跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 18:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱俊翔
研究生(外文):Chun-Hsiang Chiu
論文名稱:細菌外膜囊泡在抗生素治療下鮑氏不動桿菌致病力的角色及碳青黴烯水解酶抗藥性鮑氏不動桿菌的治療選擇
論文名稱(外文):Role of Outer Membrane Vesicles in the pathogenicity of Acinetobacter baumannii infection under various antibiotic treatment and novel therapeutic options for CHDL-related carbapenem-resistant Acinetobacter baumannii infection
指導教授:馮長風馮長風引用關係陳德禮陳德禮引用關係
指導教授(外文):Chang-Phone FungTe-Li Chen
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:83
中文關鍵詞:細菌外膜囊泡鮑氏不動桿菌毒力抗藥性
外文關鍵詞:outer membrane vesiclesAcinetobacter baumanniivirulencedrug resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
不動桿菌屬(Acinetobacter species)是近年來造成醫院院內感染的重要致病菌之一, 亦是院內感染惡名昭彰的多重抗藥性致病菌。傳統上,對抗不動桿菌之抗生素是以碳青黴烯類(Carbapenems)為最有效之藥物,然而,不動桿菌屬細菌對於碳青黴烯類抗生素的抗藥性逐年家增加,在亞太地區更是嚴重。由於高度的抗藥性會造成抗生素治療失誤的比例增加,進而提高了病患的死亡率與醫療費用,因此,發展新的藥物對於碳青黴烯類藥物抗藥性鮑氏不動桿菌(CRAB)之治療是相當重要的。本研究旨在探討抗藥性鮑氏不動桿菌的致病與抗藥機轉,並發展新的治療策略。
研究的第一部分,我們試著找出在鮑氏不動桿菌感染時,不同抗生素治療下,雖同屬於不適用的抗生素,卻會導致不同死亡率的因子。研究的第二部分,我們試著利用SecA抑制劑降低碳青黴烯類藥物抗藥性鮑氏不動桿菌的抗藥性,發展新的治療策略。

第一部分
根據2012年我們團隊的研究,252位單獨鮑氏不動桿菌菌血症患者,
比較使用抗綠膿桿菌頭孢子素(anti-pseudomonal cephalosporins)的患者與使用抗綠膿桿菌碳青黴烯(anti-pseudomonal carbapenems)的患者, 雖然兩組對抗生素不適用比例相當(56% vs. 51.4%), 疾病嚴重程度也相當(APACHE II scores: 24.5 vs. 25), 但兩組14天死亡率卻有顯著差異 (42% vs. 25%, P < 0.05), 顯示除了抗生素適用與否, 疾病嚴重程度以外, 尚存在其他因子影響使用不同抗生素的兩組病人預後, 在另一個研究我們發現, 使用未達抑制濃度的ceftazidime與imipenem, 可以促使鮑氏不動桿菌外膜小泡 (OMV)分泌增加, 因此我們猜測, 使用不同抗生素患者死亡率的不同, 可能源於抗生素對鮑氏不動桿菌分泌外膜小泡之影響。在研究的第一部分, 我們期望去了解在未達抑制濃度的ceftazidime與imipenem治療下, 細菌外膜小泡在碳青黴烯抗藥之鮑氏不動桿菌感染的致病角色。
我們使用青黴烯抗藥之鮑氏不動桿菌轉質體 (ATCC17978 pOXA-58-2) 來做研究, 分別使用1/2 最小抑菌濃度的ceftazidime和imipenem去刺激鮑氏不動桿菌, 將抗生素刺激後鮑氏不動桿菌產生之外膜小泡,拿來刺激RAW264.7巨噬細胞細胞株, 再以酵素免疫分析法(ELISA)或西方點墨法(western blotting), 觀察RAW264.7細胞激素的表現狀況。動物實驗方面, 使用小鼠評估細菌外膜小泡之毒性。再使用奈米粒子追蹤分析儀(nanoparticle tracking analysis),西方點墨法(western blotting) 來評估不同抗生素刺激下產生之外膜小泡數量與所帶LPS數量之差異。再以液相色譜法-質譜聯用 (Liquid chromatography tandem-mass spectrometry)來評估不同抗生素刺激所產生細菌外膜小泡之內涵蛋白之差異。
在這第一部分的研究, 我們發現, 使用ceftazidime刺激鮑氏不動桿菌所產生之細菌外膜小泡,相較於imipenem刺激所產生之外膜小泡,可使RAW264.7細胞有較高的iNOS, IL-1β, 和 TNF-α 表現, 也使接種外膜小泡的小鼠,有較高的死亡率。使用奈米粒子追蹤分析儀和西方點墨法發現, 使用ceftazidime刺激鮑氏不動桿菌所產生之細菌外膜小泡,相較於imipenem刺激所產生之外膜小泡,有較多的外膜小泡數量,也帶了較多的脂多糖(LPS),使用多粘菌素B (polymyxin B)抑制外膜小泡上的脂多糖可使外膜小泡刺激Raw264.7表現IL-1β和TNF-α的現象消失,可知脂多糖對於RAW264.7表現 IL-1β和TNF-α是重要的。在動物實驗方面, 我們將源自於不同抗生素刺激所產生的各組細菌外膜小泡,調整使其所帶之脂多糖在各組檢體中都相等, 再拿脂多糖量相等的各組外膜小泡,接種到小鼠腹腔, 發現即使脂多糖在各組間的總量相等, ceftazidime刺激產生的外膜小泡, 相較於imipenem刺激產生的外膜小泡, 仍舊使小鼠有較高的死亡率,因此,我們認為, 細菌外膜小泡內含物除了脂多糖外, 應該存在其他會影響毒力之物質。蛋白質體研究發現, 源自於不同抗生素刺激所產生之細菌外膜蛋白, 所帶蛋白質組成有很大的不同。
總結來說, 在第一部分研究, 我們認為,使用未達抑制濃度的ceftazidime刺激鮑氏不動桿菌所產生之細菌外膜小泡,相較於imipenem刺激所產生之外膜小泡,有較高的致病力。

第二部分
根據2015年我們團隊的研究,發現鮑氏不動桿菌在分泌乙內醯胺酶OXA-58時, 是經由Sec pathway將乙內醯胺酶OXA-58分泌至細胞周質(periplasm), 再經由細菌外膜小泡分泌出細菌。我們想知道, 是否其他的class D碳青黴烯水解酶OXA-23, OXA-40, 和OXA-51也是經由Sec pathway分泌, secA抑制劑是否可以透過抑制乙內醯胺酶之分泌, 來降低乙內醯胺酶抗藥鮑氏不動桿菌的抗藥性 。
為了評估其他乙內醯胺酶是否經由Sec pathway分泌至細胞周質, 我們使用細胞組成分離 (cell fractionation)和西方墨點法來偵測細胞周質內的組氨酸標籤乙內醯胺酶(His-tagged CHDLs). 為了評估 Sec A抑制劑與乙內醯胺酶是否具協同作用, 我們使用棋盤測試(checkerboard analysis)來合併使用Sec A抑制劑(rose bengal 或sodium azide)和乙內醯胺酶(imipenem 或 meropenem) 在六株帶有不同class D碳青黴烯水解酶之乙內醯胺酶抗藥鮑氏不動桿菌, 再依據其分级抑菌濃度(fractional inhibitory concentration index,FICI)來評估是否有協同作用,其中,分级抑菌濃度最低的組合我們再以time-kill analysis來評估其使用效果。
在這第二部分的研究, 我們發現,經由電腦模擬, 乙內醯胺酶OXA-23, OXA-40,和OXA-51較可能是經由Sec pathway分泌。使用SecA 抑制劑,Rose Bengal可以抑制組氨酸標籤乙內醯胺酶 His-tagged OXA-23和OXA-83 (屬於 OXA-51 family)分泌至細胞周質, 但不影響OXA-72 (屬於OXA-40 family)之分泌。合併使用imipenem或meropenem與 Rose Bengal,分別在6個與4個臨床菌株看到協同作用(FICI ≤ 0.5) 。合併使用imipenem或meropenem與sodium azide在所有6株臨床菌株都沒看到協同作用 (FICI, >0.5–4)。合併使用imipenem 和Rose Bengal 在臨床菌株上,有最低的FICI, 並在time-kill assay 24小時也看到協同作用。
總結來說,在第二部分研究,我們認為,合併使用SecA 抑制劑和乙內醯胺酶在乙內醯胺酶抗藥鮑氏不動桿菌會有協同效果, 找到更具效力之SecA 抑制劑或其他Sec pathway抑制劑, 可能是一個有效的乙內醯胺酶抗藥鮑氏不動桿菌治療方式。
The genus Acinetobacter has emerged as one of the most troublesome pathogens for health care institutions globally over the past 2 decades due to the increasing prevalence and rapid development of drug resistance. Imipenem and meropenem were traditionally the most effective antimicrobials against A. baumannii. However, carbapenem-resistant A. baumannii (CRAb) are now increasingly encountered worldwide, especially in the Asia-Pacific region. There are few treatment options for CRAb, and the development of new agents remains a priority to ensure the availability of efficacious therapies. Our study focused on pathogenicity of drug resistant A. baumannii and try to develop novel therapeutic options for drug resistant A. baumannii infection.
Part 1:
In a previous study of 252 patients with monomicrobial A. baumannii bacteremia, we found that, despite comparable percentages of inappropriate antimicrobial therapy (56% vs. 51.4%) and Acute Physiology and Chronic Health Evaluation (APACHE II) scores (24.5 vs. 25), patients treated with antipseudomonal cephalosporins had a higher 14 day mortality rate than those treated with antipseudomonal carbapenems (42% vs. 25%, P < 0.05). This result suggested that factors other than the use of appropriate antimicrobial therapy and disease severity contribute to the differences in the mortality rates between the two groups. In a different study, we also demonstrated that treatment with sub-inhibitory concentrations of ceftazidime and imipenem could enhance the release of outer membrane vesicles (OMVs) from CRAb. Thus, we hypothesized that the difference in the mortality rates between the groups was due to the different OMV components released from A. baumannii under the different antibiotic treatments. In the first part of this study, we wanted to explore the role of OMVs in the pathogenicity of A. baumannii infection under sub-inhibitory concentrations of ceftazidime and imipenem treatment.
The CRAb transformant, ATCC17978 pOXA-58-2, was treated with ceftazidime, an anti-pseudomonal cephalosporin, or imipenem, an anti-pseudomonal carbapenem, at half the minimum inhibitory concentration. The resultant OMV induced cytokine expression in RAW264.7 macrophages was then measured by ELISA or western blotting. The virulence of the OMVs in vivo was assessed in mice. OMVs and OMV-carried lipopolysaccharides were measured by nanoparticle tracking analysis and western blotting, respectively. Liquid chromatography tandem-mass spectrometry was used to identify proteins within the OMVs.
We found that OMVs derived from ceftazidime treated cells led to maximum expression levels of iNOS, IL-1β, and TNF-α in the RAW264.7 cell line and increased mortality in mice. Nanoparticle tracking analysis and western blot showed that OMV amount and OMV-carried LPS increased in ceftazidime treated A. baumannii. We also found that polymyxin B diminished almost all of the OMV mediated IL-1β and TNF-α stimulation in RAW264.7. These results suggest that OMV-carried LPS is essential for the induction of IL-1β and TNF-α. In the animal study, when adjusted for the same amount of LPS, we found that ceftazidime treatment derived OMV also resulted in higher mortality compared to imipenem treatment. We therefore concluded that components other than LPS of the OMVs derived from ceftazidime treatment were also more virulent than OMVs derived from imipenem treatment. Proteomic analysis revealed that there were differences in the proteins identified in OMVs derived from different antibiotic treatment.
We conclude that treatment of A. baumannii with a sub-inhibitory concentration of ceftazidime enhanced the release of OMVs which demonstrated increased virulence compared to imipenem treatment induced OMVs.

Part 2:
A study we conducted in 2015 revealed that OXA-58 translocates to the periplasm via a Sec pathway and is then released from bacteria within OMVs. We were interested in understanding whether or not other common carbapenem hydrolyzing class D β-lactamases (CHDLs) in A. baumannii, including the OXA-23, OXA-40, and OXA-51 families, were also released from the Sec-dependent pathway and whether secA inhibitors can also reduce the carbapenem resistance of CRAb by blocking the release of CHDLs. To determine whether the CHDL is secreted via the Sec pathway, cell fractionation and western blotting analyses were performed to detect the periplasmic His-tagged CHDLs. To evaluate the synergistic effect of a combination therapy with Sec A inhibitors and carbapenem, checkerboard analysis with a pairwise combination of carbapenems (imipenem or meropenem) and Sec A inhibitors (Rose Bengal or sodium azide) was performed with six clinical CRAb isolates harboring different CHDL genes. The results were interpreted using fractional inhibitory concentration index (FICI). The combination with the lowest FICI was subjected to a time-kill analysis.
In the second part of this study, using in silico analysis, we found that OXA-23, OXA-40, and OXA-51 were preferentially translocated via the Sec system. Application of a SecA inhibitor, Rose Bengal, decreased the periplasmic translocation of His-tagged OXA-23 and OXA-83 (belonging to the OXA-51 family), but not that of OXA-72 (belonging to the OXA-40 family), from ATCC 15151 transformants. A combination of imipenem or meropenem with Rose Bengal showed synergistic effects (FICI ≤ 0.5) for 6 and 4 clinical isolates, respectively. Combination treatment using imipenem or meropenem with sodium azide exhibited no interactions (FIC index, >0.5–4) against all clinical isolates. Combination treatment using imipenem and Rose Bengal had the lowest FICI and showed synergy at 24 h in the time-kill assay.
In conclusion, the combination of a SecA inhibitor and carbapenem could have synergistic effects against CRAb. Improving the potency of SecA inhibitors or targeting other proteins involved in the Sec pathway might be effective approaches against CRAb.
Abstract
In English ......3
In Chinese ......6
Introduction ......9
Aim of the study ......13
Materials and Methods ......14
Results ......25
Discussion ......71
References ......77
Appendix ......83
1. Lee Y-T, Kuo S-C, Yang S-P, Lin Y-T, Tseng F-C, Chen T-L, et al. Impact of appropriate antimicrobial therapy on mortality associated with Acinetobacter baumannii bacteremia: relation to severity of infection. Clinical infectious diseases. 2012;55:209-15.
2. Herxheimer K. Ueber eine bei Syphilitischen vorkommende Quecksilberreaktion. DMW-Deutsche Medizinische Wochenschrift. 1902;28:895-7.
3. Belum GR, Belum VR, Arudra SKC, Reddy B. The jarisch–herxheimer reaction: Revisited. Travel medicine and infectious disease. 2013;11:231-7.
4. Rolain J, Brouqui P, Koehler J, Maguina C, Dolan M, Raoult D. Recommendations for treatment of human infections caused by Bartonella species. Antimicrobial agents and chemotherapy. 2004;48:1921-33.
5. Almeida Â, Estanqueiro P, Salgado M. The Jarisch-Herxheimer Reaction and Brucellosis. The Pediatric infectious disease journal. 2016;35:466.
6. Bone RC. The pathogenesis of sepsis. Annals of Internal Medicine. 1991;115:457-69.
7. Michie HR, Manogue KR, Spriggs DR, Revhaug A, O'Dwyer S, Dinarello CA, et al. Detection of circulating tumor necrosis factor after endotoxin administration. New England Journal of Medicine. 1988;318:1481-6.
8. Suffredini AF, Fromm RE, Parker MM, Brenner M, Kovacs JA, Wesley RA, et al. The cardiovascular response of normal humans to the administration of endotoxin. New England Journal of Medicine. 1989;321:280-7.
9. Goto H, Nakamura S. Liberation of endotoxin from Escherichia coli by addition of antibiotics. The Japanese journal of experimental medicine. 1980;50:35-43.
10. Jackson JJ, Kropp H. ß-Lactam antibiotic-induced release of free endotoxin: in vitro comparison of penicillin-binding protein (PBP) 2-specific imipenem and PBP 3-specific ceftazidime. Journal of Infectious Diseases. 1992;165:1033-41.
11. Dofferhoff A, Esselink M, de Vries-Hospers H, Zanten Av, Bom V, Weits J, et al. The release of endotoxin from antibiotic-treated Escherichia coli and the production of tumour necrosis factor by human monocytes. Journal of Antimicrobial Chemotherapy. 1993;31:373-84.
12. Simon DM, Koenig G, Trenholme GM. Differences in release of tumor necrosis factor from THP-l cells stimulated by filtrates of antibiotic-killed Escherichia coli. Journal of Infectious Diseases. 1991;164:800-2.
13. Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annual review of microbiology. 2010;64:163-84.
14. Liao Y-T, Kuo S-C, Chiang M-H, Lee Y-T, Sung W-C, Chen Y-H, et al. Acinetobacter baumannii extracellular OXA-58 is primarily and selectively released via outer membrane vesicles after Sec-dependent periplasmic translocation. Antimicrobial agents and chemotherapy. 2015;59:7346-54.
15. Liao Y-T, Kuo S-C, Lee Y-T, Chen C-P, Lin S-W, Shen L-J, et al. Sheltering effect and indirect pathogenesis of carbapenem-resistant Acinetobacter baumannii in polymicrobial infection. Antimicrobial agents and chemotherapy. 2014;58:3983-90.
16. Schaar V, Nordström T, Mörgelin M, Riesbeck K. Moraxella catarrhalis outer membrane vesicles carry beta-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrobial agents and chemotherapy. 2011:AAC. 01772-10.
17. Weiss L, Barak V, Zeira M, Abdul-Hai A, Raibstein I, Reich S, et al. Cytokine production in Linomide-treated nod mice and the potential role of a Th1/Th2 shift on autoimmune and anti-inflammatory processes. Cytokine. 2002;19:85-93.
18. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine: Nanotechnology, Biology and Medicine. 2011;7:780-8.
19. Yang F-L, Lou T-C, Kuo S-C, Wu W-L, Chern J, Lee Y-T, et al. A medically relevant capsular polysaccharide in Acinetobacter baumannii is a potential vaccine candidate. Vaccine. 2017;35:1440-7.
20. Shah B, Sullivan CJ, Lonergan NE, Stanley S, Soult MC, Britt L. Circulating bacterial membrane vesicles cause sepsis in rats. Shock. 2012;37:621-8.
21. Park K-S, Choi K-H, Kim Y-S, Hong BS, Kim OY, Kim JH, et al. Outer membrane vesicles derived from Escherichia coli induce systemic inflammatory response syndrome. Plos one. 2010;5:e11334.
22. Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nature methods. 2011;8:785.
23. Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S. Prediction of twin-arginine signal peptides. BMC bioinformatics. 2005;6:167.
24. Kuo S-C, Yang S-P, Lee Y-T, Chuang H-C, Chen C-P, Chang C-L, et al. Dissemination of imipenem-resistant Acinetobacter baumannii with new plasmid-borne bla OXA-72 in Taiwan. BMC infectious diseases. 2013;13:319.
25. Higgins PG, Lehmann M, Seifert H. Inclusion of OXA-143 primers in a multiplex polymerase chain reaction (PCR) for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. International journal of antimicrobial agents. 2010;35:305.
26. Chen T-L, Lee Y-T, Kuo S-C, Hsueh P-R, Chang F-Y, Siu L-K, et al. Emergence and distribution of plasmids bearing the blaOXA-51-like gene with an upstream ISAba1 in carbapenem-resistant Acinetobacter baumannii isolates in Taiwan. Antimicrobial agents and chemotherapy. 2010;54:4575-81.
27. Valenzuela JK, Thomas L, Partridge SR, van der Reijden T, Dijkshoorn L, Iredell J. Horizontal gene transfer in a polyclonal outbreak of carbapenem-resistant Acinetobacter baumannii. Journal of clinical microbiology. 2007;45:453-60.
28. Wayne P. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing. 2011.
29. Bonapace CR, White RL, Friedrich LV, Bosso JA. Evaluation of antibiotic synergy against Acinetobacter baumannii: a comparison with Etest, time-kill, and checkerboard methods. Diagnostic microbiology and infectious disease. 2000;38:43-50.
30. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. Journal of Antimicrobial Chemotherapy. 2003;52:1
31. Barry AL, Craig WA, Nadler H, Reller LB, Sanders CC, Swenson JM. Methods for determining bactericidal activity of antimicrobial agents: approved guideline. NCCLS document M26-A. 1999;19.
32. Petersen PJ, Labthavikul P, Jones CH, Bradford PA. In vitro antibacterial activities of tigecycline in combination with other antimicrobial agents determined by chequerboard and time-kill kinetic analysis. Journal of Antimicrobial Chemotherapy. 2006;57:573-6.
33. Bonnington K, Kuehn M. Protein selection and export via outer membrane vesicles. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2014;1843:1612-9.
34. Khandelwal P, Banerjee-Bhatnagar N. Insecticidal activity associated with the outer membrane vesicles of Xenorhabdus nematophilus. Applied and environmental microbiology. 2003;69:2032-7.
35. Patrick S, McKenna JP, Seamus O, Dermott E. A comparison of the haemagglutinating and enzymic activities ofBacteroides fragiliswhole cells and outer membrane vesicles. Microbial pathogenesis. 1996;20:191-202.
36. Chi B, Qi M, Kuramitsu HK. Role of dentilisin in Treponema denticola epithelial cell layer penetration. Research in microbiology. 2003;154:637-43.
37. Shoberg RJ, Thomas DD. Specific adherence of Borrelia burgdorferi extracellular vesicles to human endothelial cells in culture. Infection and immunity. 1993;61:3892-900.
38. Negrete-Abascal E, García RM, Reyes ME, Godínez D, de la Garza M. Membrane vesicles released by Actinobacillus pleuropneumoniae contain proteases and Apx toxins. FEMS microbiology letters. 2000;191:109-13.
39. Kadurugamuwa JL, Beveridge TJ. Delivery of the Non-Membrane-Permeative Antibiotic Gentamicin into Mammalian Cells by Using Shigella flexneriMembrane Vesicles. Antimicrobial agents and chemotherapy. 1998;42:1476-83.
40. McBroom AJ, Kuehn MJ. Release of outer membrane vesicles by Gram‐negative bacteria is a novel envelope stress response. Molecular microbiology. 2007;63:545-58.
41. MacDonald IA, Kuehn MJ. Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. Journal of bacteriology. 2013;195:2971-81.
42. Deatherage BL, Lara JC, Bergsbaken T, Barrett SLR, Lara S, Cookson BT. Biogenesis of bacterial membrane vesicles. Molecular microbiology. 2009;72:1395-407.
43. Koning RI, de Breij A, Oostergetel GT, Nibbering PH, Koster AJ, Dijkshoorn L. Cryo-electron tomography analysis of membrane vesicles from Acinetobacter baumannii ATCC19606T. Research in microbiology. 2013;164:397-405.
44. Typas A, Banzhaf M, Gross CA, Vollmer W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nature Reviews Microbiology. 2012;10:123.
45. De Boer PA. Advances in understanding E. coli cell fission. Current opinion in microbiology. 2010;13:730-7.
46. Cho H, Uehara T, Bernhardt TG. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell. 2014;159:1300-11.
47. Moyá B, Zamorano L, Juan C, Ge Y, Oliver A. Affinity of the new cephalosporin CXA-101 to penicillin-binding proteins of Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy. 2010;54:3933-7.
48. Dorward DW, Schwan T, Garon CF. Immune capture and detection of Borrelia burgdorferi antigens in urine, blood, or tissues from infected ticks, mice, dogs, and humans. Journal of clinical microbiology. 1991;29:1162-70.
49. Zimbler DL, Arivett BA, Beckett AC, Menke SM, Actis LA. Functional features of TonB energy transduction systems of Acinetobacter baumannii. Infection and immunity. 2013; 81: 3382-3394
50. Jin JS, Kwon S-O, Moon DC, Gurung M, Lee JH, Kim SI, et al. Acinetobacter baumannii secretes cytotoxic outer membrane protein A via outer membrane vesicles. PloS one. 2011;6:e17027.
51. Pradel N, Delmas J, Wu L, Santini C, Bonnet R. Sec-and Tat-dependent translocation of β-lactamases across the Escherichia coli inner membrane. Antimicrobial agents and chemotherapy. 2009;53:242-8.
52. Driessen AJ, Manting EH, van der Does C. The structural basis of protein targeting and translocation in bacteria. Nature Structural and Molecular Biology. 2001;8:492.
53. Valent QA. Signal recognition particle mediated protein targeting in Escherichia coli. Antonie Van Leeuwenhoek. 2001;79:17-31.
54. Therien AG, Huber JL, Wilson KE, Beaulieu P, Caron A, Claveau D, et al. Broadening the spectrum of β-lactam antibiotics through inhibition of signal peptidase type I. Antimicrobial agents and chemotherapy. 2012:AAC. 00726-12.
55. Smith PA, Romesberg FE. The Mechanism of Action of the Arylomycin Antibiotics and the Effects of Signal Peptidase I Inhibition. Antimicrobial agents and chemotherapy. 2012;56:5054-60
56. Beha D, Deitermann S, Müller M, Koch H-G. Export of β-lactamase is independent of the signal recognition particle. Journal of Biological Chemistry. 2003;278:22161-7.
57. Wong E, Yusof M, Mansor M, Anbazhagan D, Ong S, Sekaran S. Disruption of adeB gene has a greater effect on resistance to meropenems than adeA gene in Acinetobacter spp. isolated from University Malaya Medical Centre. Singapore medical journal. 2009;50:822-6.
58. Huang YJ, Wang H, Gao FB, Li M, Yang H, Wang B, et al. Fluorescein Analogues Inhibit SecA ATPase: The First Sub‐micromolar Inhibitor of Bacterial Protein Translocation. ChemMedChem. 2012;7:571-7.
59. Heim WG, Appleman D, Pyfrom H. Effects of 3-amino-1, 2, 4-triazole (AT) on catalase and other compounds. American Journal of Physiology-Legacy Content. 1956;186:19-23.
60. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Molecular systems biology. 2006;2.
61. Nakane A, Takamatsu H, Oguro A, Sadaie Y, Nakamura K, Yamane K. Acquisition of azide-resistance by elevated SecA ATPase activity confers azide-resistance upon cell growth and protein translocation in Bacillus subtilis. Microbiology. 1995;141:113-21.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊