea........................54
Figure 4. Tracheal defects in the trh mutant.....................................................................56
Figure 5. Hypoxia biosensor GFP-ODD responds in trh mutant.......................................................57
Figure 6. Induction of satellite boutons in trh mutant by hypoxia................................................58
Figure 7. Glial Sima induces satellite bouton formation..........................................................59
Figure 8. Satellite bouton induction by glial Sima in the trh mutant.............................................60
Figure 9. Sima upregulation in hypoxia and the trh mutant........................................................62
Figure 10. Glial Wg induction through Sima at trh NMJs...........................................................64
Figure 11. Neuronal and glial Wg modulates synapse growth at trh NMJs............................................66
Figure 12. Presynaptic Wg signaling modulates synapse growth at trh NMJs.........................................68
Figure 13. Glial processes at synaptic regions at trh NMJs.......................................................70
Figure 14. Impaired crawling behavior of the trh mutant..........................................................71
Figure 15. Selective satellite bouton formation at anterior segments of trh NMJs.................................73
Figure 16. Wg and Sima have minor effects on satellite bouton formation in A6 segment of the trh mutant..........74
Figure 17. Synaptic transmission at trh NMJs.....................................................................76
Figure 18. Satellite bouton formation at dys NMJs................................................................78
Figure 19. Schematic model for satellite bouton induction and crawling defects in the trh mutant.................80
List of Table
Table. Detail statistical data in all figures....................................................................82
References.......................................................................................................88
Angelova, P.R., V. Kasymov, I. Christie, S. Sheikhbahaei, E. Turovsky, N. Marina, A. Korsak, J. Zwicker, A.G. Teschemacher, and G.L. Ackland. 2015. Functional oxygen sensitivity of astrocytes. J Neurosci. 35:10460-10473.
Arbour, D., C. Vande Velde, and R. Robitaille. 2017. New perspectives on amyotrophic lateral sclerosis: the role of glial cells at the neuromuscular junction. J Physiol. 595:647-661.
Arquier, N., P. Vigne, E. Duplan, T. Hsu, P.P. Therond, C. Frelin, and G. D'Angelo. 2006. Analysis of the hypoxia-sensing pathway in Drosophila melanogaster. The Biochemical journal. 393:471-480.
Ataman, B., J. Ashley, M. Gorczyca, P. Ramachandran, W. Fouquet, S.J. Sigrist, and V. Budnik. 2008. Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling. Neuron. 57:705-718.
Awasaki, T., S.-L. Lai, K. Ito, and T. Lee. 2008. Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J Neurosci. 28:13742-13753.
Bainton, R.J., L.T.-Y. Tsai, T. Schwabe, M. DeSalvo, U. Gaul, and U. Heberlein. 2005. moody encodes two GPCRs that regulate cocaine behaviors and blood-brain barrier permeability in Drosophila. Cell. 123:145-156.
Banerjee, S., and M.A. Bhat. 2007. Neuron-glial interactions in blood-brain barrier formation. Annu Rev Neurosci. 30:235-258.
Bloodgood, B.L., N. Sharma, H.A. Browne, A.Z. Trepman, and M.E. Greenberg. 2013. The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition. Nature. 503:121-125.
Branson, K., A.A. Robie, J. Bender, P. Perona, and M.H. Dickinson. 2009. High-throughput ethomics in large groups of Drosophila. Nat Methods. 6:451.
Brink, D.L., M. Gilbert, X. Xie, L. Petley-Ragan, and V.J. Auld. 2012. Glial processes at the Drosophila larval neuromuscular junction match synaptic growth. PloS one. 7:e37876.
Broadie, K., and M. Bate. 1993. Innervation directs receptor synthesis and localization in Drosophila embryo synaptogenesis. Nature. 361:350.
Bruick, R.K., and S.L. McKnight. 2001. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 294:1337-1340.
Budnik, V., Y. Zhong, and C.-F. Wu. 1990. Morphological plasticity of motor axons in Drosophila mutants with altered excitability. J Neurosci. 10:3754-3768.
Centanin, L., A. Dekanty, N. Romero, M. Irisarri, T.A. Gorr, and P. Wappner. 2008. Cell autonomy of HIF effects in Drosophila: tracheal cells sense hypoxia and induce terminal branch sprouting. Dev Cell. 14:547-558.
Centanin, L., T.A. Gorr, and P. Wappner. 2010. Tracheal remodelling in response to hypoxia. J Insect Physiol. 56:447-454.
Chen, K., and D.E. Featherstone. 2005. Discs-large (DLG) is clustered by presynaptic innervation and regulates postsynaptic glutamate receptor subunit composition in Drosophila. BMC biology. 3:1.
Choy, F.C., T.S. Klarić, S.A. Koblar, and M.D. Lewis. 2015. The Role of the Neuroprotective Factor Npas4 in Cerebral Ischemia. Int J Mol Sci. 16:29011-29028.
Chung, S., C. Chavez, and D.J. Andrew. 2011. Trachealess (Trh) regulates all tracheal genes during Drosophila embryogenesis. Dev Biol. 360:160-172.
Crews, S.T. 1998. Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev. 12:607-620.
Cui, M., X. Bai, T. Li, F. Chen, Q. Dong, Y. Zhao, and X. Liu. 2013. Decreased extracellular adenosine levels lead to loss of hypoxia-induced neuroprotection after repeated episodes of exposure to hypoxia. PLoS One. 8:e57065.
Danjo, R., F. Kawasaki, and R.W. Ordway. 2011. A tripartite synapse model in Drosophila. PloS one. 6:e17131.
Davis, C.A., B.C. Hitz, C.A. Sloan, E.T. Chan, J.M. Davidson, I. Gabdank, J.A. Hilton, K. Jain, U.K. Baymuradov, A.K. Narayanan, K.C. Onate, K. Graham, S.R. Miyasato, T.R. Dreszer, J.S. Strattan, O. Jolanki, F.Y. Tanaka, and J.M. Cherry. 2018. The Encyclopedia of DNA elements (ENCODE): data portal update. Nucleic acids research. 46:D794-d801.
Dekanty, A., S. Lavista-Llanos, M. Irisarri, S. Oldham, and P. Wappner. 2005. The insulin-PI3K/TOR pathway induces a HIF-dependent transcriptional response in Drosophila by promoting nuclear localization of HIF-α/Sima. J Cell Sci. 118:5431-5441.
DiAntonio, A., and L. Hicke. 2004. Ubiquitin-dependent regulation of the synapse. Annu Rev Neurosci. 27:223-246.
Dickman, D.K., Z. Lu, I.A. Meinertzhagen, and T.L. Schwarz. 2006. Altered synaptic development and active zone spacing in endocytosis mutants. Curr Biol. 16:591-598.
Dickson, B.J., and G.F. Gilestro. 2006. Regulation of commissural axon pathfinding by slit and its Robo receptors. Annual review of cell and developmental biology. 22:651-675.
Doherty, J., M.A. Logan, Ö.E. Taşdemir, and M.R. Freeman. 2009. Ensheathing glia function as phagocytes in the adult Drosophila brain. J Neurosci. 29:4768-4781.
Eroglu, C., and B.A. Barres. 2010. Regulation of synaptic connectivity by glia. Nature. 468:223.
Franco, B., L. Bogdanik, Y. Bobinnec, A. Debec, J. Bockaert, M.L. Parmentier, and Y. Grau. 2004. Shaggy, the homolog of glycogen synthase kinase 3, controls neuromuscular junction growth in Drosophila. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24:6573-6577.
Fuentes-Medel, Y., J. Ashley, R. Barria, R. Maloney, M. Freeman, and V. Budnik. 2012. Integration of a retrograde signal during synapse formation by glia-secreted TGF-β ligand. Curr Biol. 22:1831-1838.
Fuentes-Medel, Y., M.A. Logan, J. Ashley, B. Ataman, V. Budnik, and M.R. Freeman. 2009. Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris. PLoS Biol. 7:e1000184.
Fushiki, A., M.F. Zwart, H. Kohsaka, R.D. Fetter, A. Cardona, and A. Nose. 2016. A circuit mechanism for the propagation of waves of muscle contraction in Drosophila. Elife. 5.
Gagliardi, M., A. Hernandez, I.J. McGough, and J.P. Vincent. 2014. Inhibitors of endocytosis prevent Wnt/Wingless signalling by reducing the level of basal beta-catenin/Armadillo. J Cell Sci. 127:4918-4926.
Gerhardt, H., M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist, A. Abramsson, M. Jeltsch, C. Mitchell, K. Alitalo, D. Shima, and C. Betsholtz. 2003. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. The Journal of cell biology. 161:1163-1177.
Ghabrial, A., S. Luschnig, M.M. Metzstein, and M.A. Krasnow. 2003. Branching morphogenesis of the Drosophila tracheal system. Annual review of cell and developmental biology. 19:623-647.
Harden, N., J. Lee, H.Y. Loh, Y.M. Ong, I. Tan, T. Leung, E. Manser, and L. Lim. 1996. A Drosophila homolog of the Rac- and Cdc42-activated serine/threonine kinase PAK is a potential focal adhesion and focal complex protein that colocalizes with dynamic actin structures. Mol Cell Biol. 16:1896-1908.
Hayashi, S., and T. Kondo. 2018. Development and Function of the Drosophila Tracheal System. Genetics. 209:367-380.
Heckscher, E.S., S.R. Lockery, and C.Q. Doe. 2012. Characterization of Drosophila larval crawling at the level of organism, segment, and somatic body wall musculature. J Neurosci. 32:12460-12471.
Hirayama, Y., Y. Ikeda-Matsuo, S. Notomi, H. Enaida, H. Kinouchi, and S. Koizumi. 2015. Astrocyte-mediated ischemic tolerance. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35:3794-3805.
Hoang, B., and A. Chiba. 2001. Single-cell analysis of Drosophila larval neuromuscular synapses. Dev Biol. 229:55-70.
Honma, Y., T. Araki, S. Gianino, A. Bruce, R.O. Heuckeroth, E.M. Johnson Jr, and J. Milbrandt. 2002. Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron. 35:267-282.
Horowitz, A., and M. Simons. 2009. Branching morphogenesis. Circ Res. 104:e21-e21.
Iadecola, C. 2004. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev Neurosci. 5:347.
Isaac, D.D., and D.J. Andrew. 1996. Tubulogenesis in Drosophila: a requirement for the trachealess gene product. Genes Dev. 10:103-117.
Jaakkola, P., D.R. Mole, Y.-M. Tian, M.I. Wilson, J. Gielbert, S.J. Gaskell, A. von Kriegsheim, H.F. Hebestreit, M. Mukherji, and C.J. Schofield. 2001. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 292:468-472.
Jan, L., and Y. Jan. 1976. L‐glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. J Physiol. 262:215-236.
Jarecki, J., E. Johnson, and M.A. Krasnow. 1999. Oxygen regulation of airway branching in Drosophila is mediated by branchless FGF. Cell. 99:211-220.
Jiang, L., and S.T. Crews. 2003. The Drosophila dysfusion basic helix-loop-helix (bHLH)-PAS gene controls tracheal fusion and levels of the trachealess bHLH-PAS protein. Mol Cell Biol. 23:5625-5637.
Jones, T.A., and M.M. Metzstein. 2013. Examination of Drosophila larval tracheal terminal cells by light microscopy. J Vis Exp:e50496-e50496.
Jurgens, G., E. Wieschaus, C. Nusslein-Volhard, and H. Kluding. 1984. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. II. Zygotic loci on the third chromosome. Wilehm Roux Arch Dev Biol.
Karabay, A., W. Yu, J.M. Solowska, D.H. Baird, and P.W. Baas. 2004. Axonal growth is sensitive to the levels of katanin, a protein that severs microtubules. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24:5778-5788.
Ke, Q., and M. Costa. 2006. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 70:1469-1480.
Keller, L.C., L. Cheng, C.J. Locke, M. Müller, R.D. Fetter, and G.W. Davis. 2011. Glial-derived prodegenerative signaling in the Drosophila neuromuscular system. Neuron. 72:760-775.
Kerr, K.S., Y. Fuentes-Medel, C. Brewer, R. Barria, J. Ashley, K.C. Abruzzi, A. Sheehan, O.E. Tasdemir-Yilmaz, M.R. Freeman, and V. Budnik. 2014. Glial wingless/Wnt regulates glutamate receptor clustering and synaptic physiology at the Drosophila neuromuscular junction. J Neurosci. 34:2910-2920.
Koch, I., H. Schwarz, D. Beuchle, B. Goellner, M. Langegger, and H. Aberle. 2008. Drosophila ankyrin 2 is required for synaptic stability. Neuron. 58:210-222.
Krock, B.L., N. Skuli, and M.C. Simon. 2011. Hypoxia-induced angiogenesis: good and evil. Genes Cancer. 2:1117-1133.
Lavista-Llanos, S., L. Centanin, M. Irisarri, D.M. Russo, J.M. Gleadle, S.N. Bocca, M. Muzzopappa, P.J. Ratcliffe, and P. Wappner. 2002. Control of the hypoxic response in Drosophila melanogaster by the basic helix-loop-helix PAS protein similar. Mol Cell Biol. 22:6842-6853.
Lawson, N.D., and B.M. Weinstein. 2002. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 248:307-318.
Lee, D.L., and H.J. Atkinson. 1976. Physiology of nematodes. Macmillan Press.
Lee, J., and C.F. Wu. 2010. Orchestration of stepwise synaptic growth by K+ and Ca2+ channels in Drosophila. J Neurosci. 30:15821-15833.
Lee, Y., W.J. Thompson, and M.L. Harlow. 2017. Schwann cells participate in synapse elimination at the developing neuromuscular junction. Curr Opin Neurobiol. 47:176-181.
Levesque, B.M., S. Zhou, L. Shan, P. Johnston, Y. Kong, S. Degan, and M.E. Sunday. 2007. NPAS1 regulates branching morphogenesis in embryonic lung. Am J Respir Cell Mol Biol. 36:427-434.
Lin, Y., B.L. Bloodgood, J.L. Hauser, A.D. Lapan, A.C. Koon, T.K. Kim, L.S. Hu, A.N. Malik, and M.E. Greenberg. 2008. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature. 455:1198-1204.
Lipton, P., and T.S. Whittingham. 1979. The effect of hypoxia on evoked potentials in the in vitro hippocampus. J Physiol. 287:427-438.
Liu, Z., Y. Huang, W. Hu, S. Huang, Q. Wang, J. Han, and Y.Q. Zhang. 2014. dAcsl, the Drosophila ortholog of acyl-CoA synthetase long-chain family member 3 and 4, inhibits synapse growth by attenuating bone morphogenetic protein signaling via endocytic recycling. J Neurosci. 34:2785-2796.
Liu, Z., Y. Huang, Y. Zhang, D. Chen, and Y.Q. Zhang. 2011. Drosophila Acyl-CoA synthetase long-chain family member 4 regulates axonal transport of synaptic vesicles and is required for synaptic development and transmission. J Neurosci. 31:2052-2063.
Makita, T., H.M. Sucov, C.E. Gariepy, M. Yanagisawa, and D.D. Ginty. 2008. Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature. 452:759.
Manning, G., and M.A. Krasnow. 1993. Development of the Drosophila tracheal system. In The development of Drosophila melanogaster. Vol. 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 609-685.
Marrus, S.B., S.L. Portman, M.J. Allen, K.G. Moffat, and A. DiAntonio. 2004. Differential localization of glutamate receptor subunits at the Drosophila neuromuscular junction. J Neurosci. 24:1406-1415.
Mathew, D., B. Ataman, J. Chen, Y. Zhang, S. Cumberledge, and V. Budnik. 2005. Wingless signaling at synapses is through cleavage and nuclear import of receptor DFrizzled2. Science. 310:1344-1347.
Menon, K.P., R.A. Carrillo, and K. Zinn. 2013. Development and plasticity of the Drosophila larval neuromuscular junction. Wiley Interdiscip Rev Dev Biol. 2:647-670.
Miech, C., H.-U. Pauer, X. He, and T.L. Schwarz. 2008. Presynaptic local signaling by a canonical wingless pathway regulates development of the Drosophila neuromuscular junction. J Neurosci. 28:10875-10884.
Misra, T., M. Baccino-Calace, F. Meyenhofer, D. Rodriguez-Crespo, H. Akarsu, R. Armenta-Calderón, T.A. Gorr, C. Frei, R. Cantera, and B. Egger. 2017. A genetically encoded biosensor for visualising hypoxia responses in vivo. Biol Open. 6:296-304.
Mori, H., Y. Yao, B.S. Learman, K. Kurozumi, J. Ishida, S.K. Ramakrishnan, K.A. Overmyer, X. Xue, W.P. Cawthorn, M.A. Reid, M. Taylor, X. Ning, Y.M. Shah, and O.A. MacDougald. 2016. Induction of WNT11 by hypoxia and hypoxia-inducible factor-1alpha regulates cell proliferation, migration and invasion. Sci Rep. 6:21520.
Morton, D.B., J.A. Stewart, K.K. Langlais, R.A. Clemens-Grisham, and A. Vermehren. 2008. Synaptic transmission in neurons that express the Drosophila atypical soluble guanylyl cyclases, Gyc-89Da and Gyc-89Db, is necessary for the successful completion of larval and adult ecdysis. The Journal of experimental biology. 211:1645-1656.
Mosca, T.J., R.A. Carrillo, B.H. White, and H. Keshishian. 2005. Dissection of synaptic excitability phenotypes by using a dominant-negative Shaker K+ channel subunit. Proc Natl Acad Sci U S A. 102:3477-3482.
Mukouyama, Y.-s., H.-P. Gerber, N. Ferrara, C. Gu, and D.J. Anderson. 2005. Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development. 132:941-952.
Mukouyama, Y.-s., D. Shin, S. Britsch, M. Taniguchi, and D.J. Anderson. 2002. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell. 109:693-705.
Nave, K.A., and J.L. Salzer. 2006. Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol. 16:492-500.
Nijhof, B., A. Castells-Nobau, L. Wolf, J.M. Scheffer-de Gooyert, I. Monedero, L. Torroja, L. Coromina, J.A. van der Laak, and A. Schenck. 2016. A new Fiji-based algorithm that systematically quantifies nine synaptic parameters provides insights into Drosophila NMJ morphometry. PLoS Comput Biol. 12:e1004823.
Nikonenko, I., P. Jourdain, and D. Muller. 2003. Presynaptic remodeling contributes to activity-dependent synaptogenesis. J Neurosci. 23:8498-8505.
O’Driscoll, C., and A. Gorman. 2005. Hypoxia induces neurite outgrowth in PC12 cells that is mediated through adenosine A2A receptors. Neuroscience. 131:321-329.
Ohshiro, T., and K. Saigo. 1997. Transcriptional regulation of breathless FGF receptor gene by binding of TRACHEALESS/dARNT heterodimers to three central midline elements in Drosophila developing trachea. Development. 124:3975-3986.
Ortega, J.A., C.L. Sirois, F. Memi, N. Glidden, and N. Zecevic. 2016. Oxygen levels regulate the development of human cortical radial glia cells. Cereb Cortex. 27:3736-3751.
Ozdowski, E.F., S. Gayle, H. Bao, B. Zhang, and N.T. Sherwood. 2011. Loss of Drosophila melanogaster p21-activated kinase 3 suppresses defects in synapse structure and function caused by spastin mutations. Genetics. 189:123-135.
Packard, M., E.S. Koo, M. Gorczyca, J. Sharpe, S. Cumberledge, and V. Budnik. 2002. The Drosophila Wnt, wingless, provides an essential signal for pre-and postsynaptic differentiation. Cell. 111:319-330.
Pieper, A.A., X. Wu, T.W. Han, S.J. Estill, Q. Dang, L.C. Wu, S. Reece-Fincanon, C.A. Dudley, J.A. Richardson, and D.J. Brat. 2005. The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc Natl Acad Sci U S A. 102:14052-14057.
Reich, A., A. Sapir, and B. Shilo. 1999. Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development. 126:4139-4147.
Rival, T., L. Soustelle, D. Cattaert, C. Strambi, M. Iché, and S. Birman. 2006. Physiological requirement for the glutamate transporter dEAAT1 at the adult Drosophila neuromuscular junction. J Neurobiol. 66:1061-1074.
Roos, J., T. Hummel, N. Ng, C. Klämbt, and G.W. Davis. 2000. Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron. 26:371-382.
Sabatini, P.V., T. Speckmann, C. Nian, M.M. Glavas, C.K. Wong, J.S. Yoon, T. Kin, A.M.J. Shapiro, W.T. Gibson, C.B. Verchere, and F.C. Lynn. 2018. Neuronal PAS Domain Protein 4 Suppression of Oxygen Sensing Optimizes Metabolism during Excitation of Neuroendocrine Cells. Cell Rep. 22:163-174.
Schmitz, A., and J.F. Harrison. 2004. Hypoxic tolerance in air-breathing invertebrates. Respiratory physiology & neurobiology. 141:229-242.
Schuster, C.M., G.W. Davis, R.D. Fetter, and C.S. Goodman. 1996. Genetic dissection of structural and functional components of synaptic plasticity. I. Fasciclin II controls synaptic stabilization and growth. Neuron. 17:641-654.
Segura, I., C. Lange, E. Knevels, A. Moskalyuk, R. Pulizzi, G. Eelen, T. Chaze, C. Tudor, C. Boulegue, and M. Holt. 2016. The oxygen sensor PHD2 controls dendritic spines and synapses via modification of filamin A. Cell Rep. 14:2653-2667.
Semenza, G.L., M.K. Nejfelt, S.M. Chi, and S.E. Antonarakis. 1991. Hypoxia-inducible nuclear factors bind to an enhancer element located 3'to the human erythropoietin gene. Proc Natl Acad Sci U S A. 88:5680-5684.
Sherwood, N.T., Q. Sun, M. Xue, B. Zhang, and K. Zinn. 2004. Drosophila spastin regulates synaptic microtubule networks and is required for normal motor function. PLoS Biol. 2:e429.
Shiga, Y., M. Tanaka‐Matakatsu, and S. Hayashi. 1996. A nuclear GFP/β‐galactosidase fusion protein as a marker for morphogenesis in living Drosophila. Dev Growth Differ. 38:99-106.
Stanco, A., R. Pla, D. Vogt, Y. Chen, S. Mandal, J. Walker, R.F. Hunt, S. Lindtner, C.A. Erdman, and A.A. Pieper. 2014. NPAS1 represses the generation of specific subtypes of cortical interneurons. Neuron. 84:940-953.
Stork, T., D. Engelen, A. Krudewig, M. Silies, R.J. Bainton, and C. Klambt. 2008. Organization and function of the blood-brain barrier in Drosophila. J Neurosci. 28:587-597.
Stork, T., A. Sheehan, O.E. Tasdemir-Yilmaz, and M.R. Freeman. 2014. Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes. Neuron. 83:388-403.
Stroka DM, Burkhardt T, Desbaillets I, Wenger RH, Neil DA, Bauer C, Gassmann M, and C. D. 2001. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J. 15:2445-2453.
Tam, S.J., and R.J. Watts. 2010. Connecting vascular and nervous system development: angiogenesis and the blood-brain barrier. Annu Rev Neurosci. 33:379-408.
Tastekin, I., A. Khandelwal, D. Tadres, N.D. Fessner, J.W. Truman, M. Zlatic, A. Cardona, and M. Louis. 2018. Sensorimotor pathway controlling stopping behavior during chemotaxis in the Drosophila melanogaster larva. Elife. 7:e38740.
Texada, M.J., A.F. Jørgensen, C.F. Christensen, T. Koyama, A. Malita, D.K. Smith, D.F.M. Marple, E.T. Danielsen, S.K. Petersen, J.L. Hansen, K.A. Halberg, and K.F. Rewitz. 2019. A fat-tissue sensor couples growth to oxygen availability by remotely controlling insulin secretion. Nat Commun. 10:1955.
Tian, X., and C. Wu. 2015. Active zone stability: insights from fly neuromuscular junction. Neural Regen Res. 10:677.
Vermehren-Schmaedick, A., J.A. Ainsley, W.A. Johnson, S.A. Davies, and D.B. Morton. 2010. Behavioral responses to hypoxia in Drosophila larvae are mediated by atypical soluble guanylyl cyclases. Genetics. 186:183-196.
Verstreken, P., T.W. Koh, K.L. Schulze, R.G. Zhai, P.R. Hiesinger, Y. Zhou, S.Q. Mehta, Y. Cao, J. Roos, and H.J. Bellen. 2003. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron. 40:733-748.
Wang, B., Y. Xiao, B.B. Ding, N. Zhang, X. Yuan, L. Gui, K.X. Qian, S. Duan, Z. Chen, Y. Rao, and J.G. Geng. 2003. Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer cell. 4:19-29.
Wang, C.-W., A. Purkayastha, K.T. Jones, S.K. Thaker, and U. Banerjee. 2016. In vivo genetic dissection of tumor growth and the Warburg effect. Elife. 5:e18126.
Wang, G.L., B.-H. Jiang, E.A. Rue, and G.L. Semenza. 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A. 92:5510-5514.
Wilk, R., I. Weizman, and B.-Z. Shilo. 1996. trachealess encodes a bHLH-PAS protein that is an inducer of tracheal cell fates in Drosophila. Genes Dev. 10:93-102.
Younossi-Hartenstein, A., and V. Hartenstein. 1993. The role of the tracheae and musculature during pathfinding of Drosophila embryonic sensory axons. Dev Biol. 158:430-447.
Yun, J., T. Nagai, Y. Furukawa-Hibi, K. Kuroda, K. Kaibuchi, M.E. Greenberg, and K. Yamada. 2013. Neuronal Per Arnt Sim (PAS) domain protein 4 (NPAS4) regulates neurite outgrowth and phosphorylation of synapsin I. J Biol Chem. 288:2655-2664.
Zacchigna, S., D. Lambrechts, and P. Carmeliet. 2008. Neurovascular signalling defects in neurodegeneration. Nat Rev Neurosci. 9:169.
Zhang, J., A. Malik, H.B. Choi, R.W. Ko, L. Dissing-Olesen, and B.A. MacVicar. 2014. Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase. Neuron. 82:195-207.
Zhou, S., S. Degan, E.N. Potts, W.M. Foster, and M.E. Sunday. 2009. NPAS3 is a trachealess homolog critical for lung development and homeostasis. Proc Natl Acad Sci U S A. 106:11691-11696.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top