(3.235.11.178) 您好!臺灣時間:2021/03/05 15:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳宜君
研究生(外文):I-Chun Chen
論文名稱:慢性高尿酸血症對內皮前驅細胞功能之影響
論文名稱(外文):The Effects of Chronic Hyperuricemia on Functions of Endothelial Progenitor Cells
指導教授:林幸榮林幸榮引用關係黃柏勳黃柏勳引用關係
指導教授(外文):Shing-Jong LinPo-Hsun Huang
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:74
中文關鍵詞:高尿酸血症內皮前驅細胞缺血血管新生
外文關鍵詞:Hyperuricemiaendothelial progenitor cellischemianeovascularization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:63
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨者生活水平的提升、飲食習慣的改變,高尿酸血症正在成為一個重要且常見的醫學問題,其流行率和相關的合併症在過去幾十年中急劇攀升。近年來研究顯示,體內尿酸含量增高會增加罹患心血管疾病的風險,甚至提升心血管疾病的死亡風險。在臨床上,尿酸濃度過高易產生腎臟及血管方面的疾病,而痛風為最常見疾病之一,過高的尿酸會在體內形成尿酸鈉鹽堆積,尿酸鈉鹽結晶因沉積於關節、軟骨、肌腱等或軟組織中而造成一種發炎性疾病;高尿酸( Hyperuricemia ) 環境亦容易造成血管與內皮內的發炎,促使內皮細胞一氧化碳( Nitric Oxide )含量降低、平滑肌細胞增生,進一步產生動脈血管粥狀硬化,但高尿酸血症引發動脈硬化與增加心血管風險的原因仍不是很清楚。
內皮前驅細胞(endothelial progenitor cells, EPC)為1997年由日本學者Dr. Asahara發現,其同時具有幹細胞及內皮細胞的特性,其功能可以修復內皮細胞以及血管新生的作用。近年來對於內皮前驅細胞已有明確的定義及相關分離方式,如此有助於更加了解 EPC 參與血管新生所扮演的角色;內源性血管新生可促使腫瘤的發展、傷口癒合、嚴重下肢缺血及心肌缺血。由Takahashi T等人也提出內源性刺激,如組織缺血,與外源性細胞因子治療,如granulocyte macrophage-colony stimulating factor(GM-CSF),皆可導致內皮前驅細胞產生遷移行為的發生和促使缺血組織內產生血管新生的進行。由骨髓分離出的內皮前驅細胞,可透過內源性組織缺血的誘導以及經由外源性的細胞因子(cytokine),可使內皮前驅細胞從而具有遷移的能力。由於尿酸對於內皮細胞、內皮前驅細胞與缺氧組織血管新生的影響和其作用機轉尚未清楚。因此本研究藉由體外試驗研究高濃度尿酸對內皮前驅細胞的影響及其機制探討,高尿酸環境下是否對血管內皮產生傷害,並阻礙缺氧組織誘發血管新生的預後情形;藉由體內試驗觀察高尿酸血症老鼠在下肢缺血後誘發血管新生及血流恢復之程度,以了解高尿酸血症與缺氧組織中血管新生的相關性。
在本研究中,我們發現高濃度尿酸的刺激下,內皮細胞內的氧化壓力及發炎因子會大量表現;同時對內皮前驅細胞之一氧化氮產量、細胞遷移與管狀成形能力皆有抑制作用,氧化壓力及細胞凋亡的程度則有提高的現象。實驗亦發現高濃度尿酸會活化內皮細胞 NF-κB、內皮前驅細胞 eNOS 和 JNK 的表現,分別加入抗氧化劑、一氧化氮補充劑與拮抗劑後,可改善高濃度尿酸對細胞所引發的傷害;動物實驗發現高尿酸模式下的小鼠,經由下肢缺血創傷後,會降低血流的恢復能力;高尿酸鼠再搭配尿酸飲食(嚴重高尿酸鼠) 之血流恢復力又比高尿酸鼠更差,相較於對照組則為更差。藉由釐清高濃度尿酸環境對於血管內皮細胞、內皮前驅細胞與組織缺氧過程對血管新生的影響,這些研究結果對未來臨床醫師在心血管疾病控制與治療上有更進一步的了解。
In the past decades, hyperuricemia is becoming a critical medical problem, and its prevalence and related comorbidities have dramatically increased worldwide. Uric acid (UA) is the final breakdown product of purine metabolism, degraded by urate oxidase to allantoin and freely excreted in the urine. Uric acid metabolism of abnormalities may cause hyperuricemia, gout, and hyperuricemia-related morbidity. Clinical studies have demonstrated that hyperuricemia may be associated with cardiovascular disease, independent of traditional risk factors. Furthermore, elevated serum uric acid levels in the circulation are associated with endothelial dysfunction, induced systemic inflammation, increased oxidative stress, and enhanced risk of cardiovascular mortality.
Endothelial progenitor cells (EPCs) are special sub-type progenitor cells with the ability to differentiate into mature endothelial cells and contribute to reendothelialization and neovascularization. Accumulating evidence indicates that neovascularization in adults is not solely the result of angiogenesis but may also involve bone marrow (BM)-derived EPCs in the process of vasculogenesis. These circulating EPCs can be mobilized endogenously in response to tissue ischemia or exogenously by cytokine stimulation. However, the effects of chronic hyperuricemia on cultured endothelial cell and ischemia-induced neovascularization, EPC mobilization and EPC angiogenic functions remain unclear. In this study, we aimed to investigate the impact of high concentration of uric acid on endothelial cell and EPCs functions, and further tested the hypothesis that chronic hyperuricemia can inhibit ischemia-induced neovascularization and attenuate blood flow recovery in a mouse model of hindlimb ischemia.
Incubation human umbilical vein endothelial cells (HUVEC) with high concentrations of uric acid medium significantly suppressed cell proliferation and elevated reactive oxygen species (ROS) production. High uric acid concentrations promoted cellular inflammation in cultured HUVEC through regulated the NF-κB pathway. Moreover, high uric acid levels significantly suppressed EPC proliferation, and down-regulated phosphorylation of eNOS and Akt. High concentrations of uric acid also promoted cellular apoptosis and enhanced oxidative stress, as well as attenuated nitric oxide (NO) production and EPC functions. On the other hand, administration of NAC (antioxidant), SNP (NO donor) and JNK inhibitors reversed high concentration uric acid-impaired EPC functions. Chronic hyperuricemia mice had significantly diminished ischemia-induced tissue reperfusion, EPC mobilization, and impaired neovascularization in the ischemic hindlimbs compared with the control mice. Our result provided that chronic hyperuricemia impaired endothelial and its function thought oxidative stress and diminished blood flow recovery and EPC mobilization in response to tissue ischemia.
論文電子檔著作權授權書 i
論文審定同意書 ii
誌謝 Acknowledgements iii
目錄… iv
English Abstract viii
Chinese Abstract x
List of Abbreviations xii
1. Introduction 01
1.1 Hyperuricemia and cardiovascular disease 01
1.2 The clinical relationship between uric acid and endothelial function 01
1.3 Role of endothelial and endothelial progenitor cells in cardiovascular
diseases 02
1.4 Angiogenesis and Endothelial progenitor cells 03
1.5 Aim and hypothesis of the study 03
2. Materials and methods 05
2.1 In vitro study 05
2.1.1 Reagents 05
2.1.2 Cell culture 05
2.1.3 EPC characterization 06
2.1.4 Cell survival 06
2.1.5 EPC tube formation assay 07
2.1.6 EPC migration 07
2.1.7 EPC senescence 08
2.1.8 Nitric oxide (NO) assay 08
2.1.9 Reactive oxygen species (ROS) production assay 08
2.1.10 Western blotting 09
2.2 In vivo experiments 09
2.2.1 Animals 09
2.2.2 Hyperuricemia model 09
2.2.3 Mouse hindlimb ischemic model 10
2.2.4 Measurement of serum levels of uric acid, creatinine, blood urea nitrogen, Glutamic Oxaloacetic Transaminase and Glutamic Pyruvic Transaminase 10
2.2.5 Reactive oxygen species measurement in mice 11
2.2.6 Nitric oxide measurement in mice 11
2.2.7 EPC mobilization in the hyperuricemia hindlimb ischemic model 11
2.3. Histology and Immunohistochemistry… 12
2.3.1 Measurement of capillary density in the ischemic leg 12
2.4. Statistical analysis 12
3. Results 13
3.1 Uric acid elevated inflammation of endothelial cell 13
3.1.1 Effects of uric acid on Human umbilical vein endothelial cells (HUVEC) survival 13
3.1.2 High-level uric acid stimulates HUVEC reactive oxygen species production 13
3.1.3 High-level uric acid inactivates HUVEC SirT1 proteins but activates IL-1β and Tissue Factor 14
3.1.4 Antioxidant reverses the high-level uric acid-induced TNFα, IL-1β and high-level uric acid-induced attenuated SirT1 15
3.1.5 Uric acid promotes cell phosphorylation of p65, Tissue Fact and IL-1β 15
3.1.6 High-level uric acid promoter phosphorylation of p65 pathway through regulate activation of SirT1 expression 16
3.1.7 SirT1 activator restores uric acid-induced Tissue Factor, TNFα and IL-1β expression 17
3.2 Hyperuricemia effects on endothelial progenitor cells and function 18
3.2.1 Characterization of human EPC 18
3.2.2 Effects of uric acid on EPC survival and apoptosis 18
3.2.3 High-level uric acid reduce EPC phosphorylation of eNOS and Akt 19
3.2.4 High-level uric acid reduced nitric oxide (NO) production on EPC 19
3.2.5 High-level uric acid stimulates EPC reactive oxygen species (ROS) production 20
3.2.6 High-level uric acid activates by JNK pathway on EPC 20
3.2.7 High-level uric acid activates EPC caspase 3 & 9 proteins 21
3.2.8 High-levels of uric acid facilitate cellular senescence and activation of p16 expression and suppress activation of SirT1 expression 22
3.2.9 High-levels of uric acid reduce EPC migration and tube formation 23
3.2.10 Antioxidant, JNK inhibitor, and NO donor reverse the high-level uric acid- attenuated of late EPCs survival 23
3.3 Chronic hyperuricemia impairs blood flow recovery in the
ischemic hindlimb 24
3.3.1 C57BL/6J mice-induced chronic hyperuricemia model and have no
accompanied with the side effect 24
3.3.2 Chronic hyperuricemia impairs ischemia-induced blood flow recovery and new vessels formation 24
3.3.3 High-level uric acid reduces endothelial progenitor cell mobilization 25
3.3.4 Allopurinol rescues chronic hyperuricemia impairs ischemia-induced blood flow recovery 26
3.3.5 Allopurinol improves chronic hyperuricemia-induced reactive oxygen
species production 26
3.3.6 Allopurinol improves chronic hyperuricemia-suppressed nitric oxide
production ischemia-induced blood flow recovery 27
4. Discussion 28
5. Conclusions 34
6. Perspectives 35
7. References 36
8. Figures and Table 43
9. Publication 74
1. Cannon PJ, Stason WB, Demartini FE, Sommers SC, Laragh JH. Hyperuricemia in primary and renal hypertension. N Engl J Med. 1966; 275: 457-64.
2. Gertler MM, Garn SM, Levine SA. Serum uric acid in relation to age and physique in health and in coronary heart disease. Ann Intern Med. 1951; 34: 1421-31.
3. Schretlen DJ, Inscore AB, Vannorsdall TD, Kraut M, Pearlson GD, Gordon B, Jinnah HA. Serum uric acid and brain ischemia in normal elderly adults. Neurology. 2007; 69: 1418-23.
4. Chiu CC, Chen YT, Hsu CY, Chang CC, Huang CC, Leu HB, Li SY, Kuo SC, Huang PH, Chen JW, Lin SJ. Association between previous history of gout attack and risk of deep vein thrombosis - a nationwide population-based cohort study. Sci Rep. 2016; 6: 26541.
5. Lehto S, Niskanen L, Ronnemaa T, Laakso M. Serum uric acid is a strong predictor of stroke in patients with non-insulin-dependent diabetes mellitus. Stroke. 1998; 29: 635-9.
6. Huang PH, Chen JW, Lin SJ. Effects of Cardiovascular Risk Factors on Endothelial Progenitor Cell. Acta Cardiol Sin. 2014; 30: 375-81.
7. Yildiz A, Kaya Z. Uric acid: a crucial marker of cardiovascular diseases? Int J Cardiol. 2012; 159: 158.
8. Feig DI, Kang DH, Johnson RJ. Uric acid and cardiovascular risk. N Engl J Med. 2008; 359: 1811-21.
9. Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, Mu W, Krotova K, Block ER, Prabhakar S, Johnson RJ. Hyperuricemia induces endothelial dysfunction. Kidney Int. 2005; 67: 1739-42.
10. Ruggiero C, Cherubini A, Ble A, Bos AJ, Maggio M, Dixit VD, Lauretani F, Bandinelli S, Senin U, Ferrucci L. Uric acid and inflammatory markers. Eur Heart J. 2006; 27: 1174-81.
11. Sanchez-Lozada LG, Soto V, Tapia E, Avila-Casado C, Sautin YY, Nakagawa T, Franco M, Rodriguez-Iturbe B, Johnson RJ. Role of oxidative stress in the renal abnormalities induced by experimental hyperuricemia. Am J Physiol Renal Physiol. 2008; 295: F1134-41.
12. Cooke JP, Losordo DW. Modulating the vascular response to limb ischemia: angiogenic and cell therapies. Circ Res. 2015; 116: 1561-78.
13. Tomiyama H, Higashi Y, Takase B, Node K, Sata M, Inoue T, Ishibashi Y, Ueda S, Shimada K, Yamashina A. Relationships among hyperuricemia, metabolic syndrome, and endothelial function. Am J Hypertens. 2011; 24: 770-4.
14. Ho WJ, Tsai WP, Yu KH, Tsay PK, Wang CL, Hsu TS, Kuo CT. Association between endothelial dysfunction and hyperuricaemia. Rheumatology (Oxford). 2010; 49: 1929-34.
15. Maxwell AJ, Bruinsma KA. Uric acid is closely linked to vascular nitric oxide activity. Evidence for mechanism of association with cardiovascular disease. J Am Coll Cardiol. 2001; 38: 1850-8.
16. Kanbay M, Yilmaz MI, Sonmez A, Turgut F, Saglam M, Cakir E, Yenicesu M, Covic A, Jalal D, Johnson RJ. Serum uric acid level and endothelial dysfunction in patients with nondiabetic chronic kidney disease. Am J Nephrol. 2011; 33: 298-304.
17. Zoccali C, Maio R, Mallamaci F, Sesti G, Perticone F. Uric acid and endothelial dysfunction in essential hypertension. J Am Soc Nephrol. 2006; 17: 1466-71.
18. Tang Z, Cheng LT, Li HY, Wang T. Serum uric acid and endothelial dysfunction in continuous ambulatory peritoneal dialysis patients. Am J Nephrol. 2009; 29: 368-73.
19. Hadi HA, Carr CS, Al Suwaidi J. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005; 1: 183-98.
20. Guerci B, Bohme P, Kearney-Schwartz A, Zannad F, Drouin P. Endothelial dysfunction and type 2 diabetes. Part 2: altered endothelial function and the effects of treatments in type 2 diabetes mellitus. Diabetes Metab. 2001; 27: 436-47.
21. Folkman J. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med. 1995; 333: 1757-63.
22. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997; 275: 964-7.
23. Huang PH, Chen YH, Wang CH, Chen JS, Tsai HY, Lin FY, Lo WY, Wu TC, Sata M, Chen JW, Lin SJ. Matrix metalloproteinase-9 is essential for ischemia-induced neovascularization by modulating bone marrow-derived endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2009; 29: 1179-84.
24. Fernandez Pujol B, Lucibello FC, Gehling UM, Lindemann K, Weidner N, Zuzarte ML, Adamkiewicz J, Elsasser HP, Muller R, Havemann K. Endothelial-like cells derived from human CD14 positive monocytes. Differentiation. 2000; 65: 287-300.
25. Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N, Kluge K, Schafer B, Hossfeld DK, Fiedler W. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood. 2000; 95: 3106-12.
26. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, Olweus J, Kearney J, Buck DW. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997; 90: 5002-12.
27. Chen YH, Lin SJ, Lin FY, Wu TC, Tsao CR, Huang PH, Liu PL, Chen YL, Chen JW. High glucose impairs early and late endothelial progenitor cells by modifying nitric oxide-related but not oxidative stress-mediated mechanisms. Diabetes. 2007; 56: 1559-68.
28. Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, Silver M, Li T, Isner JM, Asahara T. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation. 2002; 105: 732-8.
29. Chen JZ, Zhu JH, Wang XX, Zhu JH, Xie XD, Sun J, Shang YP, Guo XG, Dai HM, Hu SJ. Effects of homocysteine on number and activity of endothelial progenitor cells from peripheral blood. J Mol Cell Cardiol. 2004; 36: 233-9.
30. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, Magner M, Isner JM. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999; 85: 221-8.
31. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A. 2000; 97: 3422-7.
32. Stavric B, Clayman S, Gadd RE, Hebert D. Some in vivo effects in the rat induced by chlorprothixene and potassium oxonate. Pharmacol Res Commun. 1975; 7: 117-24.
33. Kanellis J, Kang DH. Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease. Semin Nephrol. 2005; 25: 39-42.
34. Kim SY, Guevara JP, Kim KM, Choi HK, Heitjan DF, Albert DA. Hyperuricemia and coronary heart disease: a systematic review and meta-analysis. Arthritis Care Res (Hoboken). 2010; 62: 170-80.
35. Bai B, Vanhoutte PM, Wang Y. Loss-of-SIRT1 function during vascular ageing: hyperphosphorylation mediated by cyclin-dependent kinase 5. Trends Cardiovasc Med. 2014; 24: 81-4.
36. Salminen A, Kaarniranta K, Kauppinen A. Crosstalk between Oxidative Stress and SIRT1: Impact on the Aging Process. Int J Mol Sci. 2013; 14: 3834-59.
37. Zeng Z, Chen Z, Xu S, Zhang Q, Wang X, Gao Y, Zhao KS. Polydatin Protecting Kidneys against Hemorrhagic Shock-Induced Mitochondrial Dysfunction via SIRT1 Activation and p53 Deacetylation. Oxid Med Cell Longev. 2016; 2016: 1737185.
38. Yang H, Zhang W, Pan H, Feldser HG, Lainez E, Miller C, Leung S, Zhong Z, Zhao H, Sweitzer S, Considine T, Riera T, Suri V, White B, Ellis JL, Vlasuk GP, Loh C. SIRT1 activators suppress inflammatory responses through promotion of p65 deacetylation and inhibition of NF-kappaB activity. PLoS One. 2012; 7: e46364.
39. Park JH, Jin YM, Hwang S, Cho DH, Kang DH, Jo I. Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: a mechanism for uric acid-induced cardiovascular disease development. Nitric Oxide. 2013; 32: 36-42.
40. Choi HK, Mount DB, Reginato AM, American College of P, American Physiological S. Pathogenesis of gout. Ann Intern Med. 2005; 143: 499-516.
41. Rock KL, Kataoka H, Lai JJ. Uric acid as a danger signal in gout and its comorbidities. Nat Rev Rheumatol. 2013; 9: 13-23.
42. Li M, Hou W, Zhang X, Hu L, Tang Z. Hyperuricemia and risk of stroke: a systematic review and meta-analysis of prospective studies. Atherosclerosis. 2014; 232: 265-70.
43. Gagliardi AC, Miname MH, Santos RD. Uric acid: A marker of increased cardiovascular risk. Atherosclerosis. 2009; 202: 11-7.
44. Kuo CF, See LC, Yu KH, Chou IJ, Chiou MJ, Luo SF. Significance of serum uric acid levels on the risk of all-cause and cardiovascular mortality. Rheumatology (Oxford). 2013; 52: 127-34.
45. Fang J, Alderman MH. Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971-1992. National Health and Nutrition Examination Survey. JAMA. 2000; 283: 2404-10.
46. Chang CC, Wu CH, Liu LK, Chou RH, Kuo CS, Huang PH, Chen LK, Lin SJ. Association between serum uric acid and cardiovascular risk in nonhypertensive and nondiabetic individuals: The Taiwan I-Lan Longitudinal Aging Study. Sci Rep. 2018; 8: 5234.
47. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003; 23: 168-75.
48. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004; 109: III27-32.
49. Papezikova I, Pekarova M, Kolarova H, Klinke A, Lau D, Baldus S, Lojek A, Kubala L. Uric acid modulates vascular endothelial function through the down regulation of nitric oxide production. Free Radic Res. 2013; 47: 82-8.
50. Zharikov S, Krotova K, Hu H, Baylis C, Johnson RJ, Block ER, Patel J. Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am J Physiol Cell Physiol. 2008; 295: C1183-90.
51. Hirsch EZ, Chisolm GM, 3rd, White HM. Reendothelialization and maintenance of endothelial integrity in longitudinal denuded tracks in the thoracic aorta of rats. Atherosclerosis. 1983; 46: 287-307.
52. Fadini GP, Agostini C, Sartore S, Avogaro A. Endothelial progenitor cells in the natural history of atherosclerosis. Atherosclerosis. 2007; 194: 46-54.
53. Tepper OM, Capla JM, Galiano RD, Ceradini DJ, Callaghan MJ, Kleinman ME, Gurtner GC. Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood. 2005; 105: 1068-77.
54. Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998; 97: 1837-47.
55. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005; 353: 999-1007.
56. Schmidt-Lucke C, Rossig L, Fichtlscherer S, Vasa M, Britten M, Kamper U, Dimmeler S, Zeiher AM. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation. 2005; 111: 2981-7.
57. Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018; 100: 1-19.
58. Corry DB, Eslami P, Yamamoto K, Nyby MD, Makino H, Tuck ML. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens. 2008; 26: 269-75.
59. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol. 2007; 293: C584-96.
60. Yu MA, Sanchez-Lozada LG, Johnson RJ, Kang DH. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens. 2010; 28: 1234-42.
61. Chao HH, Liu JC, Lin JW, Chen CH, Wu CH, Cheng TH. Uric acid stimulates endothelin-1 gene expression associated with NADPH oxidase in human aortic smooth muscle cells. Acta Pharmacol Sin. 2008; 29: 1301-12.
62. Chen J, Jing J, Yu S, Song M, Tan H, Cui B, Huang L. Advanced glycation endproducts induce apoptosis of endothelial progenitor cells by activating receptor RAGE and NADPH oxidase/JNK signaling axis. Am J Transl Res. 2016; 8: 2169-78.
63. Pitocco D, Tesauro M, Alessandro R, Ghirlanda G, Cardillo C. Oxidative stress in diabetes: implications for vascular and other complications. Int J Mol Sci. 2013; 14: 21525-50.
64. Kempe S, Kestler H, Lasar A, Wirth T. NF-kappaB controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res. 2005; 33: 5308-19.
65. Gersch C, Palii SP, Kim KM, Angerhofer A, Johnson RJ, Henderson GN. Inactivation of nitric oxide by uric acid. Nucleosides Nucleotides Nucleic Acids. 2008; 27: 967-78.
66. Schwartz IF, Grupper A, Chernichovski T, Grupper A, Hillel O, Engel A, Schwartz D. Hyperuricemia attenuates aortic nitric oxide generation, through inhibition of arginine transport, in rats. J Vasc Res. 2011; 48: 252-60.
67. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987; 327: 524-6.
68. Ware JA, Heistad DD. Seminars in medicine of the Beth Israel Hospital, Boston. Platelet-endothelium interactions. N Engl J Med. 1993; 328: 628-35.
69. Goldstein LJ, Gallagher KA, Bauer SM, Bauer RJ, Baireddy V, Liu ZJ, Buerk DG, Thom SR, Velazquez OC. Endothelial progenitor cell release into circulation is triggered by hyperoxia-induced increases in bone marrow nitric oxide. Stem Cells. 2006; 24: 2309-18.
70. Thom SR, Bhopale VM, Velazquez OC, Goldstein LJ, Thom LH, Buerk DG. Stem cell mobilization by hyperbaric oxygen. Am J Physiol Heart Circ Physiol. 2006; 290: H1378-86.
71. Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006; 113: 1708-14.
72. Heiss C, Rodriguez-Mateos A, Kelm M. Central role of eNOS in the maintenance of endothelial homeostasis. Antioxid Redox Signal. 2015; 22: 1230-42.
73. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med. 2003; 9: 1370-6.
74. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, Huang PL, Isner JM. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest. 1998; 101: 2567-78.
75. Urbich C, Reissner A, Chavakis E, Dernbach E, Haendeler J, Fleming I, Zeiher AM, Kaszkin M, Dimmeler S. Dephosphorylation of endothelial nitric oxide synthase contributes to the anti-angiogenic effects of endostatin. FASEB J. 2002; 16: 706-8.
76. Sun PH, Ye L, Mason MD, Jiang WG. Receptor-like protein tyrosine phosphatase kappa negatively regulates the apoptosis of prostate cancer cells via the JNK pathway. Int J Oncol. 2013; 43: 1560-8.
77. Mukherjee S, Ghosh S, Choudhury S, Adhikary A, Manna K, Dey S, Sa G, Das T, Chattopadhyay S. Pomegranate reverses methotrexate-induced oxidative stress and apoptosis in hepatocytes by modulating Nrf2-NF-kappaB pathways. J Nutr Biochem. 2013; 24: 2040-50.
78. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013; 5: a008656.
79. Bordoni V, De Cal M, Rassu M, Cazzavillan S, Segala C, Bonello M, Ranishta R, Andrikos E, Yavuz A, Salvatori G, Galloni E, Bolgan I, Bellomo R, Levin N, Ronco C. Protective effect of urate oxidase on uric acid induced-monocyte apoptosis. Curr Drug Discov Technol. 2005; 2: 29-36.
80. Assmus B, Honold J, Schachinger V, Britten MB, Fischer-Rasokat U, Lehmann R, Teupe C, Pistorius K, Martin H, Abolmaali ND, Tonn T, Dimmeler S, Zeiher AM. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med. 2006; 355: 1222-32.
81. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999; 5: 434-8.
82. Patschan D, Patschan S, Gobe GG, Chintala S, Goligorsky MS. Uric acid heralds ischemic tissue injury to mobilize endothelial progenitor cells. J Am Soc Nephrol. 2007; 18: 1516-24.
電子全文 電子全文(網際網路公開日期:20240813)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔