跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/12 19:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭庭伃
研究生(外文):Ting-Yu Cheng
論文名稱:尋找在復發性攝護腺癌中與神經內分泌攝護腺癌相關的 長非譯碼RNA
論文名稱(外文):Identify Neuroendocrine Prostate Cancer (NEPC)-related lincRNA in Relapsed Prostate Cancer
指導教授:張佩靖
指導教授(外文):Pei-Ching Chang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:40
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
攝護腺癌 (Prostate cancer,PCa) 是全球男性癌症死亡主因之一,發病率與年齡呈正相關,儘管能夠利用雄性激素剝奪療法 (androgen deprivation therapy,ADT) 治癒,仍有許多患者會在數月至數年後復發,發展成去勢抗性攝護腺癌 (CRPC),在人口高齡化的問題下,越來越多患者在ADT治癒後,足以存活到PCa復發,形成CRPC。CRPC除了對ADT有抗性,也具高度轉移及化療抗性,主要特徵是重新活化雄性賀爾蒙受體 (Androgen receptor) 的訊息傳遞 (AR signaling),然而還有一群不表現AR的PCa細胞,會表現神經內分泌樣分化 (NED) 標誌,被提出為發展成CRPC的新特徵,稱為NEPC (Neuroendocrine prostate cancer)。近幾年研究發現許多NED誘導因子被發現,如ADT、IL-6與缺氧 (hypoxia),其中調節NED路徑的分子REST (repressor element-1 silencing transcription factor) 被發現在NED的PCa中表現顯著降低,同時發現在IL-6或是低氧處理的PCa其細胞自噬 (autophagy) 機制會被活化。
全基因體表達分析顯示出長鏈非編碼RNA (lncRNAs) 能夠做為癌症新標誌,在剔低REST表現的全基因體分析,利用NONCODE v4資料庫分析,找到可能參與NED的lncRNA,有潛力成為鑑定NEPC的新生物標誌,並進行小規模之siRNA篩選,鑑定出LINC01801在REST剔低後表現量上升,對於NED是必須的,因此將針對LINC01801研究其在PCa轉變為NEPC的重要性。
本研究發現,LINC01801參與攝護腺癌NED的過程,且一旦敲低LINC01801的表現,其NED現象也會受到抑制,在RNA-Seq結果也得知,LINC01801也參與細胞自噬的活化,而在miR-Seq結果篩選出has-miR-6889-3p可能與LINC01801有交互作用,同時也受LINC01801所調控,在預測標靶基因也觀察到has-miR-6889-3p可能與細胞自噬相關基因有交互作用,故我們推測LINC01801可能藉由調控has-miR-6889-3p而活化細胞自噬的機制。
  Prostate cancer (PCa) is one of the leading cause of cancer death in men worldwide. Although PCa can be successfully treated by androgen deprivation therapy (ADT), many patients will relapse to castration-resistant prostate cancer (CRPC) months to years after treatment. Due to the incidence of PCa is exponentially correlated with age and the global aging, more and more patients relief from PCa by ADT treatment are now live long enough to develop CRPC. CRPC, is an advanced type of PCa that requires immediate attention since it is not only no longer responds to ADT but also highly chemoresistant and metastatic. Although reactivation of AR signaling is a major feature of CRPC, AR-null tumors express neuroendocrine differentiation (NED) markers has also been proposed as a new feature, so called NEPC (Neuroendocrine prostate cancer). In recent years, many NE differentiation (NED) inducers, such as ADT, IL-6 and hypoxia, were identified. Also find out that repressor element-1 silencing transcription factor (REST), a transcription factor that regulates NED pathways, was significantly reduced in NEPC. Moreover, our data shows that autophagy mechanism was activated by IL-6 or hypoxia treatment.
Integrative genome-wide expression analysis revealed long non-coding RNAs (lncRNAs) are emerging as novel determinants and prognostic markers of various cancers, including PCa. To discover novel NED-associated lncRNAs, we reannotated our previously published RNA-seq data obtained from REST knockdown PCa LNCaP cells using NONCODE v4 database. Following a small scale siRNA knockdown screening covering the identified NED-associated lncRNAs and RT-qPCR verification, LINC01801 were identified to be essential for NED. Therefore, we focus on LINC01801 and study its importance of NED.
In this study, we found that LINC01801 is essential for NED knockdown. Pathway analysis of RNA-Seq, the results show that LINC01801 is involved in the activation of autophagy. We also performed the Small RNA-Seq. The results show that has-miR-6889-3p is down-regulated by LINC01801.The results suggest that hsa-miR-6889-3p is a downstream target of LINC01801. By using the target gene prediction, there were some autophagy related genes which may be regulated by has-miR-6889-3p. Therefore, we hypothesis that, LINC01801-has-miR-6889-3p aixs potential activate autophagy in NED cells.
目錄
誌謝 i
中文摘要 ii
Abstract iii
目錄 v
一、緒論 1
1. 攝護腺癌 (Prostate Cancer) 1
1.1 攝護腺癌 1
1.2 攝護腺癌的診斷 1
1.3 攝護腺癌的治療 2
1.4 攝護腺癌的復發 2
2. 神經內分泌分化 (Neuroendocrine differetiatiton,NED) 3
2.1 攝護腺癌的神經內分泌分化 3
2.2 神經內分泌分化的誘導因子 3
2.3 神經內分泌攝護腺癌與神經內分泌分化 4
3. REST (RE1-silencing transcription factor) 4
3.1 REST 4
3.2 REST與神經內分泌分化 5
4. 長鏈非譯碼RNA (Long non-coding RNA,lncRNA) 5
5. 細胞自噬 (Autophagy) 6
二、研究目的 8
三、實驗材料 9
1. 菌株 9
2. 質體 9
3. 細胞株 9
4. 培養液 9
5. 一般溶液 10
6. 抗體 11
7. 引子 11
8. 攝護腺癌臨床檢體 11
四、實驗方法 12
1. 細胞培養 12
2. RNA 次世代高通量定序 (RNA-seq) 及gene ontology (GO) 分析 12
3. 小片段RNA定序 (Small RNA Sequencing, smRNA-Seq)分析 12
4. RNA製備 12
5. 反轉錄作用 (Reverse transcription) 13
6. 即時聚合酶連鎖反應 (RT-qPCR) 13
7. SDS-聚丙烯醯胺凝膠電泳 13
8. 西方墨點法 (Western blot) 14
9. 組織免疫染色 (IHC-staining) 14
10.細胞活性 (MTT assay 15
11. 細胞轉染 (Transfection) 15
12. 轉型作用 (Transformation) 15
13. 細胞轉染 (Transfection) 15
14. 感染 (Infection) 16
15. Neurite outgrowth染色及顯微鏡定量 Neurite Outgrowth Staining Kit 16
16. 免疫螢光染色 (Immunofluorescence assay,IFA) 16
17. TCGA 分析 (The Cancer Genome Atlas) 17
18. miRNA的目標基因預測 17
19. Statistical Analysis 17
五、實驗結果 18
1. 利用次世代定序分析並找尋在REST剔低誘導NED的PCa受REST所調控lincRNA 18
2.確認LINC01801 與神經內分泌分化之關聯 18
3.探討LINC01801在NED的機轉 19
4. LINC01801對autophagy機制之影響 20
5. LINC01801與microRNA 21
6. LINC01801對於腫瘤進展之影響 22
六、討論 24
1, LINC01801對於細胞走向NED的影響 24
2. 細胞自噬對於攝護腺癌的影響 24
3. LINC01801與hsa-miR-6889-3p 25
3. LINC01801在臨床上的意義 25
七、參考文獻 26
八、圖與表 31
1. Bostwick DG, Burke HB, Djakiew D, Euling S, Ho SM, Landolph J, Morrison H, Sonawane B, Shifflett T, Waters DJ, Timms B: Human prostate cancer risk factors. Cancer 2004, 101:2371-2490.
2. Stark JR, Perner S, Stampfer MJ, Sinnott JA, Finn S, Eisenstein AS, Ma J, Fiorentino M, Kurth T, Loda M, et al: Gleason score and lethal prostate cancer: does 3 + 4 = 4 + 3? J Clin Oncol 2009, 27:3459-3464.
3. Keyes M, Crook J, Morton G, Vigneault E, Usmani N, Morris WJ: Treatment options for localized prostate cancer. Can Fam Physician 2013, 59:1269-1274.
4. Wen S, Niu Y, Lee SO, Chang C: Androgen receptor (AR) positive vs negative roles in prostate cancer cell deaths including apoptosis, anoikis, entosis, necrosis and autophagic cell death. Cancer Treat Rev 2014, 40:31-40.
5. Saraon P, Drabovich AP, Jarvi KA, Diamandis EP: Mechanisms of Androgen-Independent Prostate Cancer. EJIFCC 2014, 25:42-54.
6. Bennett LL, Ingason A: Enzalutamide (Xtandi) for patients with metastatic, resistant prostate cancer. Ann Pharmacother 2014, 48:530-537.
7. de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, Chi KN, Jones RJ, Goodman OB, Jr., Saad F, et al: Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011, 364:1995-2005.
8. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, Fizazi K, Mainwaring P, Piulats JM, Ng S, et al: Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 2013, 368:138-148.
9. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND, et al: Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012, 367:1187-1197.
10. Abrahamsson PA: Neuroendocrine cells in tumour growth of the prostate. Endocr Relat Cancer 1999, 6:503-519.
11. Vashchenko N, Abrahamsson PA: Neuroendocrine differentiation in prostate cancer: implications for new treatment modalities. Eur Urol 2005, 47:147-155.
12. Yuan TC, Veeramani S, Lin MF: Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocr Relat Cancer 2007, 14:531-547.
13. Chang PC, Wang TY, Chang YT, Chu CY, Lee CL, Hsu HW, Zhou TA, Wu Z, Kim RH, Desai SJ, et al: Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells. PLoS One 2014, 9:e88556.
14. Conteduca V, Aieta M, Amadori D, De Giorgi U: Neuroendocrine differentiation in prostate cancer: current and emerging therapy strategies. Crit Rev Oncol Hematol 2014, 92:11-24.
15. Lipianskaya J, Cohen A, Chen CJ, Hsia E, Squires J, Li Z, Zhang Y, Li W, Chen X, Xu H, Huang J: Androgen-deprivation therapy-induced aggressive prostate cancer with neuroendocrine differentiation. Asian J Androl 2014, 16:541-544.
16. Hu CD, Choo R, Huang J: Neuroendocrine differentiation in prostate cancer: a mechanism of radioresistance and treatment failure. Front Oncol 2015, 5:90.
17. Krauss DJ, Hayek S, Amin M, Ye H, Kestin LL, Zadora S, Vicini FA, Cotant M, Brabbins DS, Ghilezan MI, et al: Prognostic significance of neuroendocrine differentiation in patients with Gleason score 8-10 prostate cancer treated with primary radiotherapy. Int J Radiat Oncol Biol Phys 2011, 81:e119-125.
18. Yazawa T: Recent advances in histogenesis research of lung neuroendocrine cancers: Evidence obtained from functional analyses of primitive neural/neuroendocrine cell-specific transcription factors. Pathol Int 2015, 65:277-285.
19. Dias AR, Azevedo BC, Alban LBV, Yagi OK, Ramos M, Jacob CE, Barchi LC, Cecconello I, Ribeiro U, Jr., Zilberstein B: Gastric Neuroendocrine Tumor: Review and Update. Arq Bras Cir Dig 2017, 30:150-154.
20. Ismail AH, Landry F, Aprikian AG, Chevalier S: Androgen ablation promotes neuroendocrine cell differentiation in dog and human prostate. Prostate 2002, 51:117-125.
21. Terry S, Beltran H: The many faces of neuroendocrine differentiation in prostate cancer progression. Front Oncol 2014, 4:60.
22. Lin TP, Chang YT, Lee SY, Campbell M, Wang TC, Shen SH, Chung HJ, Chang YH, Chiu AW, Pan CC, et al: REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling. Oncotarget 2016, 7:26137-26151.
23. Aloysius H, Hu L: Targeted prodrug approaches for hormone refractory prostate cancer. Med Res Rev 2015, 35:554-585.
24. Dardenne E, Beltran H, Benelli M, Gayvert K, Berger A, Puca L, Cyrta J, Sboner A, Noorzad Z, MacDonald T, et al: N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer. Cancer Cell 2016, 30:563-577.
25. Svensson C, Ceder J, Iglesias-Gato D, Chuan YC, Pang ST, Bjartell A, Martinez RM, Bott L, Helczynski L, Ulmert D, et al: REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer. Nucleic Acids Res 2014, 42:999-1015.
26. Schoenherr CJ, Anderson DJ: The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 1995, 267:1360-1363.
27. Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B, Zhao JJ, Roberts TM, Mandel G, Hannon GJ, et al: A genetic screen for candidate tumor suppressors identifies REST. Cell 2005, 121:837-848.
28. Kamal MM, Sathyan P, Singh SK, Zinn PO, Marisetty AL, Liang S, Gumin J, El-Mesallamy HO, Suki D, Colman H, et al: REST regulates oncogenic properties of glioblastoma stem cells. Stem Cells 2012, 30:405-414.
29. Lawinger P, Venugopal R, Guo ZS, Immaneni A, Sengupta D, Lu W, Rastelli L, Marin Dias Carneiro A, Levin V, Fuller GN, et al: The neuronal repressor REST/NRSF is an essential regulator in medulloblastoma cells. Nat Med 2000, 6:826-831.
30. Tuck AC, Tollervey D: A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs. Cell 2013, 154:996-1009.
31. Iwakiri J, Terai G, Hamada M: Computational prediction of lncRNA-mRNA interactionsby integrating tissue specificity in human transcriptome. Biol Direct 2017, 12:15.
32. Ma L, Bajic VB, Zhang Z: On the classification of long non-coding RNAs. RNA Biol 2013, 10:925-933.
33. Sahu A, Singhal U, Chinnaiyan AM: Long noncoding RNAs in cancer: from function to translation. Trends Cancer 2015, 1:93-109.
34. Wang KC, Chang HY: Molecular mechanisms of long noncoding RNAs. Mol Cell 2011, 43:904-914.
35. Ifere GO, Ananaba GA: Prostate cancer gene expression marker 1 (PCGEM1): a patented prostate- specific non-coding gene and regulator of prostate cancer progression. Recent Pat DNA Gene Seq 2009, 3:151-163.
36. Petrovics G, Zhang W, Makarem M, Street JP, Connelly R, Sun L, Sesterhenn IA, Srikantan V, Moul JW, Srivastava S: Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene 2004, 23:605-611.
37. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, Laxman B, Asangani IA, Grasso CS, Kominsky HD, et al: Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 2011, 29:742-749.
38. Prensner JR, Iyer MK, Sahu A, Asangani IA, Cao Q, Patel L, Vergara IA, Davicioni E, Erho N, Ghadessi M, et al: The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet 2013, 45:1392-1398.
39. Zhang A, Zhao JC, Kim J, Fong KW, Yang YA, Chakravarti D, Mo YY, Yu J: LncRNA HOTAIR Enhances the Androgen-Receptor-Mediated Transcriptional Program and Drives Castration-Resistant Prostate Cancer. Cell Rep 2015, 13:209-221.
40. Chang YT, Lin TP, Tang JT, Campbell M, Luo YL, Lu SY, Yang CP, Cheng TY, Chang CH, Liu TT, et al: HOTAIR is a REST-regulated lncRNA that promotes neuroendocrine differentiation in castration resistant prostate cancer. Cancer Lett 2018, 433:43-52.
41. Alshalalfa M, Verhaegh GW, Gibb EA, Santiago-Jimenez M, Erho N, Jordan J, Yousefi K, Lam LLC, Kolisnik T, Chelissery J, et al: Low PCA3 expression is a marker of poor differentiation in localized prostate tumors: exploratory analysis from 12,076 patients. Oncotarget 2017, 8:50804-50813.
42. de Kok JB, Verhaegh GW, Roelofs RW, Hessels D, Kiemeney LA, Aalders TW, Swinkels DW, Schalken JA: DD3(PCA3), a very sensitive and specific marker to detect prostate tumors. Cancer Res 2002, 62:2695-2698.
43. Lai J, Moya L, An J, Hoffman A, Srinivasan S, Panchadsaram J, Walpole C, Perry-Keene JL, Chambers S, Lehman ML, et al: A microsatellite repeat in PCA3 long non-coding RNA is associated with prostate cancer risk and aggressiveness. Sci Rep 2017, 7:16862.
44. Wang T, Qu X, Jiang J, Gao P, Zhao D, Lian X, Li X: Diagnostic significance of urinary long non-coding PCA3 RNA in prostate cancer. Oncotarget 2017, 8:58577-58586.
45. Deter RL, De Duve C: Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. J Cell Biol 1967, 33:437-449.
46. Levine B, Kroemer G: Autophagy in the pathogenesis of disease. Cell 2008, 132:27-42.
47. Kim J, Kundu M, Viollet B, Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 2011, 13:132-141.
48. Scott RC, Schuldiner O, Neufeld TP: Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 2004, 7:167-178.
49. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B: Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402:672-676.
50. Mizushima N: Autophagy: process and function. Genes Dev 2007, 21:2861-2873.
51. Gewirtz DA: The four faces of autophagy: implications for cancer therapy. Cancer Res 2014, 74:647-651.
52. Rosenfeldt MT, Ryan KM: The multiple roles of autophagy in cancer. Carcinogenesis 2011, 32:955-963.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top