跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/20 18:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘怡陵
研究生(外文):Yi-Ling Pan
論文名稱:探討綜合壓力反應對於人類口腔癌細胞特性及粒線體功能的影響
論文名稱(外文):Effect of Integrated Stress Response on Cancer Cell Characteristics and Mitochondrial Function in Human Oral Cancer Cells
指導教授:李新城李新城引用關係
指導教授(外文):Hsin-Chen Lee
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:64
中文關鍵詞:口腔癌綜合壓力反應粒線體
外文關鍵詞:oral cancerintegrated stress responsemitochondria
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
  口腔癌為常見的癌症。在臺灣,2018年的口腔癌死亡率為癌症死亡率排名中的第五名。雖然手術治療為口腔癌主要的治療方式,但對於不適合手術治療及晚期的口腔癌,化學治療仍是重要的治療方式。目前晚期的口腔癌預後仍是不佳的,因此找尋更有效治療口腔癌之方法是重要的。
  綜合壓力反應 (ISR)是細胞遭受壓力時所產生的反應,主要的核心是磷酸化eIF2α。當細胞處於缺氧、胺基酸缺乏、病毒感染及內質網壓力時,會造成eIF2α激酶的活化,使eIF2α磷酸化而啟動綜合壓力反應,造成細胞蛋白合成受到抑制,然而,ATF4蛋白的轉譯會被活化。ATF4為一種轉錄因子,能夠促進下游基因表現。活化綜合壓力反應能夠促進細胞的生存,但細胞長期處於綜合壓力反應之下則會造成細胞的死亡。在此研究中,利用NHOK、OECM-1及三種不同特性的SAS細胞株,包括低致瘤性細胞SAS-P、高致瘤性細胞SAS-VO3及易轉移細胞SAS-M5進行實驗。本篇研究發現利用salubrinal活化綜合壓力反應會抑制細胞生長、形成群落能力、形成sphere能力及移動能力,但會造成細胞產生抗藥性。此外,活化綜合壓力反應會造成細胞呼吸下降,增加細胞內及粒線體內活性氧分子的含量,粒線體質量也有增加的情況。然而,活化綜合壓力反應會減少粒線體DNA拷貝數,但不會影響粒線體基因及蛋白表現量。在代謝方面,活化綜合壓力反應會降低細胞呼吸速率,而細胞葡萄糖的攝取量沒有增加,會使細胞處於缺乏能量的情形,且會增加細胞對於葡萄糖的依賴性。
  此研究說明在口腔癌細胞中活化綜合壓力反應能夠抑制口腔癌細胞惡性特性及降低粒線體呼吸功能和改變細胞代謝。因此,綜合壓力反應的活化,未來可能可以做為一個癌症治療的方式,達到增加病患存活率的效果。
  Oral cancer is the common cancers. In Taiwan, the mortality rate of oral cancer in 2018 was ranking five. Although the main treatment for oral cancer is surgical treatment, chemotherapy is still important treatment for unfit for surgery and advanced oral cancer. Patients with advanced oral cancer are still poor prognosis, so it is of crucial importance to find a more effective treatment for oral cancer.
  Integrated stress response (ISR) is a response to stress stimuli and the core event of ISR is phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α). When cells are under hypoxia, amino acid deprivation, viral infection, or endoplasmic reticulum stress, eIF2α kinase would be activated and phosphorylate, which activates stress response. Active ISR represses global protein synthesis but induces translation of the transcription factor 4 (ATF4). ATF4 is a transcription factor which can regulate its downstream genes. Activation of ISR would promote cell survival, but a prolonged activation of ISR would induce cell death. In this study, it was investigated that the role of ISR in NHOK, OECM-1 and three types of SAS cell lines including a low tumorigenic oral cancer cells (SAS-P), a high tumorigenic oral cancer cells (SAS-VO3) and a more metastatic oral cancer cells (SAS-M5). The data revealed that salubrinal-induced ISR represses cell growth, colony formation, sphere formation and migration, but enhances drug resistance. In addition, active ISR repressed respiration rates and increased cellular and mitochondrial ROS levels, and increased mitochondrial mass. However, active ISR decreased mitochondrial DNA copy number but not changed mitochondrial gene and protein level expressions. In the aspect of metabolism, active ISR decreased respiration rates and did not increase glucose uptake, which caused energy stress. Active ISR also increased glucose dependence.
  These findings obtained from this study indicated that active ISR could repress cancer cell malignant phenotypes, mitochondrial function and change metabolism in oral cancer cells. These findings suggested that activating ISR can be a potential treatment strategy for oral cancer patients to increase patient survival rates.
目錄
致謝.................................................................i
中文摘要............................................................ii
英文摘要 ..........................................................iii
目 錄..............................................................v
圖目錄.............................................................vi
表目錄............................................................vii
縮寫表...........................................................viii
研究背景............................................................1
研究目的............................................................7
實驗設計............................................................8
材料與方法.........................................................10
結果..............................................................21
討論..............................................................29
結論..............................................................33
參考資料..........................................................34
圖表..............................................................41
表................................................................62
附錄..............................................................63

圖目錄
圖一、以salubrinal活化綜合壓力反應.................................41
圖二、活化綜合壓力反應抑制口腔癌細胞生長............................42
圖三、活化綜合壓力反應抑制口腔癌細胞結球能力........................44
圖四、活化綜合壓力反應抑制口腔癌細胞形成群落能力....................45
圖五、活化綜合壓力反應抑制口腔癌細胞在軟瓊脂膠中形成的群落數.........46
圖六、活化綜合壓力反應抑制口腔癌細胞移動能力........................48
圖七、活化綜合壓力反應增加口腔癌細胞的抗藥性........................50
圖八、活化綜合壓力反應稍微增加細胞內及粒線體內ROS的含量..............51
圖九、活化綜合壓力反應,增加粒線體質量..............................52
圖十、活化綜合壓力反應降低粒線體DNA copy number.....................53
圖十一、活化綜合壓力反應對於粒線體基因及蛋白質的影響.................54
圖十二、活化綜合壓力反應造成細胞呼吸下降可能和抑制mTOR路徑相關........55
圖十三、活化綜合壓力反應對於葡萄糖攝取及乳酸的影響...................56
圖十四、處理oligomycin活化綜合壓力反應對於葡萄糖攝取及乳酸的影響.....57
圖十五、活化綜合壓力反應可活化AMPK路徑..............................58
圖十六、活化綜合壓力反應改變細胞對葡萄糖的依賴性.....................59
圖十七、總結示意圖.................................................61

表目錄
表格1、Real-time PCR 引子序列表....................................62
1. Kao SY, Lim E. An overview of detection and screening of oral cancer in Taiwan. Chin J Dent Res. (2015) 18: 7-12.
2. Montero PH, Patel SG. Cancer of the oral cavity. Surgical oncology clinics of North America. (2015) 24: 491-508.
3. Ko YC, Huang YL, Lee CH, Chen MJ, Lin LM, Tsai CC. Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med. (1995) 24: 450-453.
4. Howlader N NA, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA. SEER cancer statistics review, 1975-2016. National Cancer Institute. (2019).
5. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, Jessup JM, Brierley JD, Gaspar LE, Schilsky RL, Balch CM, Winchester DP, Asare EA, Madera M, Gress DM, Meyer LR. AJCC cancer staging manual. Springer International Publishing. (2017).
6. Day TA, Davis BK, Gillespie MB, Joe JK, Kibbey M, Martin-Harris B, Neville B, Richardson MS, Rosenzweig S, Sharma AK, Smith MM, Stewart S, Stuart RK. Oral cancer treatment. Curr Treat Options Oncol. (2003) 4: 27-41.
7. Adelstein D, Gillison ML, Pfister DG, Spencer S, Adkins D, Brizel DM, Burtness B, Busse PM, Caudell JJ, Cmelak AJ, Colevas AD, Eisele DW, Fenton M, Foote RL, Gilbert J, Haddad RI, Hicks WL, Hitchcock YJ, Jimeno A, Leizman D, Lydiatt WM, Maghami E, Mell LK, Mittal BB, Pinto HA, Ridge JA, Rocco J, Rodriguez CP, Shah JP, Weber RS, Witek M, Worden F, Yom SS, Zhen W, Burns JL, Darlow SD. NCCN guidelines lnsights: head and neck cancers, version 2.2017. J Natl Compr Canc Netw. (2017) 15: 761-770.
8. Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Rep. (2016) 17: 1374-1395.
9. Wortel IMN, van der Meer LT, Kilberg MS, van Leeuwen FN. Surviving stress: modulation of ATF4-mediated stress responses in normal and malignant cells. Trends Endocrinol Metab. (2017) 28: 794-806.
10. Galehdar Z, Swan P, Fuerth B, Callaghan SM, Park DS, Cregan SP. Neuronal apoptosis induced by endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated induction of the Bcl-2 homology 3-only member PUMA. J Neurosci. (2010) 30: 16938-16948.
11. Hiramatsu N, Chiang WC, Kurt TD, Sigurdson CJ, Lin JH. Multiple mechanisms of unfolded protein response-induced cell death. Am J Pathol. (2015) 185: 1800-1808.
12. Hiramatsu N, Messah C, Han J, LaVail MM, Kaufman RJ, Lin JH. Translational and posttranslational regulation of XIAP by eIF2alpha and ATF4 promotes ER stress-induced cell death during the unfolded protein response. Mol Biol Cell. (2014) 25: 1411-1420.
13. Horiguchi M, Koyanagi S, Okamoto A, Suzuki SO, Matsunaga N, Ohdo S. Stress-regulated transcription factor ATF4 promotes neoplastic transformation by suppressing expression of the INK4a/ARF cell senescence factors. Cancer Res. (2012) 72: 395-401.
14. Ye J, Kumanova M, Hart LS, Sloane K, Zhang H, De Panis DN, Bobrovnikova-Marjon E, Diehl JA, Ron D, Koumenis C. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J. (2010) 29: 2082-2096.
15. Zhang Z, Yin J, Zhang C, Liang N, Bai N, Chang A, Liu Y, Li Z, Tan X, Li N, Lv D, Xiang R, Tian Y, Liu C. Activating transcription factor 4 increases chemotherapeutics resistance of human hepatocellular carcinoma. Cancer Biol Ther. (2012) 13: 435-442.
16. Ameri K, Lewis CE, Raida M, Sowter H, Hai T, Harris AL. Anoxic induction of ATF-4 through HIF-1-independent pathways of protein stabilization in human cancer cells. Blood. (2004) 103: 1876-1882.
17. Igarashi T, Izumi H, Uchiumi T, Nishio K, Arao T, Tanabe M, Uramoto H, Sugio K, Yasumoto K, Sasaguri Y, Wang KY, Otsuji Y, Kohno K. Clock and ATF4 transcription system regulates drug resistance in human cancer cell lines. Oncogene. (2007) 26: 4749-4760.
18. He Y, Correa AM, Raso MG, Hofstetter WL, Fang B, Behrens C, Roth JA, Zhou Y, Yu L, Wistuba, II, Swisher SG, Pataer A. The role of PKR/eIF2alpha signaling pathway in prognosis of non-small cell lung cancer. PLoS One. (2011) 6: e24855.
19. Guo L, Chi Y, Xue J, Ma L, Shao Z, Wu J. Phosphorylated eIF2alpha predicts disease-free survival in triple-negative breast cancer patients. Sci Rep. (2017) 7: 44674.
20. Way SW, Popko B. Harnessing the integrated stress response for the treatment of multiple sclerosis. Lancet Neurol. (2016) 15: 434-443.
21. Boyce M, Bryant KF, Jousse C, Long K, Harding HP, Scheuner D, Kaufman RJ, Ma D, Coen DM, Ron D, Yuan J. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science. (2005) 307: 935-939.
22. Lee DY, Lee KS, Lee HJ, Kim DH, Noh YH, Yu K, Jung HY, Lee SH, Lee JY, Youn YC, Jeong Y, Kim DK, Lee WB, Kim SS. Activation of PERK signaling attenuates Abeta-mediated ER stress. PLoS One. (2010) 5: e10489.
23. Reijonen S, Putkonen N, Norremolle A, Lindholm D, Korhonen L. Inhibition of endoplasmic reticulum stress counteracts neuronal cell death and protein aggregation caused by N-terminal mutant huntingtin proteins. Exp Cell Res. (2008) 314: 950-960.
24. Zhao X, Zhang C, Zhou H, Xiao B, Cheng Y, Wang J, Yao F, Duan C, Chen R, Liu Y, Feng C, Li H, Li J, Dai R. Synergistic antitumor activity of the combination of salubrinal and rapamycin against human cholangiocarcinoma cells. Oncotarget. (2016) 7: 85492-85501.
25. Yu W, Xiang Y, Luo G, Zhao X, Xiao B, Cheng Y, Feng C, Duan C, Xia X, Wong VKW, Dai R. Salubrinal enhances doxorubicin sensitivity in human cholangiocarcinoma cells through promoting DNA damage. Cancer Biother Radiopharm. (2018) 33: 258-265.
26. Backes S, Herrmann JM. Protein translocation into the intermembrane space and matrix of mitochondria: mechanisms and driving forces. Front Mol Biosci. (2017) 4: 83.
27. Zhao RZ, Jiang S, Zhang L, Yu ZB. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int J Mol Med. (2019) 44: 3-15.
28. Alexeyev M, Shokolenko I, Wilson G, LeDoux S. The maintenance of mitochondrial DNA integrity--critical analysis and update. Cold Spring Harb Perspect Biol. (2013) 5: a012641.
29. Carew JS, Huang P. Mitochondrial defects in cancer. Mol Cancer. (2002) 1: 9.
30. Haag-Liautard C, Coffey N, Houle D, Lynch M, Charlesworth B, Keightley PD. Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLoS Biol. (2008) 6: e204.
31. Feissner RF, Skalska J, Gaum WE, Sheu SS. Crosstalk signaling between mitochondrial Ca2+ and ROS. Front Biosci (Landmark Ed). (2009) 14: 1197-1218.
32. Zhou B, Tian R. Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Invest. (2018) 128: 3716-3726.
33. Guha M, Srinivasan S, Raman P, Jiang Y, Kaufman BA, Taylor D, Dong D, Chakrabarti R, Picard M, Carstens RP, Kijima Y, Feldman M, Avadhani NG. Aggressive triple negative breast cancers have unique molecular signature on the basis of mitochondrial genetic and functional defects. Biochim Biophys Acta Mol Basis Dis. (2018) 1864: 1060-1071.
34. Yu M, Zhou Y, Shi Y, Ning L, Yang Y, Wei X, Zhang N, Hao X, Niu R. Reduced mitochondrial DNA copy number is correlated with tumor progression and prognosis in Chinese breast cancer patients. IUBMB Life. (2007) 59: 450-457.
35. McMahon S, LaFramboise T. Mutational patterns in the breast cancer mitochondrial genome, with clinical correlates. Carcinogenesis. (2014) 35: 1046-1054.
36. Jackson M, Serada N, Sheehan M, Srinivasan S, Mason N, Guha M, Avadhani N. Mitochondrial genome and functional defects in osteosarcoma are associated with their aggressive phenotype. PLoS One. (2018) 13: e0209489.
37. Bai RK, Chang J, Yeh KT, Lou MA, Lu JF, Tan DJ, Liu H, Wong LJ. Mitochondrial DNA content varies with pathological characteristics of breast cancer. J Oncol. (2011) 2011: 496189.
38. Liao LM, Baccarelli A, Shu XO, Gao YT, Ji BT, Yang G, Li HL, Hoxha M, Dioni L, Rothman N, Zheng W, Chow WH. Mitochondrial DNA copy number and risk of gastric cancer: a report from the Shanghai Women's Health Study. Cancer Epidemiol Biomarkers Prev. (2011) 20: 1944-1949.
39. Chattopadhyay E, De Sarkar N, Singh R, Ray A, Roy R, Paul RR, Pal M, Ghose S, Ghosh S, Kabiraj D, Banerjee R, Roy B. Genome-wide mitochondrial DNA sequence variations and lower expression of OXPHOS genes predict mitochondrial dysfunction in oral cancer tissue. Tumour Biol. (2016) 37: 11861-11871.
40. Jiang WW, Rosenbaum E, Mambo E, Zahurak M, Masayesva B, Carvalho AL, Zhou S, Westra WH, Alberg AJ, Sidransky D, Koch W, Califano JA. Decreased mitochondrial DNA content in posttreatment salivary rinses from head and neck cancer patients. Clin Cancer Res. (2006) 12: 1564-1569.
41. Tan DJ, Chang J, Chen WL, Agress LJ, Yeh KT, Wang B, Wong LJ. Somatic mitochondrial DNA mutations in oral cancer of betel quid chewers. Ann N Y Acad Sci. (2004) 1011: 310-316.
42. Lai CH, Huang SF, Liao CT, Chen IH, Wang HM, Hsieh LL. Clinical significance in oral cavity squamous cell carcinoma of pathogenic somatic mitochondrial mutations. PLoS One. (2013) 8: e65578.
43. Michel S, Canonne M, Arnould T, Renard P. Inhibition of mitochondrial genome expression triggers the activation of CHOP-10 by a cell signaling dependent on the integrated stress response but not the mitochondrial unfolded protein response. Mitochondrion. (2015) 21: 58-68.
44. Weidling I, Swerdlow RH. Mitochondrial dysfunction and stress responses in alzheimer's disease. Biology (Basel). (2019) 8: 2.
45. Quiros PM, Prado MA, Zamboni N, D'Amico D, Williams RW, Finley D, Gygi SP, Auwerx J. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J Cell Biol. (2017) 216: 2027-2045.
46. Melber A, Haynes CM. UPR(mt) regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res. (2018) 28: 281-295.
47. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. (2003) 11: 619-633.
48. Kilberg MS, Shan J, Su N. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab. (2009) 20: 436-443.
49. Barbosa-Tessmann IP, Chen C, Zhong C, Siu F, Schuster SM, Nick HS, Kilberg MS. Activation of the human asparagine synthetase gene by the amino acid response and the endoplasmic reticulum stress response pathways occurs by common genomic elements. J Biol Chem. (2000) 275: 26976-26985.
50. Hatzoglou M, Fernandez J, Yaman I, Closs E. Regulation of cationic amino acid transport: the story of the CAT-1 transporter. Annu Rev Nutr. (2004) 24: 377-399.
51. Bruhat A, Jousse C, Wang XZ, Ron D, Ferrara M, Fafournoux P. Amino acid limitation induces expression of CHOP, a CCAAT/enhancer binding protein-related gene, at both transcriptional and post-transcriptional levels. J Biol Chem. (1997) 272: 17588-17593.
52. Hyde R, Taylor PM, Hundal HS. Amino acid transporters: roles in amino acid sensing and signalling in animal cells. Biochem J. (2003) 373: 1-18.
53. Su N, Kilberg MS. C/EBP homology protein (CHOP) interacts with activating transcription factor 4 (ATF4) and negatively regulates the stress-dependent induction of the asparagine synthetase gene. J Biol Chem. (2008) 283: 35106-35117.
54. Chen CY, Chiou SH, Huang CY, Jan CI, Lin SC, Tsai ML, Lo JF. Distinct population of highly malignant cells in a head and neck squamous cell carcinoma cell line established by xenograft model. J Biomed Sci. (2009) 16: 100.
55. Chen YS, Huang WL, Chang SH, Chang KW, Kao SY, Lo JF, Su PF. Enhanced filopodium formation and stem-like phenotypes in a novel metastatic head and neck cancer cell model. Oncol Rep. (2013) 30: 2829-2837.
56. Puck TT, Marcus PI, Cieciura SJ. Clonal growth of mammalian cells in vitro; growth characteristics of colonies from single HeLa cells with and without a feeder layer. J Exp Med. (1956) 103: 273-283.
57. Borowicz S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J, Bikkavilli RK, Winn RA. The soft agar colony formation assay. J Vis Exp. (2014): e51998.
58. Kudchodkar SB, Yu Y, Maguire TG, Alwine JC. Human cytomegalovirus infection induces rapamycin-insensitive phosphorylation of downstream effectors of mTOR kinase. J Virol. (2004) 78: 11030-11039.
59. Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. (2017) 66: 789-800.
60. Koppula P, Zhang Y, Zhuang L, Gan B. Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond). (2018) 38: 12.
61. Shin CS, Mishra P, Watrous JD, Carelli V, D'Aurelio M, Jain M, Chan DC. The glutamate/cystine xCT antiporter antagonizes glutamine metabolism and reduces nutrient flexibility. Nat Commun. (2017) 8: 15074.
62. Lee HC, Yin PH, Chi CW, Wei YH. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J Biomed Sci. (2002) 9: 517-526.
63. Wei Q, Zhang B, Li P, Wen X, Yang J. Maslinic acid inhibits colon tumorigenesis by the AMPK-mTOR signaling pathway. J Agric Food Chem. (2019) 67: 4259-4272.
64. Guigas B, Bertrand L, Taleux N, Foretz M, Wiernsperger N, Vertommen D, Andreelli F, Viollet B, Hue L. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes. (2006) 55: 865-874.
65. Lo M, Wang YZ, Gout PW. The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol. (2008) 215: 593-602.
66. Wang L, Li JJ, Guo LY, Li P, Zhao Z, Zhou H, Di LJ. Molecular link between glucose and glutamine consumption in cancer cells mediated by CtBP and SIRT4. Oncogenesis. (2018) 7: 26-26.
67. Chen D, Fan Z, Rauh M, Buchfelder M, Eyupoglu IY, Savaskan N. ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner. Oncogene. (2017) 36: 5593.
68. Strohecker AM, Guo JY, Karsli-Uzunbas G, Price SM, Chen GJ, Mathew R, McMahon M, White E. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov. (2013) 3: 1272-1285.
69. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A. (2010) 107: 8788-8793.
70. Porporato PE, Payen VL, Perez-Escuredo J, De Saedeleer CJ, Danhier P, Copetti T, Dhup S, Tardy M, Vazeille T, Bouzin C, Feron O, Michiels C, Gallez B, Sonveaux P. A mitochondrial switch promotes tumor metastasis. Cell Rep. (2014) 8: 754-766.
71. LeBleu VS, O'Connell JT, Gonzalez Herrera KN, Wikman H, Pantel K, Haigis MC, de Carvalho FM, Damascena A, Domingos Chinen LT, Rocha RM, Asara JM, Kalluri R. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol. (2014) 16: 992-1003.
72. Andrzejewski S, Klimcakova E, Johnson RM, Tabaries S, Annis MG, McGuirk S, Northey JJ, Chenard V, Sriram U, Papadopoli DJ, Siegel PM, St-Pierre J. PGC-1alpha promotes breast cancer metastasis and confers bioenergetic flexibility against metabolic drugs. Cell Metab. (2017) 26: 778-787.
73. Tan AS, Baty JW, Dong LF, Bezawork-Geleta A, Endaya B, Goodwin J, Bajzikova M, Kovarova J, Peterka M, Yan B, Pesdar EA, Sobol M, Filimonenko A, Stuart S, Vondrusova M, Kluckova K, Sachaphibulkij K, Rohlena J, Hozak P, Truksa J, Eccles D, Haupt LM, Griffiths LR, Neuzil J, Berridge MV. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. (2015) 21: 81-94.
74. Corazao-Rozas P, Guerreschi P, Jendoubi M, Andre F, Jonneaux A, Scalbert C, Garcon G, Malet-Martino M, Balayssac S, Rocchi S, Savina A, Formstecher P, Mortier L, Kluza J, Marchetti P. Mitochondrial oxidative stress is the Achille's heel of melanoma cells resistant to Braf-mutant inhibitor. Oncotarget. (2013) 4: 1986-1998.
75. Gopal YN, Rizos H, Chen G, Deng W, Frederick DT, Cooper ZA, Scolyer RA, Pupo G, Komurov K, Sehgal V, Zhang J, Patel L, Pereira CG, Broom BM, Mills GB, Ram P, Smith PD, Wargo JA, Long GV, Davies MA. Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1alpha and oxidative phosphorylation in melanoma. Cancer Res. (2014) 74: 7037-7047.
76. Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang XL, Rajagopalan KN, Maddie M, Vemireddy V, Zhao Z, Cai L, Good L, Tu BP, Hatanpaa KJ, Mickey BE, Mates JM, Pascual JM, Maher EA, Malloy CR, Deberardinis RJ, Bachoo RM. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. (2012) 15: 827-837.
77. Marchetti P, Guerreschi P, Mortier L, Kluza J. Integration of mitochondrial targeting for molecular cancer therapeutics. Int J Cell Biol. (2015) 2015: 283145.
78. Barbi de Moura M, Vincent G, Fayewicz SL, Bateman NW, Hood BL, Sun M, Suhan J, Duensing S, Yin Y, Sander C, Kirkwood JM, Becker D, Conrads TP, Van Houten B, Moschos SJ. Mitochondrial respiration--an important therapeutic target in melanoma. PLoS One. (2012) 7: e40690.
79. Ben Sahra I, Le Marchand-Brustel Y, Tanti JF, Bost F. Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol Cancer Ther. (2010) 9: 1092-1099.
80. Menendez JA, Oliveras-Ferraros C, Cufi S, Corominas-Faja B, Joven J, Martin-Castillo B, Vazquez-Martin A. Metformin is synthetically lethal with glucose withdrawal in cancer cells. Cell Cycle. (2012) 11: 2782-2792.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊