|
References 1. VeettilSK, LimKG, ChaiyakunaprukN, ChingSM, Abu HassanMR. Colorectal cancer in Malaysia: Its burden and implications for a multiethnic country. Asian J Surg. 2017; 40(6):481–9. 2. DeRosaM, PaceU, RegaD, CostabileV, DuraturoF, IzzoP, et al. Genetics, diagnosis and management of colorectal cancer (Review). Oncol Rep. 2015;34(3):1087–96. 3. HaggarFA, BousheyRP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22(4):191–7. 4. VuT, DattaPK. Regulation of EMT in colorectal cancer: A culprit in metastasis. Cancers (Basel). 2017;9(12):1–22. 5. TsaiJH, YangJ. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013; 27(20):2192–206. 6. LiuX, FanD. The epithelial-mesenchymal transition and cancer stem cells: functional and mechanistic links. Curr Pharm Des. 2015; 21(10):1279–91. 7. LiX, PeiD, ZhengH. Transitions between epithelial and mesenchymal states during cell fate conversions. Protein Cell. 2014;5(8):580–91. 8. ShimonoY, ZabalaM, ChoRW, LoboN, DalerbaP, QianD, et al. Downregulation of miRNA-200c Links Breast Cancer Stem Cells with Normal Stem Cells. Cell. 2009;138(3):592–603. 9. SubramanyamD, LamouilleS, RobertJL, LiuJY, BucayN, DerynckR, et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol. 2011;29(5):443–8. 10. TakahashiK, YamanakaS. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006;126(4):663–76. 11. TakahashiK, OkitaK, NakagawaM, YamanakaS. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007;2(12):3081–9. 12. CamaraDAD, MambelliLI, PorcacchiaAS, KerkisI. Advances and challenges on cancer cells reprogramming using induced pluripotent stem cells technologies. J Cancer. 2016;7(15):2296–303. 13. MiyoshiN, IshiiH, NagaiK -i., HoshinoH, MimoriK, TanakaF, et al. Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci. 2010;107(1):40–5. 14. ZhangX, CruzFD, TerryM, RemottiF, MatushanskyI. Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene. 2013;32(18):2249–60. 15. MiyazakiS, YamamotoH, MiyoshiN, WuX, OgawaH, UemuraM, et al. A Cancer Reprogramming Method Using MicroRNAs as a Novel Therapeutic Approach against Colon Cancer: Research for Reprogramming of Cancer Cells by MicroRNAs. Ann Surg Oncol. 2015;22 (3):1394-401. 16. TakaishiM, TarutaniM, TakedaJ, SanoS. Mesenchymal to Epithelial Transition Induced by Reprogramming Factors Attenuates the Malignancy of Cancer Cells. ColemanWB, editor. PLoS One. 2016;11(6) 17.HiewMSY, ChengHP, HuangCJ, ChongKY, CheongSK, ChooKB, et al. Incomplete cellular reprogramming of colorectal cancer cells elicits an epithelial/mesenchymal hybrid phenotype. J Biomed Sci. 2018;25(1):1–13. 18. IzgiK, CanatanH, IskenderB. Current status in cancer cell reprogramming and its clinical implications. J Cancer Res Clin Oncol. 2017;143(3):371–83. 19. LiR, LiangJ, NiS, ZhouT, QingX, LiH, et al. A mesenchymal-to-Epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell. 2010;7(1):51–63. 20. Samavarchi-TehraniP, GolipourA, DavidL, SungH-K, BeyerTA, DattiA, et al. Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell. 2010; 7(1):64–77. 21. Anokye-DansoF, TrivediCM, JuhrD, GuptaM, CuiZ, TianY, et al. Highly Efficient miRNA-Mediated Reprogramming of Mouse and Human Somatic Cells to Pluripotency. Cell Stem Cell. 2011;8(4):376–88. 22. WangW, YangJ, LiuH, LuD, ChenX, ZenonosZ, et al. Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proc Natl Acad Sci. 2011;108(45):18283–8. 23. FerlayJ, ShinH-R, BrayF, FormanD, MathersC, ParkinDM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917. 24. RaskovH, PommergaardH-C, BurcharthJ, RosenbergJ. Colorectal carcinogenesis--update and perspectives. World J Gastroenterol. 2014 20(48):18151–64. 25. PourhoseingholiMA. Increased burden of colorectal cancer in Asia. World J Gastrointest Oncol.2012;4(4):68–70. 26. Granados-RomeroJJ, Valderrama-TrevinoAI, Contreras-FloresEH, Barrera-MeraB, Herrera EnriquezM, Uriarte-RuizK, et al. Colorectal cancer: a review. Int J Res Med Sci. 2017;5(11):4667. 27. BrosensLAA, OfferhausGJA, GiardielloFM. Hereditary Colorectal Cancer: Genetics and Screening. Surg Clin North Am. 2015;95(5):1067–80. 28. TariqK, GhiasK. Colorectal cancer carcinogenesis: a review of mechanisms. Cancer Biol Med. 2016;13(1):120–35. 29. NajdiR, HolcombeR, WatermanM. Wnt signaling and colon carcinogenesis: Beyond APC. J Carcinog [Internet]. 2011;10(1):5. 30. ColussiD, BrandiG, BazzoliF, RicciardielloL. Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int J Mol Sci. 2013;14(8):16365–85. 31. MacDonaldBT, TamaiK, HeX. Wnt/β-Catenin Signaling: Components, Mechanisms, and Diseases. Dev Cell. 2009;17(1):9–26. 32. Al-SohailyS, BiankinA, LeongR, Kohonen-CorishM, WarusavitarneJ. Molecular pathways in colorectal cancer. J Gastroenterol Hepatol. 2012;27(9):1423–31. 33. LiX-L, ZhouJ, ChenZ-R, ChngW-J. P53 mutations in colorectal cancer - molecular pathogenesis and pharmacological reactivation. World J Gastroenterol.2015 21(1):84–93. 34. CaoH, XuE, LiuH, WanL, LaiM. Epithelial-mesenchymal transition in colorectal cancer metastasis: A system review. Pathol Res Pract. 2015;211(8):557–69. 35. BellamN, PascheB. TGF-β Signaling Alterations and Colon Cancer. In: Cancer treatment and research. 2010. p. 85–103. 36. FreemanTJ, SmithJJ, ChenX, WashingtonMK, RolandJT, MeansAL, et al. Smad4-mediated signaling inhibits intestinal neoplasia by inhibiting expression of β-catenin. Gastroenterology. 2012;142(3):562–571. 37. ZhaoS, VenkatasubbaraoK, LazorJW, SperryJ, JinC, CaoL, et al. Inhibition of STAT3 Tyr705 phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells. Cancer Res. 2008;68(11):4221–8. 38. XiongH, HongJ, DuW, LinY, RenL, WangY, et al. Roles of STAT3 and ZEB1 Proteins in E-cadherin Down-regulation and Human Colorectal Cancer Epithelial-Mesenchymal Transition. J Biol Chem. 2012;287(8):5819–32. 39. MolinariF, FrattiniM. Functions and Regulation of the PTEN Gene in Colorectal Cancer. Front Oncol. 2014; 3:326. 40. SumanS, KurisettyV, DasTP, VadodkarA, RamosG, LakshmanaswamyR, et al. Activation of AKT signaling promotes epithelial-mesenchymal transition and tumor growth in colorectal cancer cells. Mol Carcinog. 2014;53(1):151–60. 41. GulhatiP, BowenKA, LiuJ, StevensPD, RychahouPG, ChenM, et al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 2011;71(9):3246–56. 42. CalonA, EspinetE, Palomo-PonceS, TaurielloDVF, IglesiasM, CespedesMV, et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell. 2012;22(5):571–84. 43. BrennerH, KloorM, PoxCP. Colorectal cancer. Lancet. 2014;383(9927):1490–502. 44. KolaI, LandisJ. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3(8):711–6. 45. GarnettMJ, McDermottU. The evolving role of cancer cell line-based screens to define the impact of cancer genomes on drug response. Curr Opin Genet Dev. 2014;24:114–9. 46. McIntyreRE, BuczackiSJA, ArendsMJ, AdamsDJ. Mouse models of colorectal cancer as preclinical models. BioEssays. 2015;37(8):909–20. 47. GolovkoD, KedrinD, YilmazOH, RoperJ. Colorectal cancer models for novel drug discovery. Expert Opin Drug Discov. 2015;10(11):1217–29. 48. KatsiampouraA, RaghavK, JiangZ-Q, MenterDG, VarkarisA, MorelliMP, et al. Modeling of Patient-Derived Xenografts in Colorectal Cancer. Mol Cancer Ther. 2017;16(7):1435–42. 49. EvansJP, SuttonPA, WiniarskiBK, FenwickSW, MalikHZ, VimalachandranD, et al. From mice to men: Murine models of colorectal cancer for use in translational research. Crit Rev Oncol Hematol. 2016; 98:94–105. 50. SzaboV, BugyikE, DezsoK, EckerN, NagyP, TimarJ, et al. Mechanism of tumour vascularization in experimental lung metastases. J Pathol. 2015;235(3):384–96. 51. LinS, ChangDC, Chang-linS, LinC, WuDTS, ChenDT, et al. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. 2008;2115–24. 52. CaretteJE, PruszakJ, VaradarajanM, BlomenV a, GokhaleS, CamargoFD, et al. Brief report Generation of iPSCs from cultured human malignant cells. Blood. 2010;115(20):4039–42. 53. ZhuD, KongCSL, GingoldJA, ZhaoR, LeeD-F. Induced Pluripotent Stem Cells and Induced Pluripotent Cancer Cells in Cancer Disease Modeling. Adv Exp Med Biol.2018;1–15. 54. YamanakaS. Elite and stochastic models for induced pluripotent stem cell generation. Nature. 2009; 460(7251):49–52. 55. Ramos-MejiaV, FragaMF, MenendezP. IPSCs from cancer cells: Challenges and opportunities. Trends Mol Med. 2012;18(5):245–7. 56. MathieuJ, ZhangZ, ZhouW, WangAJ, HeddlestonJM, PinnaCMA, et al. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 2011;71(13):4640–52. 57. MohyeldinA, Garzon-MuvdiT, Quinones-HinojosaA. Oxygen in Stem Cell Biology: A Critical Component of the Stem Cell Niche. Cell Stem Cell. 2010;7(2):150–61. 58. LinC-P, ChoiYJ, HicksGG, HeL. The emerging functions of the p53-miRNA network in stem cell biology. Cell Cycle. 2012; 11(11):2063–72. 59. BernhardtM, NovakD, AssenovY, OroujiE, KnappeN, WeinaK, et al. Melanoma-Derived iPCCs Show Differential Tumorigenicity and Therapy Response. Stem Cell Reports. 2017;8(5):1379–91. 60. KumanoK, AraiS, HosoiM, TaokaK, TakayamaN, OtsuM, et al. Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples. Blood. 2012;119(26):6234–42. 61. ChoongPF, TehHX, TeohHK, OngHK, ChooKB, SugiiS, et al. Heterogeneity of osteosarcoma cell lines led to variable responses in reprogramming. Int J Med Sci. 2014;11(11):1154–60. 62. KimJ, HoffmanJP, AlpaughRK, RhimAD, ReichertM, StangerBZ, et al. An iPSC Line from Human Pancreatic Ductal Adenocarcinoma Undergoes Early to Invasive Stages of Pancreatic Cancer Progression. Cell Rep. 2013;3(6):2088–99. 63. StrickerS, PollardS. Reprogramming cancer cells to pluripotency: an experimental tool for exploring cancer epigenetics. Epigenetics. 2014;9(6):798–802. 64. ThieryJP, AcloqueH, HuangRYJ, NietoMA. Epithelial-Mesenchymal Transitions in Development and Disease. Cell. 2009;139(5):871–90. 65. ChenJ, HanQ, PeiD. EMT and MET as paradigms for cell fate switching. J Mol Cell Biol. 2012;4(2):66–9. 66. KalluriR, WeinbergR a. Review series The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–8. 67. CraeneBDe, BerxG. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97–110. 68. LamouilleS, XuJ, DerynckR. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96. 69. ChapmanHA. Epithelial-Mesenchymal Interactions in Pulmonary Fibrosis. Annu Rev Physiol. 2011;73(1):413–35. 70. ZhengH, KangY. Multilayer control of the EMT master regulators. Oncogene. 2014;33(14):1755–63. 71. NeureiterD. Epigenetic control of epithelial-mesenchymal-transition in human cancer (Review). Mol Clin Oncol. 2012;3–11. 72. ZhangJ, TianX-J, XingJ. Signal Transduction Pathways of EMT Induced by TGF-β, SHH, and WNT and Their Crosstalks. J Clin Med. 2016;5(4):41. 73. FanF, SamuelS, EvansKW, LuJ, XiaL, ZhouY, et al. Overexpression of Snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med. 2012;1(1):5–16. 74. WangY, ZhouBP. Epithelial-mesenchymal Transition---A Hallmark of Breast Cancer Metastasis. Cancer Hallm. 2013;1(1):38–49. 75. SkovieroviH, OkajekoviT, StrnidelJ, VidomanoviE, HalaoviE. Molecular regulation of epithelial-to-mesenchymal transition in tumorigenesis (Review). Int J Mol Med. 2017; 41(3):1187–200. 76. ThieryJP. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2(6):442–54. 77. BrabletzT. To differentiate or not — routes towards metastasis. Nat Rev Cancer. 2012;12(6):425–36. 78. MejlvangJ, KriajevskaM, VandewalleC, ChernovaT, SayanAE, BerxG, et al. Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. MargolisB, editor. Mol Biol Cell. 2007;18(11):4615–24. 79. OcanaOH, CorcolesR, FabraA, Moreno-BuenoG, AcloqueH, VegaS, et al. Metastatic Colonization Requires the Repression of the Epithelial-Mesenchymal Transition Inducer Prrx1. Cancer Cell. 2012;22(6):709–24. 80. TsaiJH, DonaherJL, MurphyDA, ChauS, YangJ. Spatiotemporal Regulation of Epithelial-Mesenchymal Transition Is Essential for Squamous Cell Carcinoma Metastasis. Cancer Cell. 2012;22(6):725–36. 81. JollyMK. Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis. Front Oncol. 2015;5:1–19. 82. SaitohM. Involvement of partial EMT in cancer progression. J Biochem. 2018;164(4):257–64. 83. AcetoN, BardiaA, MiyamotoDT, DonaldsonMC, WittnerBS, SpencerJA, et al. Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis. Cell. 2014;158(5):1110–22. 84. JoosseSA, GorgesTM, PantelK. Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol Med. 2015;7(1):1–11. 85. HouJ-M, KrebsMG, LancashireL, SloaneR, BackenA, SwainRK, et al. Clinical Significance and Molecular Characteristics of Circulating Tumor Cells and Circulating Tumor Microemboli in Patients With Small-Cell Lung Cancer. J Clin Oncol. 2012;30(5):525–32. 86. HawkinsK, JoyS, McKayT. Cell signalling pathways underlying induced pluripotent stem cell reprogramming. World J Stem Cells. 2014;6(5):620. 87. MaheraliN, HochedlingerK. Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr Biol. 2009;19(20):1718–23. 88. ChenJ, LiuJ, YangJ, ChenY, ChenJ, NiS, et al. BMPs functionally replace Klf4 and support efficient reprogramming of mouse fibroblasts by Oct4 alone. Cell Res. 2011;21(1):205–12. 89. UnternaehrerJJ, ZhaoR, KimK, CesanaM, PowersJT, RatanasirintrawootS, et al. The epithelial-mesenchymal transition factor SNAIL paradoxically enhances reprogramming. Stem Cell Reports. 2014;3(5):691–8. 90. LiuX, SunH, QiJ, WangL, HeS, LiuJ, et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nat Cell Biol. 2013;15(7):829–38. 91. BartelDP. MicroRNAs: Target Recognition and Regulatory Functions. Cell. 2009;136(2):215–33. 92. TetreaultN, DeGuireV. MiRNAs: Their discovery, biogenesis and mechanism of action. Clin Biochem. 2013;46(10–11):842–5. 93. WangY, LuoJ, ZhangH, LuJ. microRNAs in the Same Clusters Evolve to Coordinately Regulate Functionally Related Genes. Mol Biol Evol. 2016 ;33(9):2232–47. 94. Andres-LeonE, CasesI, AlonsoS, RojasAM. Novel miRNA-mRNA interactions conserved in essential cancer pathways. Sci Rep. 2017;7(1):46101. 95. MacFarlaneLA, R. MurphyP. MicroRNA: Biogenesis, Function and Role in Cancer. Curr Genomics. 2010;11(7):537–61. 96. KimYK, KimVN. Processing of intronic microRNAs. EMBO J. 2007;26(3):775–83. 97. RamalingamP, PalanichamyJK, SinghA, DasP, BhagatM, KassabMA, et al. Biogenesis of intronic miRNAs located in clusters by independent transcription and alternative splicing. RNA. 2014;20(1):76–87. 98. LeeY, KimM, HanJ, YeomK-H, LeeS, BaekSH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60. 99. LeeY, AhnC, HanJ, ChoiH, KimJ, YimJ, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425(6956):415–9. 100. GregoryRI, YanK-P, AmuthanG, ChendrimadaT, DoratotajB, CoochN, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432(7014):235–40. 101. LundE, GuttingerS, CaladoA, DahlbergJE, KutayU. Nuclear Export of MicroRNA Precursors. Science. 2004;303(5654):95–8. 102. HutvagnerG, McLachlanJ, PasquinelliAE, BalintE, TuschlT, ZamorePD. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293(5531):834–8. 103. ManiatakiE, MourelatosZ. A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev. 2005;19(24):2979–90. 104. MallannaSK, RizzinoA. Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Dev Biol. 2010;344(1):16–25. 105. WinterJ, JungS, KellerS, GregoryRI, DiederichsS. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol [Internet]. 2009;11(3):228–34. 106. ChooKB, SoonYL, NguyenPNN, HiewMSY, HuangC-J. MicroRNA-5p and -3p co-expression and cross-targeting in colon cancer cells. J Biomed Sci. 2014;21(1):95. 107. Griffiths-JonesS, GrocockRJ, vanDongenS, BatemanA, EnrightAJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:140-4. 108. LuningschrorP, HauserS, KaltschmidtB, KaltschmidtC. MicroRNAs in pluripotency, reprogramming and cell fate induction. Biochim Biophys Acta - Mol Cell Res. 2013;1833(8):1894–903. 109. MarsonA, LevineSS, ColeMF, FramptonGM, BrambrinkT, JohnstoneS, et al. Connecting microRNA Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells. Cell. 2008;134(3):521–33. 110. WangY, BaskervilleS, ShenoyA, BabiarzJE, BaehnerL, BlellochR. Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet. 2008;40(12):1478–83. 111. WangY, MeltonC, LiY-P, ShenoyA, ZhangX-X, SubramanyamD, et al. miR-294/miR-302 promotes proliferation, suppresses G1-S restriction point, and inhibits ESC differentiation through separable mechanisms. Cell Rep. 2013;4(1):99–109. 112. LinS-L, ChangDC, LinC-H, YingS-Y, LeuD, WuDTS. Regulation of somatic cell reprogramming through inducible mir-302 expression. Nucleic Acids Res [Internet]. 2011 Feb [cited 2018 Sep 20];39(3):1054–65. 113. Anokye-DansoF, SnitowM, MorriseyEE. How microRNAs facilitate reprogramming to pluripotency. J Cell Sci. 2012;125(18):4179–787. 114. Shyh-ChangN, DaleyGQ. Lin28: primal regulator of growth and metabolism in stem cells. Cell Stem Cell. 2013;12(4):395–406. 115. MeltonC, JudsonRL, BlellochR. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature. 2010;463(7281):621–6. 116. TayYM-S, TamW-L, AngY-S, GaughwinPM, YangH, WangW, et al. MicroRNA-134 modulates the differentiation of mouse embryonic stem cells, where it causes post-transcriptional attenuation of Nanog and LRH1. Stem Cells. 2008;26(1):17–29. 117. TayY, ZhangJ, ThomsonAM, LimB, RigoutsosI. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature. 2008;455(7216):1124–8. 118. ThorntonJE, GregoryRI. How does Lin28 let-7 control development and disease? Trends Cell Biol. 2012;22(9):474–82. 119. LinSL, ChangDC, Chang-LinS, LinCH, WuDTS, ChenDT, et al. Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA. 2008;14(10):2115–24. 120. JudsonRL, BabiarzJE, VenereM, BlellochR. Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol. 2009;27(5):459–61. 121 MiyoshiN, IshiiH, NaganoH, HaraguchiN, DewiDL, KanoY, et al. Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell. 2011;8(6):633–8. 122. KogaC, KobayashiS, NaganoH, TomimaruY, HamaN, WadaH, et al. Reprogramming using microRNA-302 improves drug sensitivity in hepatocellular carcinoma cells. Ann Surg Oncol. 2014; 21(4):591-600. 123. LipchinaI, ElkabetzY, HafnerM, SheridanR, MihailovicA, TuschlT, et al. Genome-wide identification of microRNA targets in human ES cells reveals a role for miR-302 in modulating BMP response. Genes Dev. 2011;25(20):2173–86. 124.WangG, GuoX, HongW, LiuQ, WeiT, LuC, et al. Critical regulation of miR-200 / ZEB2 pathway in Oct4 / Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proc Natl Acad Sci U S A. 2013;110(8):2858–63. 125. TianY, ZhangY, HurdL, HannenhalliS, LiuF, LuMM, et al. Regulation of lung endoderm progenitor cell behavior by miR302/367. Development. 2011;138(7):1235–45. 126. SpikeBT, WahlGM. p53, Stem Cells, and Reprogramming: Tumor Suppression beyond Guarding the Genome. Genes Cancer. 2011;2(4):404–19. 127. YeD, WangG, LiuY, HuangW, WuM, ZhuS, et al. MiR-138 Promotes Induced Pluripotent Stem Cell Generation Through the Regulation of the p53 Signaling. Stem Cells. 2012;30(8):1645–54. 128. ChoiYJ, LinC-P, HoJJ, HeX, OkadaN, BuP, et al. miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nat Cell Biol. 2011;13(11):1353–60. 129. HuK. All roads lead to induced pluripotent stem cells: the technologies of iPSC generation. Stem Cells Dev. 2014;23(12):1285–300. 130. MendellJT, OlsonEN. MicroRNAs in Stress Signaling and Human Disease. Cell. 2012;148(6):1172–87. 131. JanssonMD, LundAH. MicroRNA and cancer. Mol Oncol. 2012 ;6(6):590–610. 132. FengYH, TsaoC-J. Emerging role of microRNA-21 in cancer. Biomed reports. 2016;5(4):395–402. 133. WangR, MaJ, WuQ, XiaJ, MieleL, SarkarFH, et al. Functional role of miR-34 family in human cancer. Curr Drug Targets. 2013;14(10):1185–91. 134. LiJ-M, ZhaoR-H, LiS-T, XieC-X, JiangH-H, DingW-J, et al. Down-regulation of fecal miR-143 and miR-145 as potential markers for colorectal cancer. Saudi Med J. 2012;33(1):24–9. 135. DongY, WuWKK, WuCW, SungJJY, YuJ, NgSSM. MicroRNA dysregulation in colorectal cancer: a clinical perspective. Br J Cancer. 2011;104(6):893–8. 136. RenA, DongY, TsoiH, YuJ. Detection of miRNA as Non-Invasive Biomarkers of Colorectal Cancer. Int J Mol Sci. 2015;16(2):2810–23. 137. BaumannV, WinklerJ. miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem. 2014;6(17):1967–84. 138. YilmazM, ChristoforiG. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 2009;28(1–2):15–33. 139. HeerbothS, HousmanG, LearyM, LongacreM, BylerS, LapinskaK, et al. EMT and tumor metastasis. Clin Transl Med. 2015;4(1):6. 140. ChiY, ZhouD. MicroRNAs in colorectal carcinoma - from pathogenesis to therapy. J Exp Clin Cancer Res. 2016;35(1):43. 141. KorpalM, LeeES, HuG, KangY. The miR-200 Family Inhibits Epithelial-Mesenchymal Transition and Cancer Cell Migration by Direct Targeting of E-cadherin Transcriptional Repressors ZEB1 and ZEB2. J Biol Chem. 2008;283(22):14910–4. 142. ParkS-M, GaurAB, LengyelE, PeterME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22(7):894–907. 143. ChenML, LiangLSen, WangXK. miR-200c inhibits invasion and migration in human colon cancer cells SW480/620 by targeting ZEB1. Clin Exp Metastasis. 2012;29(5):457–69. 144. GengL, ChaudhuriA, TalmonG, WisecarverJL, AreC, BrattainM, et al. MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene. 2014;33(46):5332–40. 145. SunZ, ZhangZ, LiuZ, QiuB, LiuK, DongG. MicroRNA-335 inhibits invasion and metastasis of colorectal cancer by targeting ZEB2. Med Oncol. 2014;31(6):982. 146. ZhengY-B, LuoH-P, ShiQ, HaoZ-N, DingY, WangQ-S, et al. miR-132 inhibits colorectal cancer invasion and metastasis via directly targeting ZEB2. World J Gastroenterol. 2014 ;20(21):6515–22. 147. HillL, BrowneG, TulchinskyE. ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J cancer. 2013;132(4):745–54. 148. LuM, JollyMK, LevineH, OnuchicJN, Ben-JacobE. MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc Natl Acad Sci U S A. 2013;110(45):18144–9. 149. SunY, ShenS, LiuX, TangH, WangZ, YuZ, et al. miR-429 inhibits cells growth and invasion and regulates EMT-related marker genes by targeting Onecut2 in colorectal carcinoma. Mol Cell Biochem. 2014;390(1–2):19–30. 150. RokavecM, OnerMG, LiH, JackstadtR, JiangL, LodyginD, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014;124(4):1853–67. 151. WangB, LiW, LiuH, YangL, LiaoQ, CuiS, et al. miR-29b suppresses tumor growth and metastasis in colorectal cancer via downregulating Tiam1 expression and inhibiting epithelial-mesenchymal transition. Cell Death Dis. 2014;5(7):1335. 152. ZhangJX, MaiSJ, HuangXX, WangFW, LiaoYJ, LinMC, et al. MiR-29c mediates epithelial-to-mesenchymal transition in human colorectal carcinoma metastasis via PTP4A and GNA13 regulation of β-catenin signaling. Ann Oncol. 2014;25(11):2196–204. 153. TangW, ZhuY, GaoJ, FuJ, LiuC, LiuY, et al. MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4. Br J Cancer. 2014;110(2):450–8. 154. PfaffN, FiedlerJ, HolzmannA, SchambachA, MoritzT, CantzT, et al. MiRNA screening reveals a new miRNA family stimulating iPS cell generation via regulation of Meox2. EMBO Rep. 2011;12(11):1153–9. 155. NguyenPNN, ChooKB, HuangCJ, SugiiS, CheongSK, KamarulT. MIR-524-5p of the primate-specific C19MC miRNA cluster targets TP53IPN1-and EMT-Associated genes to regulate cellular reprogramming. Stem Cell Res Ther. 2017;8(1):1–15. 156. LiM, HeL. microRNAs as novel regulators of stem cell pluripotency and somatic cell reprogramming. Bioessays. 2012;34(8):670–80. 157. GiordaR, BonagliaMC, BeriS, FicheraM, NovaraF, MaginiP, et al. Complex Segmental Duplications Mediate a Recurrent dup(X)(p11.22-p11.23) Associated with Mental Retardation, Speech Delay, and EEG Anomalies in Males and Females. Am J Hum Genet. 2009;8(3):394–400. 158. WolczykD, Zaremba-CzogallaM, Hryniewicz-JankowskaA, TabolaR, GrabowskiK, SikorskiAF, et al. TNF-α promotes breast cancer cell migration and enhances the concentration of membrane-associated proteases in lipid rafts. Cell Oncol. 2016;39(4):353–63. 159. ZhaoP, ZhangZ. TNF-α promotes colon cancer cell migration and invasion by upregulating TROP-2. Oncol Lett. 2018;15(3):3820–7. 160. WuY, ZhouBP. TNF-α/NFκ-B/Snail pathway in cancer cell migration and invasion. Br J Cancer. 2010;102(4):639–44. 161. LiuG, ZhuJ, YuM, CaiC, ZhouY, YuM, et al. Glutamate dehydrogenase is a novel prognostic marker and predicts metastases in colorectal cancer patients. J Transl Med. 2015;13(1):1–10. 162. NeganovaI, ShmelevaE, MunkleyJ, ChichagovaV, AnyfantisG, AndersonR, et al. JNK/SAPK Signaling Is Essential for Efficient Reprogramming of Human Fibroblasts to Induced Pluripotent Stem Cells. Stem Cells. 2016;34(5):1198–212. 163. XuW, YangZ, LuN. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr. 2015;9(4):317–24. 164. HardyKM, BoothBW, HendrixMJC. Erb/EFG Signaling and EMT in mammary development and breast cancer. J Mammary Gland Biol Neoplasia. 2010;15(2):191–9. 165. LuKV, ChangJP, ParachoniakCA, PandikaMM, AghiMK, MeyronetD, et al. VEGF Inhibits Tumor Cell Invasion and Mesenchymal Transition through a MET/VEGFR2 Complex. Cancer Cell. 2012;22(1):21–35. 166. XuW, YangZ, LuN. A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell Adh Migr. 2015;9(4):317–24. 167. DavidL, PoloJM. Phases of reprogramming. Stem Cell Res. 2014;12(3):754–61. 168. LuKV, ChangJP, ParachoniakCA, PandikaMM, AghiK, MeyronetD, et al. NIH Public Access. 2014;22(1):21–35. 169. YuJSL, CuiW. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143(17):3050–60. 170. EngelmanJA. Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62. 171. KalimuthuS, Se-KwonK. Cell survival and apoptosis signaling as therapeutic target for cancer: Marine bioactive compounds. Int J Mol Sci. 2013;14(2):2334–54. 172. DownwardJ. PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol. 2004;15(2):177–82. 173. LeeYJ, HanHJ. Troglitazone ameliorates high glucose-induced EMT and dysfunction of SGLTs through PI3K/Akt, GSK-3β, Snail1, and β-catenin in renal proximal tubule cells. Am J Physiol Physiol. 2010;298(5):1263–75. 174. MiyazokoK. Transforming growth factor-β signaling in epithelial-mesenchymal transition and progression of cancer. Proc Japan Acad Ser B. 2009;85(8):314–23. 175. LiH, BatthIS, QuX, XuL, SongN, WangR, et al. IGF-IR signaling in epithelial to mesenchymal transition and targeting IGF-IR therapy: Overview and new insights. Mol Cancer. 2017;16(1):1–15. 176. MatosML, LapyckyjL, RossoM, BessoMJ, MencucciMV, BriggilerCIM, et al. Identification of a Novel Human E-Cadherin Splice Variant and Assessment of Its Effects Upon EMT-Related Events. J Cell Physiol. 2017;232(6):1368–86. 177. GargM. Urothelial cancer stem cells and epithelial plasticity: current concepts and therapeutic implications in bladder cancer. Cancer Metastasis Rev. 2015;34(4):691–701. 178. LobodaA, NebozhynMV., WattersJW, BuserCA, ShawPM, HuangPS, et al. EMT is the dominant program in human colon cancer. BMC Med Genomics. 2011;4(1):9. 179. ChangYY, KuoWH, HungJH, LeeCY, LeeYH, ChangYC, et al. Deregulated microRNAs in triple-negative breast cancer revealed by deep sequencing. Mol Cancer. 2015;14(1):1–13. 180. ZhangH, QiS, ZhangT, WangA, LiuR, GuoJ, et al. miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression. Oncotarget. 2015;6(8):6092–104. 181. FortunatoO, BoeriM, MoroM, VerriC, MensahM, ConteD, et al. Mir-660 is downregulated in lung cancer patients and its replacement inhibits lung tumorigenesis by targeting MDM2-p53 interaction. Cell Death Dis. 2014;5(12):1564-9. 182. XuX, ZhangY, LiuZ, ZhangX, JiaJ. miRNA-532-5p functions as an oncogenic microRNA in human gastric cancer by directly targeting RUNX3. J Cell Mol Med. 2016;20(1):95–103. 183. JiangC, LongJ, LiuB, XuM, WangW, XieX, et al. miR-500a-3p promotes cancer stem cells properties via STAT3 pathway in human hepatocellular carcinoma. J Exp Clin Cancer Res. 2017;36(1):99. 184. NiF, GuiZ, GuoQ, HuZ, WangX, ChenD, et al. Downregulation of miR-362-5p inhibits proliferation, migration and invasion of human breast cancer MCF7 cells. Oncol Lett. 2016;11(2):1155–60. 185. NiF, ZhaoH, CuiH, WuZ, ChenL, HuZ, et al. MicroRNA-362-5p promotes tumor growth and metastasis by targeting CYLD in hepatocellular carcinoma. Cancer Lett. 2015;356(2):809–18. 186. LuoD, ZhangZ, ZhangZ, LiJ-Y, CuiJ, ShiW-P, et al. Aberrant Expression of miR-362 Promotes Lung Cancer Metastasis through Downregulation of Sema3A. J Immunol Res. 2018;2018:1–10. 187. ChiY, CuiJ, WangY, DuW, ChenF, LiZ, et al. Interferon alters the microRNA profile of umbilical cord derived mesenchymal stem cells. Mol Med Rep. 2016;14(5):4187–97. 188. GestC, JoimelU, HuangL, PritchardLL, PetitA, DulongC, et al. Rac3 induces a molecular pathway triggering breast cancer cell aggressiveness: Differences in MDA-MB-231 and MCF-7 breast cancer cell lines. BMC Cancer. 2013;13. 189. WangXH, LiuW, FanDX, HuWT, LiMQ, ZhuXY, et al. IL-33 restricts invasion and adhesion of trophoblast cell line JEG3 by downregulation of integrin α4β1 and CD62L. Mol Med Rep. 2017;16(4):3887–93. 190. EhrigK, KilincMO, ChenNG, StritzkerJ, BuckelL, ZhangQ, et al. Growth inhibition of different human colorectal cancer xenografts after a single intravenous injection of oncolytic vaccinia virus GLV-1h68. J Transl Med. 2013;11(1):1. 191. WangW, YangJ, LiuH, LuD, ChenX, ZenonosZ, et al. Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proc Natl Acad Sci U S A. 2011;108(45):18283–8. 192. CamaraDAD, PorcacchiaAS, CostaAS, AzevedoRA, KerkisI. Murine melanoma cells incomplete reprogramming using non-viral vector. Cell Prolif. 2017;50(4):1–10. 193. KuoC-H, YingS-Y. Advances in microRNA-mediated reprogramming technology. Stem Cells Int. 2012;2012:823709. 194. NelakantiRV, KooremanNG, WuJC. Teratoma formation: a tool for monitoring pluripotency in stem cell research. Curr Protoc Stem Cell Biol. 2015;32:8-17. 195. OshimaN, YamadaY, NagayamaS, KawadaK, HasegawaS, OkabeH, et al. Induction of Cancer Stem Cell Properties in Colon Cancer Cells by Defined Factors. SinghSR, editor. PLoS One. 2014;9(7):101735. 196. IslamSMR, SuenagaY, TakatoriA, UedaY, KanekoY, KawanaH, et al. Sendai virus-mediated expression of reprogramming factors promotes plasticity of human neuroblastoma cells. Cancer Sci. 2015;106(10):1351–61. 197. LaiJ, KongCM, MahalingamD, XieX, WangX. Elite model for the generation of induced pluripotent cancer cells (iPCs). JohnsonR, editor. PLoS One. 2013;8(2):56702. 198. RedmerT, DieckeS, GrigoryanT, Quiroga-NegreiraA, BirchmeierW, BesserD. E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep. 201;12(7):720–6. 199. BalzanoF, CrucianiS, BasoliV, SantanielloS, FacchinF, VenturaC, et al. MiR200 and MiR302: Two big families influencing stem cell behavior. Molecules. 2018;23(2). 200. KongQ, XieB, LiJ, HuanY, HuangT, WeiR, et al. Identification and characterization of an oocyte factor required for porcine nuclear reprogramming. J Biol Chem. 2014;289(10):6960–8. 201. NietoMA, HuangRY-J, JacksonRA, ThieryJP. EMT: 2016. Cell. 2016;166(1):21–45. 202. ForteE, ChimentiI, RosaP, AngeliniF, PaganoF, CalogeroA, et al. EMT/MET at the crossroad of stemness, regeneration and oncogenesis: The Ying-Yang equilibrium recapitulated in cell spheroids. Cancers (Basel). 2017;9(8):1–15. 203. JollyMK, JiaD, BoaretoM, ManiSA, PientaKJ, Ben-JacobE, et al. Coupling the modules of EMT and stemness: A tunable “stemness window” model. Oncotarget. 2015;6(28):25161–74. 204. StraussR, LiZ-Y, LiuY, BeyerI, PerssonJ, SovaP, et al. Analysis of epithelial and mesenchymal markers in ovarian cancer reveals phenotypic heterogeneity and plasticity. GullbergD, editor. PLoS One. 2011;6(1):16186. 205. Grosse-WildeA, Fouquier d’HerouelA, McIntoshE, ErtaylanG, SkupinA, KuestnerRE, et al. Stemness of the hybrid Epithelial/Mesenchymal State in Breast Cancer and Its Association with Poor Survival. Ben-JacobE, editor. PLoS One. 2015;10(5):126522. 206. RuscettiM, QuachB, DadashianEL, MulhollandDJ, WuH. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells during Prostate Cancer Metastasis. Cancer Res. 2015;75(13):2749–59. 207. JordanNV, JohnsonGL, AbellAN. Tracking the intermediate stages of epithelial-mesenchymal transition in epithelial stem cells and cancer. Cell Cycle. 2011;10(17):2865–73. 208. ShawTJ, MartinP. Wound repair: a showcase for cell plasticity and migration. Curr Opin Cell Biol. 2016;42:29–37. 209. G.S, ChandraV, PhadnisS, BhondeR. Glomerular parietal epithelial cells of adult murine kidney undergo EMT to generate cells with traits of renal progenitors. J Cell Mol Med. 2011;15(2):396–413. 210. ConigliaroA, AmiconeL, CostaV, DeSantis PuzzoniaM, ManconeC, SacchettiB, et al. Evidence for a common progenitor of epithelial and mesenchymal components of the liver. Cell Death Differ. 2013;20(8):1116–23. 211. YeX, TamWL, ShibueT, KaygusuzY, ReinhardtF, Ng EatonE, et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature. 2015;525(7568):256–60. 212. BiddleA, LiangX, GammonL, FazilB, HarperLJ, EmichH, et al. Cancer Stem Cells in Squamous Cell Carcinoma Switch between Two Distinct Phenotypes That Are Preferentially Migratory or Proliferative. Cancer Res. 2011;71(15):5317–26. 213. LiuS, CongY, WangD, SunY, DengL, LiuY, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports. 2014;2(1):78–91. 214. Celia-TerrassaT, Meca-CortesO, MateoF, Martinez de PazA, RubioN, Arnal-EstapeA, et al. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J Clin Invest. 2012;122(5):1849–68. 215. BarriereG, FiciP, GalleraniG, FabbriF, RigaudM. Epithelial Mesenchymal Transition: a double-edged sword. Clin Transl Med. 2015;4:14. 216. Bednarz-KnollN, Alix-PanabieresC, PantelK. Plasticity of disseminating cancer cells in patients with epithelial malignancies. Cancer Metastasis Rev. 2012;31(3):673–87. 217. DavidL, PoloJM. Phases of reprogramming. Stem Cell Res. 2014;12(3):754–61. 218. ChenT, YuanD, WeiB, JiangJ, KangJ, LingK, et al. E-cadherin-mediated cell-cell contact is critical for induced pluripotent stem cell generation. Stem Cells. 2010;28(8):1315–25. 219. FaiolaF, YinN, FidalgoM, HuangX, SaundersA, DingJ, et al. NAC1 Regulates Somatic Cell Reprogramming by Controlling Zeb1 and E-cadherin Expression. Stem cell reports. 2017;9(3):913–26.
|