|
1. Jia, Y.; Chen, Y.; Wang, Q.; Jayasinghe, U.; Luo, X.; Wei, Q.; Wang, J.; Xiong, H.; Chen, C.; Xu, B.; Hu, W.; Wang, L.; Zhao, W.; Zhou, J., Exosome: emerging biomarker in breast cancer. Oncotarget 2017, 8 (25), 41717-41733. 2. Chavez-MacGregor, M.; Mittendorf, E. A.; Clarke, C. A.; Lichtensztajn, D. Y.; Hunt, K. K.; Giordano, S. H., Incorporating Tumor Characteristics to the American Joint Committee on Cancer Breast Cancer Staging System. Oncologist 2017, 22 (11), 1292-1300. 3. Abdel-Rahman, O., Validation of the 8th AJCC prognostic staging system for breast cancer in a population-based setting. Breast Cancer Res Treat 2018, 168 (1), 269-275. 4. Alfonse, M.; Aref, M. M.; Salem, A.-B. M., An ontology-based system for cancer diseases knowledge management. International Journal of Information Engineering and Electronic Business 2014, 6 (6), 55-63. 5. Burman, S., Breast Cancer Treatment Options: Throughout the world (India, Turkey, Singapore and U.A.E). MediGence 2018. 6. Fisher, B.; Costantino, J.; Redmond, C.; Fisher, E.; Margolese, R.; Dimitrov, N.; Wolmark, N.; Wickerham, D. L.; Deutsch, M.; Ore, L., Lumpectomy compared with lumpectomy and radiation therapy for the treatment of intraductal breast cancer. New England Journal of Medicine 1993, 328 (22), 1581-1586. 7. Xing, L.; He, Q.; Wang, Y. Y.; Li, H. Y.; Ren, G. S., Advances in the surgical treatment of breast cancer. Chin Clin Oncol 2016, 5 (3), 34. 8. Biglia, N.; D'Alonzo, M.; Sgro, L.; Tomasi Cont, N.; Bounous, V. E.; Robba, E., Breast cancer treatment in mutation carriers-surgical treatment. 2016. 9. Deng, X.; Wu, H.; Gao, F.; Su, Y.; Li, Q.; Liu, S.; Cai, J., Brachytherapy in the treatment of breast cancer. Int J Clin Oncol 2017, 22 (4), 641-650. 10. Bravata, V.; Cammarata, F. P.; Minafra, L.; Musso, R.; Pucci, G.; Spada, M.; Fazio, I.; Russo, G.; Forte, G. I., Gene Expression Profiles Induced by High-dose Ionizing Radiation in MDA-MB-231 Triple-negative Breast Cancer Cell Line. Cancer Genomics Proteomics 2019, 16 (4), 257-266. 11. Boyages, J., Radiation therapy and early breast cancer: current controversies. Med J Aust 2017, 207 (5), 216-222. 12. Dewan, M. Z.; Vanpouille-Box, C.; Kawashima, N.; DiNapoli, S.; Babb, J. S.; Formenti, S. C.; Adams, S.; Demaria, S., Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clin Cancer Res 2012, 18 (24), 6668-78. 13. Senkus, E.; Lacko, A., Over-treatment in metastatic breast cancer. Breast 2017, 31, 309-317. 14. Draganescu, M.; Carmocan, C., Hormone Therapy in Breast Cancer. Chirurgia (Bucur) 2017, 112 (4), 413-417. 15. Chalasani, P., Optimizing Quality of Life in Patients with Hormone Receptor-Positive Metastatic Breast Cancer: Treatment Options and Considerations. Oncology 2017, 93 (3), 143-156. 16. Untch, M.; Konecny, G. E.; Paepke, S.; von Minckwitz, G., Current and future role of neoadjuvant therapy for breast cancer. Breast 2014, 23 (5), 526-37. 17. Zuo, W. S.; Zheng, M. Z.; Han, C., [Effect of neoadjuvant chemotherapy on the overall treatment strategy in operable breast cancer]. Zhonghua Zhong Liu Za Zhi 2017, 39 (12), 952-957. 18. Redden, M. H.; Fuhrman, G. M., Neoadjuvant chemotherapy in the treatment of breast cancer. Surg Clin North Am 2013, 93 (2), 493-9. 19. Al-Hilli, Z.; Boughey, J. C., The timing of breast and axillary surgery after neoadjuvant chemotherapy for breast cancer. Chin Clin Oncol 2016, 5 (3), 37. 20. Read, R. L.; Flitcroft, K.; Snook, K. L.; Boyle, F. M.; Spillane, A. J., Utility of neoadjuvant chemotherapy in the treatment of operable breast cancer. ANZ J Surg 2015, 85 (5), 315-20. 21. Shimada, H.; Fujiuchi, N.; Saeki, T., [Choice of Adjuvant Chemotherapy Based on Breast Cancer Subtype]. Gan To Kagaku Ryoho 2016, 43 (2), 170-3. 22. Yu, K. D.; Fan, L.; Qiu, L. X.; Ling, H.; Jiang, Y. Z.; Shao, Z. M., Influence of delayed initiation of adjuvant chemotherapy on breast cancer survival is subtype-dependent. Oncotarget 2017, 8 (28), 46549-46556. 23. Trail, P. A.; Dubowchik, G. M.; Lowinger, T. B., Antibody drug conjugates for treatment of breast cancer: Novel targets and diverse approaches in ADC design. Pharmacol Ther 2018, 181, 126-142. 24. Jin, S.; Ye, K., Targeted drug delivery for breast cancer treatment. Recent Pat Anticancer Drug Discov 2013, 8 (2), 143-53. 25. Menendez, J. A.; Lupu, R., Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Targets 2017, 21 (11), 1001-1016. 26. Marchio, C.; Balmativola, D.; Castiglione, R.; Annaratone, L.; Sapino, A., Predictive Diagnostic Pathology in the Target Therapy Era in Breast Cancer. Curr Drug Targets 2017, 18 (1), 4-12. 27. Kalimutho, M.; Parsons, K.; Mittal, D.; López, J. A.; Srihari, S.; Khanna, K. K., Targeted therapies for triple-negative breast cancer: combating a stubborn disease. Trends in pharmacological sciences 2015, 36 (12), 822-846. 28. Tanaka, T.; Decuzzi, P.; Cristofanilli, M.; Sakamoto, J. H.; Tasciotti, E.; Robertson, F. M.; Ferrari, M., Nanotechnology for breast cancer therapy. Biomed Microdevices 2009, 11 (1), 49-63. 29. Tharkar, P.; Madani, A. U.; Lasham, A.; Shelling, A. N.; Al-Kassas, R., Nanoparticulate carriers: an emerging tool for breast cancer therapy. J Drug Target 2015, 23 (2), 97-108. 30. Tang, X.; Loc, W. S.; Dong, C.; Matters, G. L.; Butler, P. J.; Kester, M.; Meyers, C.; Jiang, Y.; Adair, J. H., The use of nanoparticulates to treat breast cancer. Nanomedicine (Lond) 2017, 12 (19), 2367-2388. 31. de Sousa Cunha, F.; Dos Santos Pereira, L. N.; de Costa, E. S. T. P.; de Sousa Luz, R. A.; Nogueira Mendes, A., Development of nanoparticulate systems with action in breast and ovarian cancer: nanotheragnostics. J Drug Target 2019, 27 (7), 732-741. 32. Asadi, N.; Davaran, S.; Panahi, Y.; Hasanzadeh, A.; Malakootikhah, J.; Fallah Moafi, H.; Akbarzadeh, A., Application of nanostructured drug delivery systems in immunotherapy of cancer: a review. Artif Cells Nanomed Biotechnol 2017, 45 (1), 18-23. 33. Li, Z.; Tan, S.; Li, S.; Shen, Q.; Wang, K., Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncol Rep 2017, 38 (2), 611-624. 34. Senapati, S.; Mahanta, A. K.; Kumar, S.; Maiti, P., Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018, 3, 7. 35. Singh, S. K.; Singh, S.; Lillard, J. W., Jr.; Singh, R., Drug delivery approaches for breast cancer. Int J Nanomedicine 2017, 12, 6205-6218. 36. Yingchoncharoen, P.; Kalinowski, D. S.; Richardson, D. R., Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come. Pharmacol Rev 2016, 68 (3), 701-87. 37. Goins, B.; Phillips, W. T.; Bao, A., Strategies for improving the intratumoral distribution of liposomal drugs in cancer therapy. Expert Opin Drug Deliv 2016, 13 (6), 873-89. 38. Yue, X.; Dai, Z., Liposomal Nanotechnology for Cancer Theranostics. Curr Med Chem 2018, 25 (12), 1397-1408. 39. Yuba, E., Liposome-based immunity-inducing systems for cancer immunotherapy. Mol Immunol 2018, 98, 8-12. 40. Vieira, D. B.; Gamarra, L. F., Getting into the brain: liposome-based strategies for effective drug delivery across the blood–brain barrier. International journal of nanomedicine 2016, 11, 5381. 41. Riaz, M., Liposomes preparation methods. Pakistan journal of pharmaceutical sciences 1996, 9 (1), 65-77. 42. Patil, Y. P.; Jadhav, S., Novel methods for liposome preparation. Chem Phys Lipids 2014, 177, 8-18. 43. Mendez, R.; Banerjee, S., Sonication-Based Basic Protocol for Liposome Synthesis. Methods Mol Biol 2017, 1609, 255-260. 44. Kakimi, K.; Karasaki, T.; Matsushita, H.; Sugie, T., Advances in personalized cancer immunotherapy. Breast Cancer 2017, 24 (1), 16-24. 45. Shi, M.; Chen, X.; Ye, K.; Yao, Y.; Li, Y., Application potential of toll-like receptors in cancer immunotherapy: Systematic review. Medicine (Baltimore) 2016, 95 (25), e3951. 46. Lu, Y. C.; Robbins, P. F., Cancer immunotherapy targeting neoantigens. Semin Immunol 2016, 28 (1), 22-7. 47. Helmy, K. Y.; Patel, S. A.; Nahas, G. R.; Rameshwar, P., Cancer immunotherapy: accomplishments to date and future promise. Ther Deliv 2013, 4 (10), 1307-20. 48. Lohmueller, J.; Finn, O. J., Current modalities in cancer immunotherapy: Immunomodulatory antibodies, CARs and vaccines. Pharmacol Ther 2017, 178, 31-47. 49. Goldberg, J. L.; Sondel, P. M., Enhancing Cancer Immunotherapy Via Activation of Innate Immunity. Semin Oncol 2015, 42 (4), 562-72. 50. Ernst, B.; Anderson, K. S., Immunotherapy for the treatment of breast cancer. Curr Oncol Rep 2015, 17 (2), 5. 51. Trapani, J. A.; Darcy, P. K., Immunotherapy of cancer. Aust Fam Physician 2017, 46 (4), 194-199. 52. Broomfield, S. A.; van der Most, R. G.; Prosser, A. C.; Mahendran, S.; Tovey, M. G.; Smyth, M. J.; Robinson, B. W.; Currie, A. J., Locally administered TLR7 agonists drive systemic antitumor immune responses that are enhanced by anti-CD40 immunotherapy. J Immunol 2009, 182 (9), 5217-24. 53. Nakamura, K.; Smyth, M. J., Targeting cancer-related inflammation in the era of immunotherapy. Immunol Cell Biol 2017, 95 (4), 325-332. 54. Rodell, C. B.; Arlauckas, S. P.; Cuccarese, M. F.; Garris, C. S.; Li, R.; Ahmed, M. S.; Kohler, R. H.; Pittet, M. J.; Weissleder, R., TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng 2018, 2 (8), 578-588. 55. Riera Romo, M.; Perez-Martinez, D.; Castillo Ferrer, C., Innate immunity in vertebrates: an overview. Immunology 2016, 148 (2), 125-39. 56. Moynihan, K. D.; Irvine, D. J., Roles for Innate Immunity in Combination Immunotherapies. Cancer Res 2017, 77 (19), 5215-5221. 57. Varn, F. S.; Mullins, D. W.; Arias-Pulido, H.; Fiering, S.; Cheng, C., Adaptive immunity programmes in breast cancer. Immunology 2017, 150 (1), 25-34. 58. Keating, E.; Martel, F., Antimetabolic Effects of Polyphenols in Breast Cancer Cells: Focus on Glucose Uptake and Metabolism. Front Nutr 2018, 5, 25. 59. Martel, F.; Guedes, M.; Keating, E., Effect of polyphenols on glucose and lactate transport by breast cancer cells. Breast Cancer Res Treat 2016, 157 (1), 1-11. 60. Venturelli, L.; Nappini, S.; Bulfoni, M.; Gianfranceschi, G.; Dal Zilio, S.; Coceano, G.; Del Ben, F.; Turetta, M.; Scoles, G.; Vaccari, L.; Cesselli, D.; Cojoc, D., Glucose is a key driver for GLUT1-mediated nanoparticles internalization in breast cancer cells. Sci Rep 2016, 6, 21629. 61. Mamaeva, V.; Niemi, R.; Beck, M.; Özliseli, E.; Desai, D.; Landor, S.; Gronroos, T.; Kronqvist, P.; Pettersen, I. K.; McCormack, E., Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying γ-secretase inhibitors. Molecular Therapy 2016, 24 (5), 926-936. 62. Warburg, O., On the origin of cancer cells. Science 1956, 123 (3191), 309-314. 63. Kumar, P.; Kadakol, A.; Shasthrula, P. K.; Mundhe, N. A.; Jamdade, V. S.; Barua, C. C.; Gaikwad, A. B., Curcumin as an adjuvant to breast cancer treatment. Anticancer Agents Med Chem 2015, 15 (5), 647-56. 64. Terlikowska, K.; Witkowska, A.; Terlikowski, S., [Curcumin in chemoprevention of breast cancer]. Postepy Hig Med Dosw (Online) 2014, 68, 571-8. 65. Wang, Y.; Yu, J.; Cui, R.; Lin, J.; Ding, X., Curcumin in Treating Breast Cancer: A Review. J Lab Autom 2016, 21 (6), 723-731. 66. Hu, S.; Xu, Y.; Meng, L.; Huang, L.; Sun, H., Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp Ther Med 2018, 16 (2), 1266-1272. 67. Deguchi, A., Curcumin targets in inflammation and cancer. Endocr Metab Immune Disord Drug Targets 2015, 15 (2), 88-96. 68. Banik, U.; Parasuraman, S.; Adhikary, A. K.; Othman, N. H., Curcumin: the spicy modulator of breast carcinogenesis. J Exp Clin Cancer Res 2017, 36 (1), 98. 69. Schneider, C.; Gordon, O. N.; Edwards, R. L.; Luis, P. B., Degradation of Curcumin: From Mechanism to Biological Implications. J Agric Food Chem 2015, 63 (35), 7606-14. 70. Chen, P.; Zhang, H.; Cheng, S.; Zhai, G.; Shen, C., Development of curcumin loaded nanostructured lipid carrier based thermosensitive in situ gel for dermal delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016, 506, 356-362. 71. Park, S. H.; Kim, D. Y.; Panta, P.; Heo, J. Y.; Lee, H. Y.; Kim, J. H.; Min, B. H.; Kim, M. S., An intratumoral injectable, electrostatic, cross-linkable curcumin depot and synergistic enhancement of anticancer activity. NPG Asia Materials 2017, 9 (6), e397-e397. 72. Feng, T.; Wei, Y.; Lee, R. J.; Zhao, L., Liposomal curcumin and its application in cancer. Int J Nanomedicine 2017, 12, 6027-6044. 73. Jain, A.; Doppalapudi, S.; Domb, A. J.; Khan, W., Tacrolimus and curcumin co-loaded liposphere gel: Synergistic combination towards management of psoriasis. J Control Release 2016, 243, 132-145. 74. Nagaraju, G. P.; Aliya, S.; Zafar, S. F.; Basha, R.; Diaz, R.; El-Rayes, B. F., The impact of curcumin on breast cancer. Integr Biol (Camb) 2012, 4 (9), 996-1007. 75. Kohrt, H., Breast cancer treatment with imiquimod: applying an old lotion to a new disease. Clin Cancer Res 2012, 18 (24), 6571-3. 76. Hanna, E.; Abadi, R.; Abbas, O., Imiquimod in dermatology: an overview. Int J Dermatol 2016, 55 (8), 831-44. 77. Lu, C. H.; Lai, C. Y.; Yeh, D. W.; Liu, Y. L.; Su, Y. W.; Hsu, L. C.; Chang, C. H.; Catherine Jin, S. L.; Chuang, T. H., Involvement of M1 Macrophage Polarization in Endosomal Toll-Like Receptors Activated Psoriatic Inflammation. Mediators Inflamm 2018, 2018, 3523642. 78. Martinez, F. O.; Gordon, S., The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime reports 2014, 6. 79. Janosky, M.; Sabado, R. L.; Cruz, C.; Vengco, I.; Hasan, F.; Winer, A.; Moy, L.; Adams, S., MAGE-specific T cells detected directly ex-vivo correlate with complete remission in metastatic breast cancer patients after sequential immune-endocrine therapy. Journal for immunotherapy of cancer 2014, 2 (1), 32. 80. Ueyama, A.; Yamamoto, M.; Tsujii, K.; Furue, Y.; Imura, C.; Shichijo, M.; Yasui, K., Mechanism of pathogenesis of imiquimod-induced skin inflammation in the mouse: a role for interferon-alpha in dendritic cell activation by imiquimod. J Dermatol 2014, 41 (2), 135-43. 81. Demaria, S.; Vanpouille-Box, C.; Formenti, S. C.; Adams, S., The TLR7 agonist imiquimod as an adjuvant for radiotherapy-elicited in situ vaccination against breast cancer. Oncoimmunology 2013, 2 (10), e25997. 82. Zhang, L.; Liu, D.; Pu, D.; Wang, Y.; Li, L.; He, Y.; Li, Y.; Li, L.; Li, W., The TLR7 agonist Imiquimod promote the immunogenicity of mesenchymal stem cells. Biol Res 2015, 48, 6. 83. Wu, J.; Li, S.; Yang, Y.; Zhu, S.; Zhang, M.; Qiao, Y.; Liu, Y.-J.; Chen, J., TLR-activated plasmacytoid dendritic cells inhibit breast cancer cell growth in vitro and in vivo. Oncotarget 2017, 8 (7), 11708. 84. Quatromoni, J. G.; Eruslanov, E., Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. American journal of translational research 2012, 4 (4), 376.
|