|
1. Lee Y-T, Kuo S-C, Yang S-P, Lin Y-T, Tseng F-C, Chen T-L, et al. Impact of appropriate antimicrobial therapy on mortality associated with Acinetobacter baumannii bacteremia: relation to severity of infection. Clinical infectious diseases. 2012;55:209-15. 2. Herxheimer K. Ueber eine bei Syphilitischen vorkommende Quecksilberreaktion. DMW-Deutsche Medizinische Wochenschrift. 1902;28:895-7. 3. Belum GR, Belum VR, Arudra SKC, Reddy B. The jarisch–herxheimer reaction: Revisited. Travel medicine and infectious disease. 2013;11:231-7. 4. Rolain J, Brouqui P, Koehler J, Maguina C, Dolan M, Raoult D. Recommendations for treatment of human infections caused by Bartonella species. Antimicrobial agents and chemotherapy. 2004;48:1921-33. 5. Almeida Â, Estanqueiro P, Salgado M. The Jarisch-Herxheimer Reaction and Brucellosis. The Pediatric infectious disease journal. 2016;35:466. 6. Bone RC. The pathogenesis of sepsis. Annals of Internal Medicine. 1991;115:457-69. 7. Michie HR, Manogue KR, Spriggs DR, Revhaug A, O'Dwyer S, Dinarello CA, et al. Detection of circulating tumor necrosis factor after endotoxin administration. New England Journal of Medicine. 1988;318:1481-6. 8. Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, et al. The cardiovascular response of normal humans to the administration of endotoxin. New England Journal of Medicine. 1989;321:280-7. 9. Goto H, Nakamura S. Liberation of endotoxin from Escherichia coli by addition of antibiotics. The Japanese journal of experimental medicine. 1980;50:35-43. 10. Jackson JJ, Kropp H. ß-Lactam antibiotic-induced release of free endotoxin: in vitro comparison of penicillin-binding protein (PBP) 2-specific imipenem and PBP 3-specific ceftazidime. Journal of Infectious Diseases. 1992;165:1033-41. 11. Dofferhoff A, Esselink M, de Vries-Hospers H, Zanten Av, Bom V, Weits J, et al. The release of endotoxin from antibiotic-treated Escherichia coli and the production of tumour necrosis factor by human monocytes. Journal of Antimicrobial Chemotherapy. 1993;31:373-84. 12. Simon DM, Koenig G, Trenholme GM. Differences in release of tumor necrosis factor from THP-l cells stimulated by filtrates of antibiotic-killed Escherichia coli. Journal of Infectious Diseases. 1991;164:800-2. 13. Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annual review of microbiology. 2010;64:163-84. 14. Liao Y-T, Kuo S-C, Chiang M-H, Lee Y-T, Sung W-C, Chen Y-H, et al. Acinetobacter baumannii extracellular OXA-58 is primarily and selectively released via outer membrane vesicles after Sec-dependent periplasmic translocation. Antimicrobial agents and chemotherapy. 2015;59:7346-54. 15. Liao Y-T, Kuo S-C, Lee Y-T, Chen C-P, Lin S-W, Shen L-J, et al. Sheltering effect and indirect pathogenesis of carbapenem-resistant Acinetobacter baumannii in polymicrobial infection. Antimicrobial agents and chemotherapy. 2014;58:3983-90. 16. Schaar V, Nordström T, Mörgelin M, Riesbeck K. Moraxella catarrhalis outer membrane vesicles carry beta-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrobial agents and chemotherapy. 2011:AAC. 01772-10. 17. Weiss L, Barak V, Zeira M, Abdul-Hai A, Raibstein I, Reich S, et al. Cytokine production in Linomide-treated nod mice and the potential role of a Th1/Th2 shift on autoimmune and anti-inflammatory processes. Cytokine. 2002;19:85-93. 18. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine: Nanotechnology, Biology and Medicine. 2011;7:780-8. 19. Yang F-L, Lou T-C, Kuo S-C, Wu W-L, Chern J, Lee Y-T, et al. A medically relevant capsular polysaccharide in Acinetobacter baumannii is a potential vaccine candidate. Vaccine. 2017;35:1440-7. 20. Shah B, Sullivan CJ, Lonergan NE, Stanley S, Soult MC, Britt L. Circulating bacterial membrane vesicles cause sepsis in rats. Shock. 2012;37:621-8. 21. Park K-S, Choi K-H, Kim Y-S, Hong BS, Kim OY, Kim JH, et al. Outer membrane vesicles derived from Escherichia coli induce systemic inflammatory response syndrome. Plos one. 2010;5:e11334. 22. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature methods. 2011;8:785. 23. Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S. Prediction of twin-arginine signal peptides. BMC bioinformatics. 2005;6:167. 24. Kuo S-C, Yang S-P, Lee Y-T, Chuang H-C, Chen C-P, Chang C-L, et al. Dissemination of imipenem-resistant Acinetobacter baumannii with new plasmid-borne bla OXA-72 in Taiwan. BMC infectious diseases. 2013;13:319. 25. Higgins PG, Lehmann M, Seifert H. Inclusion of OXA-143 primers in a multiplex polymerase chain reaction (PCR) for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. International journal of antimicrobial agents. 2010;35:305. 26. Chen T-L, Lee Y-T, Kuo S-C, Hsueh P-R, Chang F-Y, Siu L-K, et al. Emergence and distribution of plasmids bearing the blaOXA-51-like gene with an upstream ISAba1 in carbapenem-resistant Acinetobacter baumannii isolates in Taiwan. Antimicrobial agents and chemotherapy. 2010;54:4575-81. 27. Valenzuela JK, Thomas L, Partridge SR, van der Reijden T, Dijkshoorn L, Iredell J. Horizontal gene transfer in a polyclonal outbreak of carbapenem-resistant Acinetobacter baumannii. Journal of clinical microbiology. 2007;45:453-60. 28. Wayne P. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing. 2011. 29. Bonapace CR, White RL, Friedrich LV, Bosso JA. Evaluation of antibiotic synergy against Acinetobacter baumannii: a comparison with Etest, time-kill, and checkerboard methods. Diagnostic microbiology and infectious disease. 2000;38:43-50. 30. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. Journal of Antimicrobial Chemotherapy. 2003;52:1 31. Barry AL, Craig WA, Nadler H, Reller LB, Sanders CC, Swenson JM. Methods for determining bactericidal activity of antimicrobial agents: approved guideline. NCCLS document M26-A. 1999;19. 32. Petersen PJ, Labthavikul P, Jones CH, Bradford PA. In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. Journal of Antimicrobial Chemotherapy. 2006;57:573-6. 33. Bonnington K, Kuehn M. Protein selection and export via outer membrane vesicles. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2014;1843:1612-9. 34. Khandelwal P, Banerjee-Bhatnagar N. Insecticidal activity associated with the outer membrane vesicles of Xenorhabdus nematophilus. Applied and environmental microbiology. 2003;69:2032-7. 35. Patrick S, McKenna JP, Seamus O, Dermott E. A comparison of the haemagglutinating and enzymic activities ofBacteroides fragiliswhole cells and outer membrane vesicles. Microbial pathogenesis. 1996;20:191-202. 36. Chi B, Qi M, Kuramitsu HK. Role of dentilisin in Treponema denticola epithelial cell layer penetration. Research in microbiology. 2003;154:637-43. 37. Shoberg RJ, Thomas DD. Specific adherence of Borrelia burgdorferi extracellular vesicles to human endothelial cells in culture. Infection and immunity. 1993;61:3892-900. 38. Negrete-Abascal E, García RM, Reyes ME, Godínez D, de la Garza M. Membrane vesicles released by Actinobacillus pleuropneumoniae contain proteases and Apx toxins. FEMS microbiology letters. 2000;191:109-13. 39. Kadurugamuwa JL, Beveridge TJ. Delivery of the Non-Membrane-Permeative Antibiotic Gentamicin into Mammalian Cells by Using Shigella flexneriMembrane Vesicles. Antimicrobial agents and chemotherapy. 1998;42:1476-83. 40. McBroom AJ, Kuehn MJ. Release of outer membrane vesicles by Gram‐negative bacteria is a novel envelope stress response. Molecular microbiology. 2007;63:545-58. 41. MacDonald IA, Kuehn MJ. Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. Journal of bacteriology. 2013;195:2971-81. 42. Deatherage BL, Lara JC, Bergsbaken T, Barrett SLR, Lara S, Cookson BT. Biogenesis of bacterial membrane vesicles. Molecular microbiology. 2009;72:1395-407. 43. Koning RI, de Breij A, Oostergetel GT, Nibbering PH, Koster AJ, Dijkshoorn L. Cryo-electron tomography analysis of membrane vesicles from Acinetobacter baumannii ATCC19606T. Research in microbiology. 2013;164:397-405. 44. Typas A, Banzhaf M, Gross CA, Vollmer W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nature Reviews Microbiology. 2012;10:123. 45. De Boer PA. Advances in understanding E. coli cell fission. Current opinion in microbiology. 2010;13:730-7. 46. Cho H, Uehara T, Bernhardt TG. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell. 2014;159:1300-11. 47. Moyá B, Zamorano L, Juan C, Ge Y, Oliver A. Affinity of the new cephalosporin CXA-101 to penicillin-binding proteins of Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. 2010;54:3933-7. 48. Dorward DW, Schwan T, Garon CF. Immune capture and detection of Borrelia burgdorferi antigens in urine, blood, or tissues from infected ticks, mice, dogs, and humans. Journal of clinical microbiology. 1991;29:1162-70. 49. Zimbler DL, Arivett BA, Beckett AC, Menke SM, Actis LA. Functional features of TonB energy transduction systems of Acinetobacter baumannii. Infection and immunity. 2013; 81: 3382-3394 50. Jin JS, Kwon S-O, Moon DC, Gurung M, Lee JH, Kim SI, et al. Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PloS one. 2011;6:e17027. 51. Pradel N, Delmas J, Wu L, Santini C, Bonnet R. Sec-and Tat-dependent translocation of β-lactamases across the Escherichia coli inner membrane. Antimicrobial agents and chemotherapy. 2009;53:242-8. 52. Driessen AJ, Manting EH, van der Does C. The structural basis of protein targeting and translocation in bacteria. Nature Structural and Molecular Biology. 2001;8:492. 53. Valent QA. Signal recognition particle mediated protein targeting in Escherichia coli. Antonie Van Leeuwenhoek. 2001;79:17-31. 54. Therien AG, Huber JL, Wilson KE, Beaulieu P, Caron A, Claveau D, et al. Broadening the spectrum of β-lactam antibiotics through inhibition of signal peptidase type I. Antimicrobial agents and chemotherapy. 2012:AAC. 00726-12. 55. Smith PA, Romesberg FE. The Mechanism of Action of the Arylomycin Antibiotics and the Effects of Signal Peptidase I Inhibition. Antimicrobial agents and chemotherapy. 2012;56:5054-60 56. Beha D, Deitermann S, Müller M, Koch H-G. Export of β-lactamase is independent of the signal recognition particle. Journal of Biological Chemistry. 2003;278:22161-7. 57. Wong E, Yusof M, Mansor M, Anbazhagan D, Ong S, Sekaran S. Disruption of adeB gene has a greater effect on resistance to meropenems than adeA gene in Acinetobacter spp. isolated from University Malaya Medical Centre. Singapore medical journal. 2009;50:822-6. 58. Huang YJ, Wang H, Gao FB, Li M, Yang H, Wang B, et al. Fluorescein Analogues Inhibit SecA ATPase: The First Sub‐micromolar Inhibitor of Bacterial Protein Translocation. ChemMedChem. 2012;7:571-7. 59. Heim WG, Appleman D, Pyfrom H. Effects of 3-amino-1, 2, 4-triazole (AT) on catalase and other compounds. American Journal of Physiology-Legacy Content. 1956;186:19-23. 60. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Molecular systems biology. 2006;2. 61. Nakane A, Takamatsu H, Oguro A, Sadaie Y, Nakamura K, Yamane K. Acquisition of azide-resistance by elevated SecA ATPase activity confers azide-resistance upon cell growth and protein translocation in Bacillus subtilis. Microbiology. 1995;141:113-21.
|
| |