跳到主要內容

臺灣博碩士論文加值系統

(44.192.26.226) 您好!臺灣時間:2024/09/13 09:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高荳
研究生(外文):Doaa Glal Moahmed Abozeid
論文名稱:穩定黏膜免疫需要ATF3抑制磷酸酶表現以維持IL-22引起之STAT3磷酸化
論文名稱(外文):ATF3 Sustains IL-22-Induced STAT3 Phosphorylation to Maintain Mucosal Immunity Through Inhibiting Phosphatases
指導教授:徐志文徐志文引用關係
指導教授(外文):Jr-Wen Shui
學位類別:博士
校院名稱:國立陽明大學
系所名稱:分子醫學博士學位學程
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:131
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
在腸道表皮細胞中,IL-22引起之STAT3磷酸化(pSTAT3)可維持腸道免疫平衡。許多參與IL-22-pSTAT3訊息傳遞的基因已經被定義為腸道發炎疾病之危險因子,而其中部分基因已被應用於治療標的。若能發現更多關於IL-22-pSTAT3訊息傳遞的基因將有助於臨床病人的治療。我們的研究顯示activating transcription factor 3 (ATF3)參與調控IL-22-pSTAT3訊息傳遞以維持腸道穩定。相對於野生型(WT)小鼠,ATF3基因剔除導致小鼠的囊狀小體減少和大腸長度縮短。在DSS引起的腸道發炎模式中,DSS會造成ATF3基因剔除小鼠嚴重的腸道發炎,而發炎可經由注入WT小鼠的腸道表皮類器官細胞得到減緩。IL-22-pSTAT3訊息傳遞在腸道表皮幹細胞及潘氏細胞維持腸道再生及宿主與微生物的交互作用扮演重要地角色。我們的研究發現ATF3基因剃除不但導致腸道幹細胞生長與再生受損,而且也使得潘氏細胞分泌的抗菌胜肽(Anti-microbial peptide, AMP)減少。在機制方面,我們發現IL-22正向調控ATF3的表現以使得STAT3磷酸化和抗菌胜肽的生成。有趣的是ATF3並不會直接作用在STAT3上,而是藉由抑制兩種酪氨酸磷酸酶SHP2和PTP-Meg2使得STAT3磷酸化。我們更近一步地發現ATF3參與IL-6引起T細胞的STAT3活化和Th17細胞產生IL-22和IL-17A的數量。綜合以上結果,我們推論ATF3經由調控腸道表皮細胞中的IL-22-pSTAT3訊息傳遞和Th17細胞的IL-6-pSTAT3訊息傳遞以維持腸道黏膜免疫的平衡。
English Abstract
In gut epithelium, IL-22 transmits signals through STAT3 phosphorylation (pSTAT3) which provides intestinal immunity. Many components in the IL-22-pSTAT3 pathway have been identified as risk factors for inflammatory bowel disease (IBD) and some of them are considered as promising therapeutic targets. However, new perspectives are still needed to understand IL-22-pSTAT3 signaling for effective clinical interventions in IBD patients. Here, we revealed activating transcription factor 3 (ATF3), recently identified to be upregulated in patients with active IBD, as a crucial player in the epithelial IL-22-pSTAT3 signaling cascade. We found ATF3 is central to intestinal homeostasis and provides protection during colitis. Loss of ATF3 led to decreased crypt numbers, more shortened colon length, impaired ileal fucosylation at the steady state, and lethal disease activity during DSS-induced colitis which can be effectively ameliorated by rectal transplantation of wild-type colonic organoids. Epithelial stem cells and Paneth cells form a niche to orchestrate epithelial regeneration and host-microbe interactions, and IL-22-pSTAT3 signaling is a key guardian for this niche. We found ATF3 is critical for niche maintenance as ATF3 deficiency caused compromised stem cell growth and regeneration, as well as Paneth cell degeneration and loss of anti-microbial peptide (AMP)-producing granules, indicative of malfunction of Paneth/stem cell network. Mechanistically, we found IL-22 upregulates ATF3, which is required to relay IL-22 signaling leading to STAT3 phosphorylation and subsequent AMP induction. Intriguingly, ATF3 itself does not act on STAT3 directly, instead ATF3 regulates pSTAT3 by negatively targeting protein tyrosine phosphatases (PTPs) including SHP2 and PTP-Meg2. Furthermore, we identified ATF3 is also involved in IL-6-mediated STAT3 activation in T cells and loss of ATF3 leads to reduced capacity of Th17 cells to produce their signature cytokine IL-22 and IL-17A. Collectively, our results suggest that via IL-22-pSTAT3 signaling in the epithelium and IL-6-pSTAT3 signaling in Th17 cells, ATF3 mediates a cross-regulation in the barrier to maintain mucosal homeostasis and immunity.
CONTENTS i
Acknowledgment iv
Abstract vi
Abbreviations 1
1.Introduction 3
Introductory figure. 4
1.1 Role of intestinal mucosal barrier in IBD immuno-pathogenesis. 5
1.2 Role of IL-22 in mucosal immunity in health and disease. 8
1.3 STAT3 in intestinal immunity and its Regulators 11
1.4 ATF3 and its connection to intestinal mucosal immunity 16
1.5 Conclusion 19
2.Results and figures 20
2.1 ATF3 is the platform for balancing homeostais in both ileum and colon 21
2.2 ATF3 is required for restitution process in IECs 29
2.3 Disruption of Paneth cell homeostasis in ATF3-/- mice 30
2.4 Epithelial ATF3 is protective against DSS-induced colitis 33
2.5 Rectal organoid transfer into DSS treated ATF3-/- mice ameliorates colitis 39
2.6 ATF3 is a downstream target of IL-22 and required for IL-22 induced AMPs 43
2.7 impaired IL-22 induction of STAT3 phosphorylation in ATF3-deficient epithelial cells. 49
2.8 ATF3 protects IL-22 induced pSTAT3 via targeting phosphatases 52
2.9 ATF3 is required for intestinal Th17 cell functionality 57
3.Discussion 65
4.Future directions 77
5.Materaila and methods 81
5.1 Mice 82
5.2 DSS induced colitis. 82
5.3 Endoscopic view of colon after DSS intake 83
5.4 Histopathological sections preparation 84
5.5 Histomorphological evaluation 85
5.6 Citrobacter rodentium oral infection 85
5.7 Isolation of intestinal epithelial cells 86
5.8 Flow cytometry analysis of intestinal epithelial cells 87
5.9 Immunofluorescence staining of intestinal tissue sections 88
5.10 Apoptosis detection assay by TUNEL 89
5.11 Preparation of wholemount ileum tissue sections for three dimensional images 90
5.12.Intestinal organoid culture 91
5.13 Intrarectal organoid transplantation after DSS intake 93
5.14 Intracellular organoid staining of pSTAT3 94
5.15 Generation of ATF3-deficient CMT-93 cells by CRISPR-Cas9 95
5.16 Silencing the mouse Ptpn11(SHP2) gene expression in CMT-93 96
5.17 In-vitro wound healing assay 97
5.18 In-vitro cell proliferation assay 98
5.19 Isolation, culture, and stimulation of intestinal lamina propria cells 98
5.20 RNA extraction and quantitative real-time PCR analysis 101
5.20 Western Blot analysis 101
5.21 Electrophoretic Mobility Shift Assay (EMSA) 103
5.22 Chromatin Immunoprecipitation (ChIP) 104
5.23 Transmission Electron Microscopy 106
5.24 Statistical analysis 107
6.Tables 108
6.1 Table 1 (List of antibodeis used in this study) 109
6.2 Table 2 (List of Reagents used in this study) 111
6.3 Table 3 (List of primers) 114
7.Ethics statemnet 116
8.Funding 116
9.Acknowledgement 116
1.Khor, B., A. Gardet, and R.J. Xavier, Genetics and pathogenesis of inflammatory bowel disease. Nature, 2011. 474(7351): p. 307-17.
2.Okumura, R. and K. Takeda, Maintenance of intestinal homeostasis by mucosal barriers. Inflamm Regen, 2018. 38(1): p. 5.
3.Peterson, L.W. and D. Artis, Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol, 2014. 14(3): p. 141-53.
4.Neurath, M.F., Cytokines in inflammatory bowel disease. Nat Rev Immunol, 2014. 14(5): p. 329-42.
5.Ahluwalia, B., M.K. Magnusson, and L. Ohman, Mucosal immune system of the gastrointestinal tract: maintaining balance between the good and the bad. Scand J Gastroenterol, 2017. 52(11): p. 1185-1193.
6.Konig, J., et al., Human Intestinal Barrier Function in Health and Disease. Clin Transl Gastroenterol, 2016. 7(10): p. e196.
7.Aguirre Valadez, J.M., et al., Intestinal permeability in a patient with liver cirrhosis. Ther Clin Risk Manag, 2016. 12: p. 1729-1748.
8.Fukui, H., Increased Intestinal Permeability and Decreased Barrier Function: Does It Really Influence the Risk of Inflammation? Inflamm Intest Dis, 2016. 1(3): p. 135-145.
9.Buda, A., et al., Confocal laser endomicroscopy for prediction of disease relapse in ulcerative colitis: a pilot study. J Crohns Colitis, 2014. 8(4): p. 304-11.
10.Ishiguro, K., et al., Novel application of low pH-dependent fluorescent dyes to examine colitis. BMC Gastroenterol, 2010. 10: p. 4.
11. Waldner, M.J., et al., Imaging of Mucosal Inflammation: Current Technological Developments, Clinical Implications, and Future Perspectives. Front Immunol, 2017. 8(1256).
12.Neurath, M.F. and S.P. Travis, Mucosal healing in inflammatory bowel diseases: a systematic review. Gut, 2012. 61(11): p. 1619-35.
13.McCole, D.F., IBD candidate genes and intestinal barrier regulation. Inflamm Bowel Dis, 2014. 20(10): p. 1829-49.
14.Lee, S.H., Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res, 2015. 13(1): p. 11-8.
15.Nalle, S.C. and J.R. Turner, Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versus-host disease. Mucosal Immunol, 2015. 8(4): p. 720-30.
16.Conklin, L.S., et al., Intravenous mesenchymal stromal cell therapy for inflammatory bowel disease: Lessons from the acute graft versus host disease experience. Cytotherapy, 2017. 19(6): p. 655-667.
17.Deng, J., et al., Metformin protects against intestinal barrier dysfunction via AMPKalpha1-dependent inhibition of JNK signalling activation. J Cell Mol Med, 2018. 22(1): p. 546-557.
18.Elphick, D.A. and Y.R. Mahida, Paneth cells: their role in innate immunity and inflammatory disease. Gut, 2005. 54(12): p. 1802-9.
19.Gassler, N., Paneth cells in intestinal physiology and pathophysiology. World J Gastrointest Pathophysiol, 2017. 8(4): p. 150-160.
20.Chen, J., et al., Dysbiosis of intestinal microbiota and decrease in paneth cell antimicrobial peptide level during acute necrotizing pancreatitis in rats. PLoS One, 2017. 12(4): p. e0176583.
21.Martin, C.R., et al., The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol, 2018. 6(2): p. 133-148.
22.Kelly, J.R., et al., Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Frontiers in Cellular Neuroscience, 2015. 9(392).
23.De Ponti, F., Pharmacology of serotonin: what a clinician should know. Gut, 2004. 53(10): p. 1520-35.
24.Evrensel, A. and M.E. Ceylan, The Gut-Brain Axis: The Missing Link in Depression. Clin Psychopharmacol Neurosci, 2015. 13(3): p. 239-44.
25.Muller, C.L., A.M.J. Anacker, and J. Veenstra-VanderWeele, The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience, 2016. 321: p. 24-41.
26.Ott, C. and J. Scholmerich, Extraintestinal manifestations and complications in IBD. Nat Rev Gastroenterol Hepatol, 2013. 10(10): p. 585-95.
27.Vavricka, S.R., et al., Extraintestinal Manifestations of Inflammatory Bowel Disease. Inflamm Bowel Dis, 2015. 21(8): p. 1982-92.
28.Sheth, T., C.S. Pitchumoni, and K.M. Das, Management of Musculoskeletal Manifestations in Inflammatory Bowel Disease. Gastroenterol Res Pract, 2015. 2015: p. 11.
29.Andrade, A.R., et al., Risk of thrombosis and mortality in inflammatory bowel disease. Clin Transl Gastroenterol, 2018. 9(4): p. 142.
30.Kristensen, S.L., et al., Disease activity in inflammatory bowel disease is associated with increased risk of myocardial infarction, stroke and cardiovascular death--a Danish nationwide cohort study. PLoS One, 2013. 8(2): p. e56944.
31.Kaplan, G.G. and S.C. Ng, Understanding and Preventing the Global Increase of Inflammatory Bowel Disease. Gastroenterology, 2017. 152(2): p. 313-321 e2.
32.M'Koma, A.E., Inflammatory bowel disease: an expanding global health problem. Clin Med Insights Gastroenterol, 2013. 6: p. 33-47.
33.Ray, K., IBD: The changing epidemiology of IBD. Nat Rev Gastroenterol Hepatol, 2017. 14(12): p. 690.
34. Xavier, R.J. and D.K. Podolsky, Unravelling the pathogenesis of inflammatory bowel disease. Nature, 2007. 448(7152): p. 427-34.
35.de Souza, H.S. and C. Fiocchi, Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol, 2016. 13(1): p. 13-27.
36.Park, S.H., et al., Novel regulatory action of ribosomal inactivation on epithelial Nod2-linked proinflammatory signals in two convergent ATF3-associated pathways. J Immunol, 2013. 191(10): p. 5170-81.
37.Zheng, S. and C. Abraham, NF-kappaB1 inhibits NOD2-induced cytokine secretion through ATF3-dependent mechanisms. Mol Cell Biol, 2013. 33(24): p. 4857-71.
38.Sidiq, T., et al., Nod2: A Critical Regulator of Ileal Microbiota and Crohn's Disease. Front Immunol, 2016. 7: p. 367.
39.Chen, Y., et al., Relation between NOD2 genotype and changes in innate signaling in Crohn's disease on mRNA and miRNA levels. npj Genomic Medicine, 2017. 2(1): p. 3.
40.Goethel, A., et al., Nod2 influences microbial resilience and susceptibility to colitis following antibiotic exposure. Mucosal Immunol, 2019.
41.Barnich, N., et al., Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-{kappa}B activation in muramyl dipeptide recognition. J Cell Biol, 2005. 170(1): p. 21-6.
42.Hiemstra, I.H., et al., Nod2 improves barrier function of intestinal epithelial cells via enhancement of TLR responses. Molecular Immunology, 2012. 52(3-4): p. 264-272.
43.Bilsborough, J., S.R. Targan, and S.B. Snapper, Therapeutic Targets in Inflammatory Bowel Disease: Current and Future. The American Journal of Gastroenterology Supplements, 2016. 3(3): p. 27-37.
44.Flamant, M. and X. Roblin, Inflammatory bowel disease: towards a personalized medicine. Therapeutic advances in gastroenterology, 2018. 11: p. 1756283X17745029-1756283X17745029
45.Salem, G.A. and G.B. Selby, Stem cell transplant in inflammatory bowel disease: a promising modality of treatment for a complicated disease course. Stem Cell Investig, 2017. 4: p. 95-95.
46.Dumoutier, L., J. Louahed, and J.C. Renauld, Cloning and Characterization of IL-10-Related T Cell-Derived Inducible Factor (IL-TIF), a Novel Cytokine Structurally Related to IL-10 and Inducible by IL-9. The Journal of Immunology, 2000. 164(4): p. 1814-1819.
47.Zenewicz, L.A. and R.A. Flavell, Recent advances in IL-22 biology. Int Immunol, 2011. 23(3): p. 159-63.
48.Dudakov, J.A., A.M. Hanash, and M.R. van den Brink, Interleukin-22: immunobiology and pathology. Annu Rev Immunol, 2015. 33: p. 747-85.
49.Sabat, R., W. Ouyang, and K. Wolk, Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov, 2014. 13(1): p. 21-38.
50.Perusina Lanfranca, M., et al., Biological and pathological activities of interleukin-22. J Mol Med (Berl), 2016. 94(5): p. 523-34.
51.Wolk, K., et al., IL-22 increases the innate immunity of tissues. Immunity, 2004. 21(2): p. 241-54.
52.Muhl, H., et al., IL-22 in tissue-protective therapy. Br J Pharmacol, 2013. 169(4): p. 761-71.
53.Shabgah, A.G., et al., Interleukin-22 in human inflammatory diseases and viral infections. Autoimmun Rev, 2017. 16(12): p. 1209-1218.
54.Ouyang, W., Distinct roles of IL-22 in human psoriasis and inflammatory bowel disease. Cytokine Growth Factor Rev, 2010. 21(6): p. 435-41.
55.Cobleigh, M.A. and M.D. Robek, Protective and pathological properties of IL-22 in liver disease: implications for viral hepatitis. Am J Pathol, 2013. 182(1): p. 21-8.
56.Yi, P., et al., A tightly regulated IL-22 response maintains immune functions and homeostasis in systemic viral infection. Sci Rep, 2017. 7(1): p. 3857.
57.Jie, Z., et al., Retinoic Acid Regulates Immune Responses by Promoting IL-22 and Modulating S100 Proteins in Viral Hepatitis. J Immunol, 2017. 198(9): p. 3448-3460.
58.Pan, C.X., et al., Role of interleukin-22 in liver diseases. Inflamm Res, 2014. 63(7): p. 519-25.
59.McAleer, J.P. and J.K. Kolls, Directing traffic: IL-17 and IL-22 coordinate pulmonary immune defense. Immunol Rev, 2014. 260(1): p. 129-44.
60.Pociask, D.A., et al., IL-22 is essential for lung epithelial repair following influenza infection. Am J Pathol, 2013. 182(4): p. 1286-96.
61.Sakamoto, K., et al., IL-22 Controls Iron-Dependent Nutritional Immunity Against Systemic Bacterial Infections. Science Immunology, 2017. 2(8): p. eaai8371.
62.Valeri, M. and M. Raffatellu, Cytokines IL-17 and IL-22 in the host response to infection. Pathog Dis, 2016. 74(9).
63.Huan, C., et al., Mechanisms of interleukin-22's beneficial effects in acute pancreatitis. World J Gastrointest Pathophysiol, 2016. 7(1): p. 108-16.
64.Qiao, Y.Y., et al., Interleukin-22 ameliorates acute severe pancreatitis-associated lung injury in mice. World J Gastroenterol, 2016. 22(21): p. 5023-32.
65.Parks, O.B., et al., Interleukin-22 Signaling in the Regulation of Intestinal Health and Disease. Front Cell Dev Biol, 2015. 3(85).
66.Monteleone, I., et al., Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology, 2011. 141(1): p. 237-248.e1.
67.Mizoguchi, A., Healing of intestinal inflammation by IL-22. Inflamm Bowel Dis, 2012. 18(9): p. 1777-84.
68.Lindemans, C.A., et al., Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature, 2015. 528(7583): p. 560-564.
69.Wang, Y., et al., IL-22 Increases Permeability of Intestinal Epithelial Tight Junctions by Enhancing Claudin-2 Expression. J Immunol, 2017. 199(9): p. 3316-3325.
70.Gulhane, M., et al., High Fat Diets Induce Colonic Epithelial Cell Stress and Inflammation that is Reversed by IL-22. Sci Rep, 2016. 6: p. 28990.
71.Mizoguchi, A., et al., Clinical importance of IL-22 cascade in IBD. J Gastroenterol, 2018. 53(4): p. 465-474.
72.Sugimoto, K., IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. Journal of Clinical Investigation 2008. 118(2): p. 534-44.
73.Miklossy, G., T.S. Hilliard, and J. Turkson, Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov, 2013. 12(8): p. 611-29.
74.Yuan, J., F. Zhang, and R. Niu, Multiple regulation pathways and pivotal biological functions of STAT3 in cancer. Sci Rep, 2015. 5: p. 17663.
75.Akira S, et al., Molecular Cloning of APRF, a Novel IFN Stimulated Gene Factor 3 p91-Related Transcription Factor Involved in the gpl30-Mediated Signaling Pathway. Cell, 1994. 77(1): p. 63-71.
76.KIYOSHI TAKEDA, et al., Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl. Acad. Sci. USA, 1997. 94(8): p. 3801–3804
77.Hillmer, E.J., et al., STAT3 signaling in immunity. Cytokine Growth Factor Rev, 2016. 31: p. 1-15.
78.Pickert, G., et al., STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med, 2009. 206(7): p. 1465-72.
79.Nishihara, M., et al., IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state. Int Immunol, 2007. 19(6): p. 695-702.
80. Lee, J.K., et al., Signal transducer and activator of transcription 3 (Stat3) contributes to T-cell homeostasis by regulating pro-survival Bcl-2 family genes. Immunology, 2013. 140(3): p. 288-300.
81. Tripathi, S.K., et al., Genome-wide Analysis of STAT3-Mediated Transcription during Early Human Th17 Cell Differentiation. Cell Rep, 2017. 19(9): p. 1888-1901.
82.Rincon, M. and F. Pereira, A New Perspective: Mitochondrial Stat3 as a Regulator for Lymphocyte Function. International Journal of Molecular Sciences, 2018. 19(6): p. 1656.
83.Wang, Z., et al., Association between STAT3 gene polymorphisms and Crohn's disease susceptibility: a case-control study in a Chinese Han population. Diagn Pathol, 2014. 9(1): p. 104.
84.Sugimoto, K., Role of STAT3 in inflammatory bowel disease. World Journal of Gastroenterology, 2008. 14(33): p. 5110-5114.
85.Willson, T.A., et al., STAT3 genotypic variation and cellular STAT3 activation and colon leukocyte recruitment in pediatric Crohn disease. J Pediatr Gastroenterol Nutr, 2012. 55(1): p. 32-43.
86.Vogel, T.P., J.D. Milner, and M.A. Cooper, The Ying and Yang of STAT3 in Human Disease. J Clin Immunol, 2015. 35(7): p. 615-23.
87.Aleva, F.E., et al., The effects of signal transducer and activator of transcription three mutations on human platelets. Platelets, 2018. 29(6): p. 602-609.
88.Forbes, L.R., J. Milner, and E. Haddad, Signal transducer and activator of transcription 3: a year in review. Curr Opin Hematol, 2016. 23(1): p. 23-7.
89.Devine, M.S. and C.K. Garcia, Genetic interstitial lung disease. Clin Chest Med, 2012. 33(1): p. 95-110.
90.Saarimaki-Vire, J., et al., An Activating STAT3 Mutation Causes Neonatal Diabetes through Premature Induction of Pancreatic Differentiation. Cell Rep, 2017. 19(2): p. 281-294.
91.Caetano, M.S., et al., Sex specific function of epithelial STAT3 signaling in pathogenesis of K-ras mutant lung cancer. Nat Commun, 2018. 9(1): p. 4589.
92.Kesselring, R., et al., IRAK-M Expression in Tumor Cells Supports Colorectal Cancer Progression through Reduction of Antimicrobial Defense and Stabilization of STAT3. Cancer Cell, 2016. 29(5): p. 684-696.
93.Johnson, D.E., R.A. O'Keefe, and J.R. Grandis, Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol, 2018. 15(4): p. 234-248.
94.Kim, M., et al., Protein Tyrosine Phosphatases as Potential Regulators of STAT3 Signaling. Int J Mol Sci, 2018. 19(9): p. 2708.
95.Bohmer, F.D. and K. Friedrich, Protein tyrosine phosphatases as wardens of STAT signaling. JAKSTAT, 2014. 3(1): p. e28087.
96.Kim, D.J., M.L. Tremblay, and J. Digiovanni, Protein tyrosine phosphatases, TC-PTP, SHP1, and SHP2, cooperate in rapid dephosphorylation of Stat3 in keratinocytes following UVB irradiation. PLoS One, 2010. 5(4): p. e10290.
97.Li, L., et al., A critical role for SHP2 in STAT5 activation and growth factor-mediated proliferation, survival, and differentiation of human CD34+ cells. Blood, 2011. 118(6): p. 1504-15.
98.Bridget L. Craddock and M.J. Welham, Interleukin-3 Induces Association of the Protein-tyrosine Phosphatase SHP2 and Phosphatidylinositol 3-Kinase with a 100-kDa Tyrosine-phosphorylated Protein in THE Hemopoietic Cells*. J. Biol. Chem, 1997. 272(46): p. 29281–29289.
99.Huang, Y., et al., SHP2 associates with nuclear localization of STAT3: significance in progression and prognosis of colorectal cancer. Sci Rep, 2017. 7(1): p. 17597.
100.Narumi, Y., et al., Polymorphisms of PTPN11 coding SHP-2 as biomarkers for ulcerative colitis susceptibility in the Japanese population. J Clin Immunol, 2009. 29(3): p. 303-10.
101.Xiao, P., et al., Phosphatase Shp2 exacerbates intestinal inflammation by disrupting macrophage responsiveness to interleukin-10. J Exp Med, 2019. 216(2): p. 337-349.
102.Spalinger, M.R., et al., Role of protein tyrosine phosphatases in regulating the immune system: implications for chronic intestinal inflammation. Inflamm Bowel Dis, 2015. 21(3): p. 645-55.
103.Su, F., et al., Protein tyrosine phosphatase Meg2 dephosphorylates signal transducer and activator of transcription 3 and suppresses tumor growth in breast cancer. Breast Cancer Res, 2012. 14(2): p. R38.
104.Wang, Y., et al., Tyrosine phosphatase MEG2 modulates murine development and platelet and lymphocyte activation through secretory vesicle function. J Exp Med, 2005. 202(11): p. 1587-97.
105.Xu, M.J., et al., PTP-MEG2 is activated in polycythemia vera erythroid progenitor cells and is required for growth and expansion of erythroid cells. Blood, 2003. 102(13): p. 4354-60.
106.Wang, X., et al., Enlargement of Secretory Vesicles by Protein Tyrosine Phosphatase PTP-MEG2 in Rat Basophilic Leukemia Mast Cells and Jurkat T Cells. The Journal of Immunology, 2002. 168(9): p. 4612-4619.
107.Yuan, T., et al., Protein-tyrosine phosphatase PTPN9 negatively regulates ErbB2 and epidermal growth factor receptor signaling in breast cancer cells. J Biol Chem, 2010. 285(20): p. 14861-70.
108.Tsunekawa, T., et al., Deficiency of PTP1B Attenuates Hypothalamic Inflammation via Activation of the JAK2-STAT3 Pathway in Microglia. EBioMedicine, 2017. 16: p. 172-183.
109.Yun-Wen Chen, et al., Receptor-type tyrosine-protein phosphatase k directly targets STAT3 activation for tumor suppression in nasal NK/T-cell lymphoma. Blood, 2015. 125(10): p. 1589-600.
110.Lu, D., et al., The phosphatase DUSP2 controls the activity of the transcription activator STAT3 and regulates TH17 differentiation. Nat Immunol, 2015. 16(12): p. 1263-73.
111.Hao, Z.-F., et al., ATF3 Activates Stat3 Phosphorylation through Inhibition of p53 Expression in Skin Cancer Cells. Asian Pacific Journal of Cancer Prevention, 2013. 14(12): p. 7439-7444.
112.KEIICHI MITSUYAMA, et al., Therapeutic Strategies for Targeting the IL-6/STAT3 Cytokine Signaling Pathway in Inflammatory Bowel Disease Anticancer Research, 2007. 27(6A): p. 3749-3756.
113.Li, Y., et al., New insights into the role of STAT3 in IBD. Inflamm Bowel Dis, 2012. 18(6): p. 1177-83.
114.Nguyen, P.M., T.L. Putoczki, and M. Ernst, STAT3-Activating Cytokines: A Therapeutic Opportunity for Inflammatory Bowel Disease? J Interferon Cytokine Res, 2015. 35(5): p. 340-50.
115.Tsonwin Hai, et al., Transcription factor ATF cDNA clones: an extensive family of leucine zipper proteins able to selectively form DNA-binding heterodimers Genes & Dev, 1989. 3: p. 2083-2090.
116.Persengiev SP and G. MR, The role of ATF/CREB family members in cell growth, survival and apoptosis. Apoptosis 2003. 8: p. 225–228.
117.Thompson, M.R., D. Xu, and B.R. Williams, ATF3 transcription factor and its emerging roles in immunity and cancer. J Mol Med (Berl), 2009. 87(11): p. 1053-60.
118.Kwon, J.W., et al., Activating transcription factor 3 represses inflammatory responses by binding to the p65 subunit of NF-kappaB. Sci Rep, 2015. 5: p. 14470.
119.Sha, H., et al., ATF3 promotes migration and M1/M2 polarization of macrophages by activating tenascinC via Wnt/betacatenin pathway. Mol Med Rep, 2017. 16(3): p. 3641-3647.
120.Gilchrist, M., et al., Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature, 2006. 441(7090): p. 173-8.
121.Whitmore, M.M., et al., Negative Regulation of TLR-Signaling Pathways by Activating Transcription Factor-3. The Journal of Immunology, 2007. 179(6): p. 3622-3630.
122.Nguyen, T.T., et al., Differential gene expression downstream of Toll-like receptors (TLRs): role of c-Src and activating transcription factor 3 (ATF3). J Biol Chem, 2010. 285(22): p. 17011-9.
123.Labzin, L.I., et al., ATF3 Is a Key Regulator of Macrophage IFN Responses. J Immunol, 2015. 195(9): p. 4446-55.
124.Lai, P.F., et al., ATF3 Protects against LPS-Induced Inflammation in Mice via Inhibiting HMGB1 Expression. Evid Based Complement Alternat Med, 2013. 2013: p. 716481.
125.Rynes, J., et al., Activating transcription factor 3 regulates immune and metabolic homeostasis. Mol Cell Biol, 2012. 32(19): p. 3949-62.
126.Chakrabarti, S., M. Poidevin, and B. Lemaitre, The Drosophila MAPK p38c regulates oxidative stress and lipid homeostasis in the intestine. PLoS Genet, 2014. 10(9): p. e1004659.
127.Donohoe, C.D., et al., Atf3 links loss of epithelial polarity to defects in cell differentiation and cytoarchitecture. PLoS Genet, 2018. 14(3).
128.Zmuda, E.J., et al., The roles of ATF3, an adaptive-response gene, in high-fat-diet-induced diabetes and pancreatic beta-cell dysfunction. Mol Endocrinol, 2010. 24(7): p. 1423-33.
129.Yi, X., X. Li, and X. Jiang, Activating transcription factor 3 in cardiac remodeling: Angel or demon? Int J Cardiol, 2017. 242: p. 45.
130.Hunt, D., G. Raivich, and P.N. Anderson, Activating transcription factor 3 and the nervous system. Front Mol Neurosci, 2012. 5: p. 7.
131.Kalfa, N., et al., Genomic variants of ATF3 in patients with hypospadias. J Urol, 2008. 180(5): p. 2183-8; discussion 2188.
132.Pierdomenico, M., et al., New insights into the pathogenesis of inflammatory bowel disease: transcription factors analysis in bioptic tissues from pediatric patients. J Pediatr Gastroenterol Nutr, 2011. 52(3): p. 271-9.
133.ROBERT K. MONTGOMERY, ANDREW E. MULBERG, and R.J. GRAND, Development of the Human Gastrointestinal Tract:Twenty Years of Progress. GASTROENTEROLOGY, 1999. 116(3): p. 702–731.
134.C J Reid, A.H., Developmental expression of mucin genes in the human gastrointestinal system. Gut, 1998. 42(2): p. 220–226.
135.Rodriguez, J.M., et al., The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis, 2015. 26: p. 26050.
136.Waterland, R.A., Epigenetic mechanisms and gastrointestinal development. J Pediatr, 2006. 149(5 Suppl): p. S137-42.
137.Hai, T., C.C. Wolford, and Y.-S. Chang, ATF3, a Hub of the Cellular Adaptive-Response Network, in the Pathogenesis of Diseases: Is Modulation of Inflammation a Unifying Component? Gene Expression, 2010. 15(1): p. 1-11.
138.DeRoche, T.C., S.Y. Xiao, and X. Liu, Histological evaluation in ulcerative colitis. Gastroenterol Rep (Oxf), 2014. 2(3): p. 178-92.
139.Ulrike Erben, et al., A guide to histomorphological evaluation of intestinal inflammation in mouse model. Int J Clin Exp Pathol, 2014. 7(8): p. 4557-4576.
140.Pickard, J.M., et al., Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature, 2014. 514(7524): p. 638-41.
141.Pickard, J.M. and A.V. Chervonsky, Intestinal fucose as a mediator of host-microbe symbiosis. J Immunol, 2015. 194(12): p. 5588-93.
142.Gehart, H. and H. Clevers, Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol, 2019. 16(1): p. 19-34.
143.Clevers, H.C. and C.L. Bevins, Paneth cells: maestros of the small intestinal crypts. Annu Rev Physiol, 2013. 75: p. 289-311.
144.Gracz, A.D., et al., Brief report: CD24 and CD44 mark human intestinal epithelial cell populations with characteristics of active and facultative stem cells. Stem Cells, 2013. 31(9): p. 2024-30.
145.Sato, T., et al., Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology, 2011. 141(5): p. 1762-72.
146.Yui, S., et al., Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5(+) stem cell. Nat Med, 2012. 18(4): p. 618-23.
147.Date, S. and T. Sato, Mini-gut organoids: reconstitution of the stem cell niche. Annu Rev Cell Dev Biol, 2015. 31: p. 269-89.
148.Zachos, N.C., et al., Human Enteroids/Colonoids and Intestinal Organoids Functionally Recapitulate Normal Intestinal Physiology and Pathophysiology. J Biol Chem, 2016. 291(8): p. 3759-66.
149.Goto, Y., et al., Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science, 2014. 345(6202): p. 1254009.
150.Schreiber, F., J.M. Arasteh, and T.D. Lawley, Pathogen Resistance Mediated by IL-22 Signaling at the Epithelial-Microbiota Interface. J Mol Biol, 2015. 427(23): p. 3676-82.
151.Pham, T.A., et al., Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe, 2014. 16(4): p. 504-16.
152.Ricanek, P., et al., Gut bacterial profile in patients newly diagnosed with treatment-naive Crohn's disease. Clin Exp Gastroenterol, 2012. 5: p. 173-86.
153.Koroleva, E.P., et al., Citrobacter rodentium-induced colitis: A robust model to study mucosal immune responses in the gut. J Immunol Methods, 2015. 421: p. 61-72.
154.Al-Ghadban, S., et al., Cross-talk between intestinal epithelial cells and immune cells in inflammatory bowel disease. Sci Rep, 2016. 6: p. 29783.
155.Okamoto, R. and M. Watanabe, Role of epithelial cells in the pathogenesis and treatment of inflammatory bowel disease. J Gastroenterol, 2016. 51(1): p. 11-21.
156.Pezhouh, M.K., et al., Refractory inflammatory bowel disease: is there a role for Epstein-Barr virus? A case-controlled study using highly sensitive Epstein-Barr virus-encoded small RNA1 in situ hybridization. Hum Pathol, 2018. 82: p. 187-192.
157.Iizuka, M. and S. Konno, Wound healing of intestinal epithelial cells. World J Gastroenterol, 2011. 17(17): p. 2161-71.
158.Perse, M. and A. Cerar, Dextran sodium sulphate colitis mouse model: traps and tricks. J Biomed Biotechnol, 2012. 2012: p. 718617.
159.Tian, H., et al., Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis. Cell Rep, 2015. 11(1): p. 33-42.
160.Sato, T., et al., Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 2011. 469(7330): p. 415-8.
161.Antti Sarastea, b. and K. Pulkkic, Morphologic and biochemical hallmarks of apoptosis. Cardiovascular Research 2000. 45(3): p. 528–537.
162..Ziegler, U. and P. Groscurth, Morphological Features of Cell Death. Physiology, 2004. 19(3): p. 124-128.
163.Bottone, M.G., et al., Morphological Features of Organelles during Apoptosis: An Overview. Cells, 2013. 2(2): p. 294-305.
164.Samantha Ho, C.P., and Hon Wai Koon, Antimicrobial Peptides and Colitis. Curr Pharm Des., 2013. 19(1): p. 40–47.
165.Magnusson, M.K., et al., Anti-TNF Therapy Response in Patients with Ulcerative Colitis Is Associated with Colonic Antimicrobial Peptide Expression and Microbiota Composition. J Crohns Colitis, 2016. 10(8): p. 943-52.
166.Kaser, A. and R.S. Blumberg, Endoplasmic reticulum stress and intestinal inflammation. Mucosal Immunol, 2010. 3(1): p. 11-6.
167.Pak, S., et al., Endoscopic Transplantation of Mesenchymal Stem Cell Sheets in Experimental Colitis in Rats. Sci Rep, 2018. 8(1): p. 11314.
168.Zheng, Y., et al., Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med, 2008. 14(3): p. 282-9.
169.Hanash, A.M., et al., Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity, 2012. 37(2): p. 339-50.
170.Dong, C., R.J. Davis, and R.A. Flavell, MAP kinases in the immune response. Annu Rev Immunol, 2002. 20: p. 55-72.
171.Liu, X.W.a.Y., Regulation of Innate Immune Response by MAP Kinase Phosphatase-1. Cell Signal, 2007. 19(7): p. 1372–1382.
172.Coskun, M., et al., MAP kinases in inflammatory bowel disease. Clin Chim Acta, 2011. 412(7-8): p. 513-20.
173.Lejeune, D., et al., Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10. J Biol Chem, 2002. 277(37): p. 33676-82.
174.Lu, D., J. Chen, and T. Hai, The regulation of ATF3 gene expression by mitogen-activated protein kinases. Biochem J, 2007. 401(2): p. 559-67.
175.Lin, L., et al., Transcriptional regulation of STAT3 by SPTBN1 and SMAD3 in HCC through cAMP-response element-binding proteins ATF3 and CREB2. Carcinogenesis, 2014. 35(11): p. 2393-403.
176.Zenewicz and L. A., IL-22: There Is a Gap in Our Knowledge. ImmunoHorizons, 2018. 2(6): p. 198-207.
177.Kempski, J., et al., TH17 Cell and Epithelial Cell Crosstalk during Inflammatory Bowel Disease and Carcinogenesis. Front Immunol, 2017. 8: p. 1373.
178.Galvez, J., Role of Th17 Cells in the Pathogenesis of Human IBD. ISRN Inflamm, 2014. 2014: p. 928461.
179.Camporeale A and P. V., IL-6, IL-17 and STAT3: a holy trinity in auto-immunity? Front Biosci, 2012. 17: p. 2306-26.
180.Zhou, J., B.A. Edgar, and M. Boutros, ATF3 acts as a rheostat to control JNK signalling during intestinal regeneration. Nat Commun, 2017. 8: p. 14289.
181.Zenewicz, L.A., et al., Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity, 2008. 29(6): p. 947-57.
182.Kim, S., et al., Atf3 induction is a therapeutic target for obesity and metabolic diseases. Biochem Biophys Res Commun, 2018. 504(4): p. 903-908.
183.Yang, H., et al., Epithelial cell survival by activating transcription factor 3 (ATF3) in response to chemical ribosome-inactivating stress. Biochem Pharmacol, 2009. 77(6): p. 1105-15.
184.Lightner, A.L., Stem Cell Therapy for Inflammatory Bowel Disease. Clin Transl Gastroenterol, 2017. 8(3): p. e82.
185.Sailaja, B.S., X.C. He, and L. Li, The regulatory niche of intestinal stem cells. J Physiol, 2016. 594(17): p. 4827-36.
186.Simmonds, N., et al., Paneth cell metaplasia in newly diagnosed inflammatory bowel disease in children. BMC Gastroenterol, 2014. 14(1): p. 93.
187.Schmitt, M., et al., Paneth Cells Respond to Inflammation and Contribute to Tissue Regeneration by Acquiring Stem-like Features through SCF/c-Kit Signaling. Cell Rep, 2018. 24(9): p. 2312-2328.e7.
188.Nakanishi, Y., et al., Control of Paneth Cell Fate, Intestinal Inflammation, and Tumorigenesis by PKClambda/iota. Cell Rep, 2016. 16(12): p. 3297-3310.
189.Wehkamp, J. and E.F. Stange, Paneth's disease. Journal of Crohn's and Colitis, 2010. 4(5): p. 523-531.
190.Yan, L., et al., Activation of the canonical Wnt/beta-catenin pathway in ATF3-induced mammary tumors. PLoS One, 2011. 6(1): p. e16515.
191.Yin, X., J.W. DeWille, and T. Hai, A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development. Oncogene, 2007. 27: p. 2118.
192.Koltsova, E.K. and S.I. Grivennikov, IL-22 gets to the stem of colorectal cancer. Immunity, 2014. 40(5): p. 639-41.
193.Kirchberger, S., et al., Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med, 2013. 210(5): p. 917-31.
194.Thompson, C.L., et al., Interleukin-22 genetic polymorphisms and risk of colon cancer. Cancer Causes Control, 2010. 21(8): p. 1165-70.
195.Robinette, M.L., et al., Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol, 2015. 16(3): p. 306-17.
196.Takii, R., et al., Heat shock transcription factor 1 inhibits expression of IL-6 through activating transcription factor 3. J Immunol, 2010. 184(2): p. 1041-8.
197.Victor, A.R., et al., IL-18 Drives ILC3 Proliferation and Promotes IL-22 Production via NF-kappaB. J Immunol, 2017. 199(7): p. 2333-2342.
198.Guo, Y., N. Lu, and A. Bai, Clinical use and mechanisms of infliximab treatment on inflammatory bowel disease: a recent update. Biomed Res Int, 2013. 2013: p. 581631.
199.Broom, O.J., et al., Mitogen activated protein kinases: a role in inflammatory bowel disease? Clin Exp Immunol, 2009. 158(3): p. 272-80.
200.Willson, T.A., et al., Deletion of Intestinal Epithelial Cell STAT3 Promotes T-Lymphocyte STAT3 Activation and Chronic Colitis Following Acute Dextran Sodium Sulfate Injury in Mice. Inflammatory Bowel Diseases, 2013. 19(3): p. 512-525.
201.Melillo, J.A., et al., Dendritic cell (DC)-specific targeting reveals Stat3 as a negative regulator of DC function. J Immunol, 2010. 184(5): p. 2638-2645.
202.Sakamoto, K., et al., Generation of Janus kinase 1 (JAK1) conditional knockout mice. Genesis, 2016. 54(11): p. 582-588.
203.Kimura, A. and T. Kishimoto, IL-6: regulator of Treg/Th17 balance. Eur J Immunol, 2010. 40(7): p. 1830-5.
204.Rezende, R.M., et al., Identification and characterization of latency-associated peptide-expressing gammadelta T cells. Nat Commun, 2015. 6: p. 8726.
205.Zhu, W., et al., Disequilibrium of M1 and M2 macrophages correlates with the development of experimental inflammatory bowel diseases. Immunol Invest, 2014. 43(7): p. 638-52.
206.Filen, S., et al., Activating transcription factor 3 is a positive regulator of human IFNG gene expression. J Immunol, 2010. 184(9): p. 4990-9.
207.Duszka, K., et al., Complementary intestinal mucosa and microbiota responses to caloric restriction. Sci Rep, 2018. 8(1): p. 11338.
208.Qin, Y., et al., An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression. Genome Biol, 2018. 19(1): p. 7.
209.Archambaud, C., et al., The intestinal microbiota interferes with the microRNA response upon oral Listeria infection. MBio, 2013. 4(6): p. e00707-13.
210.Kalfon, R., et al., ATF3 expression in cardiomyocytes preserves homeostasis in the heart and controls peripheral glucose tolerance. Cardiovasc Res, 2017. 113(2): p. 134-146.
211.Zaki, M.H., et al., The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity, 2010. 32(3): p. 379-91.
212.Chassaing, B., et al., Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol, 2014. 104: p. 15-25.
213.Rameshshanker, R. and N. Arebi, Endoscopy in inflammatory bowel disease when and why. World J Gastrointest Endosc, 2012. 4(6): p. 201-11.
214.LeBlanc, P.M., et al., Caspase-12 modulates NOD signaling and regulates antimicrobial peptide production and mucosal immunity. Cell Host Microbe, 2008. 3(3): p. 146-57.
215.Ran, F.A., et al., Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2013. 8(11): p. 2281-2308.
216.Moro, K., et al., Isolation and analysis of group 2 innate lymphoid cells in mice. Nat Protoc, 2015. 10(5): p. 792-806.
217.Holden, N.S. and C.E. Tacon, Principles and problems of the electrophoretic mobility shift assay. J Pharmacol Toxicol Methods, 2011. 63(1): p. 7-14.
218.Larsen, B.D., et al., Chromatin Immunoprecipitation for Identification of Protein-DNA Interactions in Human Cells. Methods Mol Biol, 2018. 1794: p. 335-352.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top